
HAL Id: lirmm-00108879
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108879

Submitted on 8 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BLOB Computing
Frédéric Gruau, Yves Lhuillier, Philippe Reitz, Olivier Temam

To cite this version:
Frédéric Gruau, Yves Lhuillier, Philippe Reitz, Olivier Temam. BLOB Computing. Computing Fron-
tiers, Apr 2004, Ischia, Italy. pp.125-139. �lirmm-00108879�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108879
https://hal.archives-ouvertes.fr

BLOB Computing

Frédéric Gruau † Yves Lhuillier † Philippe Reitz ‡ Olivier Temam †

† LRI, Paris South University & INRIA Futurs France
{gruau,lhuillie,temam}@lri.fr

‡ LIRMM, Montpellier University France
reitz@lirmm.fr

ABSTRACT
Current processor and multiprocessor architectures are almost all
based on the Von Neumann paradigm. Based on this paradigm,
one can build a general-purpose computer using very few transis-
tors, e.g., 2250 transistors in the first Intel 4004 microprocessor. In
other terms, the notion that on-chip space is a scarce resource is at
the root of this paradigm which trades on-chip space for program
execution time. Today, technology considerably relaxed this space
constraint. Still, few research works question this paradigm as the
most adequate basis for high-performance computers, even though
the paradigm was not initially designed to scale with technology
and space.

In this article, we propose a different computing model, defining
both an architecture and a language, that is intrinsically designed
to exploit space; we then investigate the implementation issues of
a computer based on this model, and we provide simulation results
for small programs and a simplified architecture as a first proof of
concept. Through this model, we also want to outline that revisit-
ing some of the principles of today’s computing paradigm has the
potential of overcoming major limitations of current architectures.

Categories and Subject Descriptors
C.1.4 [Processors Architecture]: Parallel Architectures—Distributed
architectures; D.3.2 [Programming Languages]: Language Clas-
sifications—Concurrent, distributed, and parallel languages

General Terms
Design, Languages, Performance

Keywords
Scalable Architectures, Cellular Automata, Bio-inspiration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’04, April 14–16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004 ...$5.00.

1. INTRODUCTION
The first processors in the 1950s and later on the first micro-

processors in the 1970s, like the Intel 4004, were based on the
so-called Von Neumann model: a central processing unit with a
memory and a set of instructions to guide machine execution. This
model was extremely popular and successful because it combined
universality and compactness : the ability to build a general-purpose
computing machine capable of executing a large range of programs
in a very restricted space (2250 transistors in the Intel 4004 first
microprocessor). Compactness means that the Von Neumann ar-
chitectures are implicitly based on the idea that space is a scarce
resource and thus, they trade space for time: complex tasks are
broken down into a sequence of simple instructions/operations that
execute one by one on a single general-purpose central processing
unit (ALU), and intermediate results are stored in a memory. Even
though technology considerably relaxed this space constraint, to-
day’s processors still largely follow the same principles.

It is almost paradoxical that, in the past 30 years, almost all at-
tempts at exploiting the additional space brought by technology
relied on the “space-constrained” paradigm: (1) parallel comput-
ers, either on-chip or true multi-processors, almost all rely on a
set of independent such processors, (2) today’s high-performance
general-purpose processors attempt to squeeze performance out of
the original model by altering it in every possible way (pipeline,
cache hierarchy, branch prediction, superscalar execution, trace
cache and so on). As a result, current high-performance computers
are plagued by intrinsic flaws. In parallel computers, it is difficult to
efficiently manage communications between many individual pro-
cessors which must constantly exchange data over complex inter-
connection networks. The efficiency of high-performance proces-
sors decreases as their complexity increases [13]. And as the num-
ber of processors increases or the processor complexity increases, it
is excessively difficult to write or generate programs that efficiently
exploit these architectures [44].

Few research works in computer architecture question the cpu-
memory model as the most adequate basis for high-performance
computers, even though this model was not originally designed to
scale with technology and space, since it was proposed before the
advent of integrated circuits. The purpose of this article is to in-
troduce a novel computing model, combining both architecture and
language, that is intrinsically designed to exploit space; we then
investigate the implementation issues of a computer based on this
model, and we provide some execution simulation results as a first
proof of concept. Through this model, we also want to outline that
revisiting some of the principles of today’s computing paradigm
has the potential of overcoming major limitations of current archi-
tectures.

