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Abstract. In this paper, we present an algorithm, called Bubble Tree,
for the drawing of general rooted trees. A large variety of algorithms
already exists in this field. However, the goal of this algorithm is to
obtain a better drawing which make a trade off between the angular
resolution and the length of the edges. We show that the Bubble Tree
drawing algorithm provides a planar drawing with at most one bend per
edge in linear running time. We compare the aesthetic criteria of this
algorithm with two well-known algorithms on a data-set coming from a
real application.

1 Introduction

Hierarchical representations of information still remain central in Information
Visualization. Their success mainly resides in the wide spectrum of applications
for which they are relevant. Some applications focus on hierarchical data, making
the use of tree layouts an obvious choice. For instance, tree representations for
the visual analysis of file systems [12] or phylogenies [1] are mandatory to reflect
the structure of the data under study. Tree representations can still be relevant
when the data is not hierarchical but consist in a general network or graph. In
most cases, a tree is extracted from the network following an adequate search of
the nodes and links. This approach makes sense when the task conducted by the
user requires to select an entry point in the network, for instance, although the
user is offered a hierarchical view of non hierarchical data. The display of a tree
then makes it possible for the user to change its focus of interest, assuming this
focus is consistently positioned at the center of the screen. The visual information
supported by the layout can also be complemented by visual cues such as node
size and labels.

Tree layout algorithms more or less belong to two distinct categories. The
first category corresponds to the so-called hierarchical drawing of trees originally
proposed by Reingold and Tilford [13] (extended by Walker [17]) and reconsid-
ered recently by Buchheim et al [6]. Even if these algorithms do not perform
well in terms of aspect ratios, their interest mainly resides in their ability to deal
with varying node size. Another interesting feature is the possibility to map the
layout into a radial representation, through a simple transformation more or less
sending the bottom line of a top-down drawing to a circle [8]. A clear advantage



of such a representation is to allow direct comparison of the ancestor-descendant
distance between nodes. However, this type of information is not sufficient when
performing visual information retrieval or data mining.

The second category of algorithms differs from the first one in that the focus is
not on the hierarchical structure of the information, but rather on scalability and
on the possibility of displaying large amounts of data. Tree maps, for instance, do
not intuitively reflect the hierarchical structure of the information [5,15]. They
are mainly used in contexts where the user needs to directly access attribute
values and changes. Cone trees introduced in the pioneer work of Robertson [14]
suggested the use of 3D for displaying and navigating large hierarchies. Several
authors have later improved this technique [7, 10, 16].

In this paper we present some basic terminology about tree and aesthetic
criteria. Then, we describe precisely the two principle stages of our algorithm.
Subsequently, after a short discussion about the time complexity of this algo-
rithm, we present a comparative study of the distribution of two well-known
aesthetic criteria obtained by our and two other algorithms. Finally, we con-
clude the paper with several drawings of an entire Linux file system containing
about 270.000 files.

2 Preliminaries

We define a (rooted) tree as a directed acyclic graph with a single source, called
the root of the tree, such that there is a unique directed path from the root to
any other node. Each node a on the path from the root to a node n is called an
ancestor of n. For ease of read in the following we note ancestor(n) the unique
nearest ancestor of n. This function is not defined when 7 is the root. Each node
d, such that it exists a directed path from n to d, is called a descendant of n.
We note outadj(n) (or children of n) the set of the nearest descendant of n. The
degree of a node n, denoted as deg(n), is the number of neighbors of a node n.
We note n; the i-th child of the node n.

Results from the graph drawing community show that if one wants to obtain
a efficient drawing he/she needs to make a trade off between several aesthetic
criteria [4]. Here is the definition of some aesthetic criteria that our drawing
algorithm takes into account.

— Crossing number: The edges should not cross each others.

— Number of bends : the polyline used to draw an edge should have the least
possible bends.

— Angular resolution : the minimal angle between two adjacent edges of a node
n should be nearest to #{n).

The drawing of a subtree does not depend on its position in the tree, isomor-
phic subtrees should be drawn identically up to a translation and a rotation.

The order of children of a node should be respected in the final drawing.