The principles of this model are the following. Space is exploited
by merging and distributing computations and memory over a large
number of automata; the machine implementations of these au-
tomata are called Blobs because they vary in shape and size within
the resource space, and they act both as processing and memory ele-
ments. The architecture is regular and homogeneous (and thus eas-
ily scalable) and consists in a very large set of hardware elements,
called cells, each Blob using several cells. There is no central con-
trol unit anymore: control is distributed over the whole architecture
and takes the form of simple rules that manage Blobs movements
over hardware cells by mimicking physical laws like gas pressure.
As a result, the placement of data and resources is dynamically
and automatically managed, and we have formally proved that we
achieve optimal VLSI complexity in certain cases [31]. Finally,
because cells only interact with their neighbors, there is no com-
munication network per say.

This computing model is not solely an architecture model, it de-
fines both the architecture and the language. In current comput-
ing systems, architecture design and compiler design are usually
considered separate tasks. As a result, computer architects design
architectures which are difficult to compile for, and compilers in-
sufficiently take into account architecture complexity. Still, the ma-
jor limitation of current compilers lay even more in languages than
in compilers themselves. Current programming languages are not
architecture-friendly: from the task imagined by the programmer to
the program itself, lots of information (semantics), e.g., parallelism
and memory usage, are lost because the language is not designed
to retain them; and in many cases, such information are critical for
an efficient exploitation of the target architecture. To a large ex-
tent, the compiler role consists in reverse-engineering the program
in order to dig up the lost information.

The Blob Computing model comes with a language that is
both architecture-independent and architecture-friendly: it pro-
vides minimal but essential information on the program to facili-
tate the task of the architecture but it makes almost no assumption
on the architecture itself. The program specifies when and how
Blobs are created, and as a result, it implicitly tells the architec-
ture how to exploit space and parallelism. We have already devel-
oped a compiler for translating programs based on an imperative
language (Pascal) into Cellular Code [30], on which the Blob lan-
guage is based, without significantly increasing the program size,
thereby demonstrating the expressiveness of the programming lan-
guage; the compiler and the associated translation techniques have
been patented [25].

Section 2 presents the related work. Note that, because we pro-
pose to modify many aspects of the current computing model, we
thought it was necessary to position our model with respect to the
traditional computer approaches and their limitations, the alterna-
tive computing models as well as the emerging technologies, hence
the long related work section. In Section 3, we present the Blob
computing model, how to program a Blob machine and we inves-
tigate the implementation issues of a Blob computer. Finally, in
Section 4, we show that some classic examples can be efficiently
implemented on a Blob computer and we present some simulation
results.

2. RELATED WORK
Moore’s law and the exploitation of parallelism have fueled con-

siderable research on improving the original cpu-memory model.
At the same time, researchers in academia keep exploring novel
computing models either to overcome the limitations of the cpu-
memory model or to exploit future and emerging technologies [1,
18]. The first category of research works can be defined as “bottom-

up”: they attempt to incrementally transform the original paradigm
into a paradigm that can better scale with technology and partic-
ularly increasing space. The second category can be defined as
“top-down”: they attempt to elaborate a computing model with the
desired properties and, in some cases, they later derive a real ma-
chine out of it. While we are closer to the second category, the
present study is a joint work by researchers from both categories,
and thus, we are focused on defining a model that can effectively
become a real machine in the long term. After a first study on the
proposed model properties [28, 31], this study is the second step in
that direction. A third study related to implementation issues of the
proposed model has already been completed [29].

In this section, we outline the current trends in traditional com-
puters, then we highlight the main alternative models, and finally
we explain how Blob computing differs from both the traditional
and alternative approaches.

2.1 Trends in traditional computers
Processors bet on speed rather than space. In the past 20

years, processor architecture has largely relied on speed to im-
prove performance. Space is essentially spent on implementing the
hardware components required for coping with increasing speed
(caches, branch prediction tables,. . .). One of the major motiva-
tions of RISC processors was building simple architectures that can
be quickly retargeted to the newest technology process, through
the use of pipelines to achieve low cycle time and high instruction
throughput. Superscalar processors have followed this trend and
pushed it to its limits: the Pentium IV has more than 20 pipeline
stages [35], and this number is poised to increase, calling for so-
phisticated instruction fetch techniques [10, 47]; memory latency
is now so high that a significant share of the on-chip space is de-
voted to cache hierarchies as in the Intel Itanium [51]; even com-
munication delays within a chip cannot be hidden within a clock
cycle, as shows the drive pipeline stages in the Pentium IV [35]
or multi-cluster VLIWs [55]. Multi-cluster architectures are also
a testimony to the difficulty of scaling up a centralized computing
resource. If on-chip space were essentially devoted to increasing
computing power, the number of bits processed per time unit would
be at least an order of magnitude larger than it actually is [17].

Multiprocessors exploit space but most attempt to hide it.
The very idea of multiprocessors consists in using a large number
of computing resources, i.e., to trade space/cost for performance.
However, for a long time, multiprocessors have also pursued the
impossible goal of hiding space to the user, i.e., the distance be-
tween computing nodes and the associated long communication
latencies: shared-memory multiprocessors attempt to mimic the
original cpu-memory model but they do not scale well with the
number of processors [42], virtual shared-memory was investigated
for distributed-memory multiprocessors in an attempt to hide the
memory distribution across space (computing nodes). Not surpris-
ingly, grid computing [40] is popular now because it focuses on ap-
plications that need no communication between computing nodes
and can thus realize this goal of a large number of parallel com-
puting resources without intra-computation communication issues.
Also, SIMD architectures are popular, especially in the embed-
ded domain, for a restricted class of applications with very regular
communication and computing patterns, such as network process-
ing [23].

Space is used to build complex architectures, and it is dif-
ficult to write programs with high sustained performance for
complex architectures. The difficulty to parallelize programs so
that computations hide long communication delays is probably one
of the major causes for lesser popularity of the massively parallel

computing paradigm in the 1990s. Mainly, properly distributing
data and computations across space to minimize communications
as the number of computing resources increases (i.e., as space in-
creases) proved a difficult task. Moreover, many algorithms are
thought sequentially, written using languages that are not designed
to retain information on parallelism, and as a result, digging up par-
allelism properties using optimizing compilers can be fairly diffi-
cult [6], and even more so if programs use irregular communication
and computing patterns [11].

As processor complexity increases, the optimization issues for
processor architectures are becoming similarly difficult. It took
more than 10 years and significant research efforts to embed in
some compilers a reasonably accurate cache model that considers
both capacity and conflict misses for loop nests with linear array
references only [22]. As more components with complex run-time
behavior are incorporated in the architecture (branch predictors,
Trace cache,. . .), researchers need to investigate novel and more
complex optimization techniques, such as run-time iterative com-
pilation, to harness the additional complexity [7].

Acknowledging space in architectures. It is interesting to note
that, in both the processor and multiprocessor domains, a number
of important and recent research propositions seem to converge to-
ward fairly regular grid-like architectures. The most notable exam-
ples are the TRIPS processor [48] and the IBM Blue Gene/L multi-
processor [39]. In both machines, the core units are simple process-
ing units (respectively functional units and simple processors), and
they are linked through a 2-D grid-like network that favors com-
munications with neighbors, i.e., computing nodes that are close
to each other in space. Using regular 2-D grids acknowledges that
the computer is built in a 2-D space, and it simply distributes pro-
cessing power and memory (for Blue Gene/L only) across space.
Similarly, using a network that implements the natural neighbor-to-
neighbor communications acknowledges that communicating with
distant nodes takes more time, i.e., it is not hidden within a complex
network that pretends to provide transparent connections between
all nodes. Apparently, IBM proposed a similar cellular architecture
for the embedded engine of the future PlayStation by Sony [4].