3 Algorithm

The algorithm that we have set-up is recursive as the so-called Reingold and
Tilford’s algorithm [13]. It uses a depth first search traversal in order to draw
the tree. As for the Reingold and Tilford’s algorithm, the linear running time
of the algorithm is achieved by using relative position for each nodes and by
delaying the computation of node position in a second phase of the algorithm.
The idea of the algorithm is to use enclosing circles (instead of contour in the
R&T’s algorithm) to represent space needed to draw a sub-tree.

In the following we will describe precisely the two stages of our algorithm.
The first one is the computation of the position of the enclosing circle of each
children’s sub-tree of a node relatively to itself. The second one is the coordinates
assignment that prevents to have crossings in the final drawing.

3.1 Computation of the relative positions

We use a suffix depth first search procedure to assigned the relative position -y,
of the center of the enclosing circle relative to ancestor(n). If one considers that
each sub-tree induced by a children of a node n has already been drawn and that
one has got an enclosing circle for each sub-tree drawing, the first part of our
algorithm consists in placing each enclosing circle on the plan and to prevent
overlapping between them.

Enclosing circle location In order to enhance the angular resolution in the
final drawing, the idea of this algorithm is to place each enclosing circle around
the node n. This operation can be done by determining an angular sector §; for
each enclosing circle C;. If the enclosing circles are placed inside their respective
angular sector it is straightforward that there is no overlapping.

Let 71, - .., 7 outadj(n)| D€ the radius of each enclosing circle. The first approach
is to assign an angular sector §; proportionally to r; such that

|outadj(n)|

Z 0; = 2x.

i=1

However, one can attribute an angular sector larger than « which is too big to
place a circle in. If such case arise, we give an angular sector equal to 7 to the
bigger, and then we assign an angular sector to the others proportionally to their
radius such that their sum is 7. The total sum remains 2.

Then we place each enclosing circle such that it is tangent internally to its
respective angular sector. If the angular sector is too big, the enclosing circle
and the node n could overlap. This could be avoided by computing correctly
the distance §; from n to the center of an enclosing circle, using the following
formula.

T3

sin(6;/2) )

8; = max(size(n) + ry,



Using §; we place the center of the enclosing circle on the interior angle bisector
of 6;. Each coordinate +y,, is computed relatively to the position of n.

s = T; =0; cos((Z:;}:1 6;) —0:/2)
My = 6 sin((52, 65) — 6:/2)

This coordinates will be used in the second stage of the algorithm in order to
compute the final drawing. The figure 1 summarizes all this part.

One can see that to fixing the angular sector to = when it is too big let a lot
of space unused. We implement a O(nlog(n)) algorithm to solve this problem.
We start with a angular resolution © equal to 27, and a global radius R equal to
Soleutadiml . We treat each circle in the decreasing order of their radius. If the
sector calculated proportionally to the radius (6; = © - r;/R) is bigger than the
maximum we can allocate for this circle (8]*** = 2 arcsin(r;/(r; + size(n)))),
then we fix the sector to its maximum and we decrease the angular resolution ©
according to the angle of the sector §;*%*, and the global radius R to the radius
of the circle r;. If all the sectors we set are maximum, we use the remaining
angular resolution @ to space the sectors themselves. According to our tests the
difference between the two solutions is not perceptible for normal trees.

Rescale

9 G

Compute Angular Sector Compute Relative Positions

Fig. 1. Computation of locations.

Enclosing circle calculation Now, we need to find the smallest enclosing circle
of the set of the enclosing circles we have placed. A detailed caparison between
different methodologies is discussed in [9]. We use the incremental randomized
algorithm proposed by Welzl [18] that gives the optimal solution in a linear
average running time.

In [18] one needs to calculate the smallest enclosing circle of two circles (noted
EC5(C1,(C5)), and of three circles (noted EC3(C4,C2,Cs)). The computation of
EC?2 is obvious.



Let ¢, (resp. r,) be the center (resp. radius) of the circle C,,. Let ¢, (resp. re)
be the center (resp. radius) of the smallest enclosing circle C,. The computation
of EC3 can be done by solving the following system of equations:

|Clce| = (Te - 7'1)2
|C2ce| = (Te - 7'2)2
|CSCe| = (Te - 7'3)2

The algorithm EC(S, B) computes incrementally the enclosing circle of a set
of circles S according to a set, noted B, of boundary circles of S. The definition
of EC(S, B) is the following;:

B
S 0 {1} {b1, b2}

[} [ {b1} {EC3(b1,b2)}
E=EC(S",0) |E=EC(S',{b1}) |E=EC(S,{b1,b2})
S'U{c}|if c € E then E |if ¢ € E then E if c€ E then E
else EC(S',{c})|else EC(S', {b1,c}) |else {EC5(b1,b2,¢)}

The computation of the smallest enclosing circle of a set S corresponds to
calculate EC(S,0). The selection of the circle ¢ in S’ U {c} needs to be done
randomly to ensure to have an average polynomial time [18]. To apply the op-
timizations proposed in [18], we use a double-ended queue [11] to store S. This
queue is initialized randomly at the beginning of the algorithm. We always de-
queue the selected circle ¢ at the end of the queue. When the recursive procedure
is finished, if ¢ € E, we enqueue c¢ at the end, else at the beginning. Thus the
element of S have only been reordered. Placing the circle which is not in E at
the beginning of the queue optimize the order for the next calls.

If one wants a linear algorithm, one can use some heuristics in order to ap-
proximate the smallest enclosing circle. For instance, one can start with the
circumcircle of the bounding box of the set of circles and then merge incremen-
tally all the circles, using EC> as described in [3]. Another heuristic determines
the center of the enclosing circle by calculating the barycenter of the center of
the circles, weighted by the square of their radius. The radius of the enclosing
circle is the maximum distance between its center and the center of the other
circles augmented by their respective radius.

Our experimentations show that in average computing the smallest enclosing
circle is 7% better than those heuristics. Nevertheless, the experimentation have
shown that the drawings are almost the same when we use the smallest enclosing
circle or one of the heuristics presented above.

Bend location To reserve an angular sector needed for the connection of a node
n with its ancestor, we add a dummy enclosing circle C' during the enclosing
circle placement process. The position of the bend 3, is the intersection between
the enclosing circle C), and the line containing the center of C' and n.



3.2 Coordinate assignment

After applying the previous algorithm we obtain for each node n an enclosing
circle denoted C,,. Each center of C,, have a position v, relative to ancestor(n).
Thus we can compute the position &, of the center of C, relative to the center
of Concestor(n)- Each node n have a position, ¢,, and a bend f3,, position, relative
to the center of C,,.

The final position of a node is obtained by using a prefix order traversal. After
placing the root of the tree in the center of the view (coordinates (0,0)), we call
a recursive function, detailed in the algorithm 1, to obtain the final absolute
coordinates. In the following, we note P, the final position of a node n and P?
the final position of the bend associated to n for the reconnection. The figure 2
summarizes the rotation scheme of the algorithm.

Algorithm 1: Coordinates Assignment.

input : n, the node to draw.
C2% . the absolute coordinate of the center of Ch,.
function coordAssign(node n,C2%)
1. begin
2. Let rot be the rotation operation of center C2%¢ such that :
Pypcestor(n), T0t(Bn) + C2%* and €2 are aligned.
3. set P, to rot((n) + C2%
4. set P? to rot(B8n) + C2b
5. for all n; in outadj(n)
6. begin
7 call coordAssign(n;,rot(dn;) + C2%%) with 6n; = Cn + Yn;)
8. end
9. end coordAssign

Property 1. The bubble Tree drawing is planar.

Proof. The proof of the planarity of the Bubble Tree drawing consists in proving
that the rotation operation that we make on the sub-tree drawing doesn’t induce
overlapping with the other sub-trees and that drawing of a polyline between
Poncestor(n)s P? and P, doesn’t induce crossing in the final drawing.

The first part is obvious because the rotation is done around the center of
an enclosing circle of the drawing and that the algorithm describe in section 3.1
ensures that there is no overlapping between enclosing circles.