Still, if both propositions seem a more natural fit to the notion
of space than many previous and more complex architectures, they
focus on architecture issues, and do not address the associated pro-
gramming issues.

Also, it is important to note that many original solutions are
emerging in the FPGA domain where exploiting space comes nat-
urally [16]: mapping parts or whole programs onto logic blocks
to exploit circuit-level parallelism [64, 8], dynamically adjusting
circuit space to program requirements [14], and so on. Still many
of these solutions are not designed for general-purpose computing
but rather for specific application domains, especially stream-based
applications.

2.2 Trends in alternative computing models
The realization that many of the current architecture limitations

are rooted in the computing paradigm itself rather than current ar-
chitecture designs has stemmed an increasing amount of research
works on novel computing paradigms.

Most new computing models aim at providing a way to describe
and exploit parallelism. The two main factors that distinguish them
are (1) programmability : the ability of the language to describe
large classes of algorithms, while at the same time remaining suf-
ficiently architecturally independent (i.e., the abstraction potential
of the execution model), and (2) space exploitation and scalabil-
ity : how the different computing models exploit and scale up with
available resources.

Other studies on alternative computing models do not stem from
the current computing paradigm but they aim at finding ways to ex-
ploit novel technologies, and in certain cases, it also means defining
space-scalable paradigms.

Programmability The goal is to design high-level programming
languages where the programmer can easily and naturally translate
an algorithm into a program, while, at the same time, providing rich
information for the target architecture. Since most performance
improvements are achieved through the exploitation of parallelism
and an efficient management of program data, programming lan-
guages designers generally focus on passing information on paral-
lelism and data usage [19, 9, 3].

Traditional imperative programming languages like C or Java are
popular because they enable a natural and almost direct translation
from the algorithm/task to the program. However, by expressing
an algorithm as a sequence of steps, such programming languages
introduce a “sequential bias” where some of the parallel properties
of the algorithm are lost.

Declarative or synchronous languages such as LUSTRE [32],
Esterel [5], Signal [21] or StreamIt [56] address the parallelism ex-
pression problem: they explicit data consumption and production
and thus implicitly specify parallelism. Yet, these declarative com-
puting models essentially target DSP or ASIC architectures so that
their programmability is restricted to regular algorithms. They lack
features often used in general-purpose programs, such as dynamic
data structures.

Systolic machines or cellular automata [58, 37, 50] represent
other computing models where the programmer explicitly describes
the spatial configuration of the substrate and communications.
These models are suited to fairly regular and massively parallel ap-
plications where both parallelism and communications can be eas-
ily described. They are less suitable for more complex and irregular
applications.

Dataflow computing models [43] address both the parallelism
expression and programmability issues. Pure functional lan-
guages [19] and more generally, term rewritings systems [36, 3] of-
fer a simple parallel programming model well suited to the dataflow
computing model. Term-rewriting languages such as Gamma [3],
combine both the implicit parallelism of declarative languages and
natural programming features such as control flow constructs and
dynamic data structures. The principle is to represent data as a set
of t-uples and the program as a set of rules that apply on certain
combinations of t-uples, i.e., whenever the combination of t-uples
associated with a rule is present, the rule applies and outputs one
or several other t-uples. Intuitively, t-uples are a bit like the ob-
jects and rules like the methods of object-oriented programming
languages, except that the application of rules is only determined
by the presence of the input t-uples in a dataflow way, while it is
rigidly driven by the program in imperative object-oriented lan-
guages like C++ or Java. Still, complex term-rewriting programs
have two drawbacks: managing a large unstructured set of rules
is difficult for a programmer, and the more t-uples and rules the
longer the task of checking which rules apply.

Consequently, Fradet et al. [20] have proposed to encapsulate
t-uples and rules within subsets. This type of encapsulation was
introduced by Paun with membranes in [45]. The program is now a
set of interconnected subsets which can pass t-uples to each other,
a bit like procedures within an imperative language. Each subset
then corresponds to a task and the whole program is thus repre-
sented as a task graph [33]. Moreover, task graphs have additional
assets: it is possible to dynamically replicate the subsets defined by
membranes to fully exploit the intrinsic program parallelism; this
operation is called task graph rewriting. For instance, if a program

enables N simultaneous executions of a given task, replicating the
corresponding subset will induce the parallel execution of the N

same tasks.
Obviously, such programming languages have many of the fea-

tures we need to program a space-oriented machine: implicit par-
allelism as in declarative languages, genericity as in functional lan-
guages, yet structured parallelism description as in systolic ma-
chines and cellular automata, and finally, dynamic adjustment of
program parallelism to the available resources (space) as in task
graph rewriting.