For the second part, due to the angular sector induced by the inclusion of a
dummy node, it is always possible to draw a line between P,, and (,,. The rotation
operation used in the algorithm consists in aligning the bend, the center of the
enclosing circle of n and the ancestor of n. Because the enclosing circle of n
has been placed in an angular sector §,, during the drawing of ancestor(n) it
is straightforward that (8, is on the bisector of #,, and thus we can draw a line
between Pypncestor(n) and By. O



ancestor(n) o ancestor(n)

Rotation

T ) bend T
Enclosing circle center:
Enclosing circle \ 0

Fig. 2. Coordinates Assignment.

3.3 Space and Time Complexity

The time complexity of the Bubble Tree algorithm is the sum of the complexity of
the two stages described above. For each of these steps we have a linear algorithm
thus the complexity of the entire algorithm is linear. Furthermore, if one wants
to obtain a layout using the optimal solution for the first stage we obtain a
complexity in an expected n-log(n) time. This complexity comes from the using
of the Welzl’s algorithm [18] and from the relative position computation (cf. 3.1)
that requires a sort of the children of each node according to their enclosing circle
radius. For the space complexity, the algorithm requires to store five values for
each node and thus it is straightforward that it is linear in space.

4 Comparisons

In this section, we compare the results obtained with our algorithm and two well-
known tree drawing algorithms. The first one is the Walker’s algorithm [17] and
the second one is the radial tree drawing proposed by Eades [8]. The data-set we
use is an entire Linux file system, including users’ directories, that contains about
270.000 nodes. In order to make a statistical analysis of the results obtained by
each algorithm, we have extracted from this data-set all the sub-trees having at
least 1.000 nodes. For each sub-tree, we have computed the layout obtained by
each tree drawing algorithm and for each layout we have computed the standard
deviation of two parameters that are the angle and the edge length (some results
are presented in figure 3). In the following we describe briefly the both parameters
and we discuss the results by showing the distribution of these two parameters
on the entire tree. Note that the interpretation of the results on the sub-trees are
similar to the one given for the entire tree. Then, we focus on the distribution



of parameters only on the entire tree. In both cases the distribution has been
built by using a discrete normalized histogram (see figure 4 and 5). The mean is
centered to zero and the size of the interval is one. In the following, we denote
by o(Angles) (resp. o(EdgeLength)) the standard deviation of distribution of
the angles (resp. distribution of the edge lengths).

Algorithm o(Angels) o(EdgeLength)
BubbleTree (270 000)| 0.0292999 0.0668552
BubbleTree (100 000)| 0.0414186 0.0840859
BubbleTree ( 47 000) | 0.0338936 0.0517702
Walker (270 000) 0.235554 0.0147631
Walker (100 000) 0.149192 0.0264255
Walker (47 000) 0.117964 0.0379802
TreeRadial (270 000) 0.12626 0.0197858
TreeRadial (100 000) 0.09409 0.0502502
TreeRadial (47 000) 0.130956 0.0319285

Fig. 3. Standard Deviation on several sub-trees.

4.1 Distribution of angles

The angular resolution is an aesthetic parameter for measuring graph drawing
algorithm quality [4]. The original measure consists in computing the minimal
angle between two edges in the final drawing. It is well known that the best
value for this parameter should be for each node n equal to #{n). In our ex-
perimentation, in order to study the behavior of the angular resolution, we have
measured for each node n, the difference between each angle, formed by incident
edges to a node, and the optimal value. For each node n, this measure give us
deg(n) values that we have studied using the statistical method described above.
For each algorithm, we presents the distribution of angles in figure 4.

Our algorithm and the Tree Radial algorithm are well balanced around the
mean and the highest value of the histogram are very closed to the mean. Con-
trary, the Walker’s algorithm presents two peaks, one located near the mean and
one at the beginning of the interval. This property induces a strong standard
deviation for the angle distribution associated with it. The interpretation will
be done below.

When a distribution presents a peak closed to the mean, the signification is
that the attribution of a small angular sector to an edge (an angle value inferior
to the optimal value) is offset by the attribution of a high angular sector to
another edge. If the number of these edges is relatively low, the result is better.

Our algorithm presents a small standard deviation and a very high peak very
closed to the mean, these two properties induce that almost all edges have an
optimal angle and the compensation is approximately one to one.



The tree radial algorithm has also a peak near the mean, but its standard
deviation is higher (o(T'reeRadial) > 4 x o(BubbleTree) see figure 4). We can
see that density of angles is high near the right side of the mean, conversely, at
the opposite left side the density is low near the mean. This fact is due to the
strategy of the Tree Radial algorithm, because the angular sectors of the children
depend on the angular sector attributed to their ancestor. Since the sum of the
angular sectors attributed to the children of a given node n is equal to the angular
sector of n, the distance between the optimal value and the angular sector of
the edges linking n to one of its children is superior to the distance between
the angular sector of n and the optimal value. Thus, the negative values of the
distribution of the tree radial algorithm are fewer than the positive values but
they are more distant.

The distribution of the Walker’s algorithm has two peaks, this property in-
duces that the density of angle near the mean is low. Now, we propose an expla-
nation to this fact. Let n be a node and n’ one of its children, we denote by e
the edge linking n to n’, el (resp. €2) the edge linking n' to nj (resp nj,,,, dj(nﬂ).
The Walker’s algorithm has the following property, the sum of the angles be-
tween e, e; and e, e; is greater than 7. Thus, the angular value attributed to the
edges e, e; and ez is superior to the optimal value and the angular values of the
other edges (that link n’ to its other children) are inferior to the optimal value.
For each of these edges, the angular loss is proportional to the number of these
edges. The second peak of the Walker’s algorithm located at the extremity of
the interval contains the majority of the leaves of the file system.
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Fig. 4. Distribution of angles.

4.2 Distribution of edge length

In our experimentation, in order to study the behavior of the edge length, we
have calculated the mean of the edge length and we have translated the mean
to zero.



Considering the distribution of edge length (see figure 5) the peak is very
closed to the mean and the standard deviation is low. We can consider that the
edge length is quasi constant for these algorithms and that the radial algorithm
provides a better result than the Walker’s algorithm.

Our algorithm presents one high peak and five small peaks, each of those
characterizes a type of node, the high peak located to the left side of the interval
corresponds to the nodes that are leaves and where siblings are also leaves more-
over the number of siblings is low. The next right peak corresponds to the leaves
either with a higher number of siblings or with sibling that are not leaves. For
the next peak either the number of sibling increases or the siblings are deeper
and so on.

Each peak of the distribution characterizes a node configuration, this prop-
erty allows us to visually detect the kind of node where we focus on.
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Fig. 5. Distribution of edge length.

4.3 Number of bends

Clearly the weak point of this algorithm is that
we do not obtain a straight line drawing. A straight-
forward bound of the number of bends is the num-
ber of internal nodes in the tree. This bound can be
equal to the number of nodes less one. However, in
the final algorithm we automatically remove a bend
B if it is straight lined with n and ancestor(n).
This operation do not change the theoretical bound
that can be reached when one have a completely
unbalanced tree. The figure 6 shows the spiral ef-
fect induced by the presence of several completely Fig. 6. Spiral Effect.
unbalanced sub-tree that induced a large number of



bends. At the opposite, the number of bends is equal to zero for a well balanced
tree, and produces a fractal effect (see figure 8). On the set of sub-trees of our
experimentation, we have measured that: the average number of bends is about
1% of the number of nodes, the best value is 0% and the worst value is 7.3%.

Fig. 7. Bubble Tree (left), Tree Radial (top/right), Tree Walker (bottom/right).

5 Conclusion

In this paper we have presented an algorithm

for the drawing of general rooted trees. The strong

ﬁ—i* point of the Bubble tree drawing is to privilege the
angular resolution aesthetic criteria. Such a charac-

# teristic are very important for the purpose of Visual

£ Information Retrieval. This algorithm has been im-

gﬁy plemented and compare with others by using the

e Tulip Software [2]. During interactive visualization

of huge file-system it has clearly demonstrated its

efficiency. Indeed, the Bubble Tree algorithm en-

Fig. 8. Fractal Effect.  ables to easily detect isomorphic sub-trees even on
graph having more than 270.000 nodes. Further-

more, small modifications of the tree structure imply small modifications of the



final drawing. This property is essential for the visual detection of the similari-
ties.
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