Space exploitation and scalability. The same way
performance-oriented programming language research focuses on
the exploitation of parallelism, performance-oriented novel com-
puting models focus on the exploitation of large computing re-
sources, i.e., space. This rather general formulation of machine
scalability implicitly takes into account several other associated
technology-independent criteria and constraints: communication
time that increases linearly with distance [57], bandwidth which is
physically limited per cross section unit, network size which grows
in O(n2) in an all-to-all model where n is the number of processing
elements [15] and tolerance to structural defects.

Within the field of alternative computing models, there is a gen-
eral consensus that cellular architectures represent a major so-
lution for achieving scalability under the abovementioned con-
straints [62]. Cellular automata are networks of independent au-
tomata which evolve depending on their own state and the state
of their neighbors only. Thus, communications are only local
and there is no need for a communication network as in tradi-
tional parallel machines. Cellular automata implement a form of
massive parallelism and memory distribution: the distinction be-
tween processing and memory disappears and it is replaced with
a single component, the cellular automaton, that combines both.
Even though cellular automata have been shown to be universal
by John Von Neumann in 1952, i.e., one can write any program
using cellular automata, all studies or realizations are application-
specific: physical simulation, neural networks, and specific com-
putations [63, 38, 53]. Still, the cellular automata paradigm bears
several constraints that could limit a true large-scale implementa-
tion: they assume a regular structure and thus no structural defect,
as well as synchronous evolution of automata.

Amorphous Computing [1] is a novel paradigm based on cellu-
lar automata that preserves most of the former properties of cellular
automata while getting rid of the latter constraints. This paradigm
shows how it is possible to perform simple computations using a
cellular automata-like model without assuming structural regular-
ity, a defect-free structure or synchronism. As a result, it is com-
patible with either large-scale traditional silicon implementations
which satisfy the cellular automata constraints, or novel technolo-
gies which do not satisfy these constraints, see next paragraph.
However, this model does not show how to implement any complex
behavior (any program) using unstructured networks of automata,
which is one of the main contributions of the Blob paradigm. A
Blob computer can be implemented either on a traditional 2-D
silicon circuit with all of the abovementioned constraints, or on
novel technologies on top of a technology-abstracting paradigm
like Amorphous Computing.

2.3 Emerging technologies
With the upcoming end of Moore’s law, we need to examine the

candidate replacement technologies and decide which ones may
provide similar spatial scalability properties.

Chemical-reaction based computing, also called molecule-based
computing is a surprisingly old field of research [12]. A chemi-

cal reaction represents a function (or an automaton state transition)
and different molecules represent different values (or different au-
tomaton states). The term-rewriting model is generally the model
of choice for this technology [3]: chemical reactions occur in paral-
lel depending on the availability of molecules, much the same way
that rules apply on t-uples depending on their presence. Still, this
technology is not compatible as is with membrane and task graph
computing as molecules are not grouped in structured sets, though
chemistry or biology could provide such properties in the future.
Chemical-based computing is an attractive technology provided it
is possible to exploit the massive parallelism of simultaneous chem-
ical reactions. However, because it is difficult to build many differ-
ent molecules, widespread adoption is unlikely. Assume one wants
to represent a decimal number between 0 and 255; in an electronic
circuit, it is possible to represent this number using 8 bits and the
decimal value associated with the bit at position i, 0 ≤ i < 8,
is 2i. In a chemical solution the notion of position does not exist,
so we need to use 256 molecules to represent all possible num-
bers. For large problems, it will not be feasible to generate enough
molecules.

Another approach to chemical computing is DNA computing [2]
which solves the number of molecules issue by using only four
different molecules (the DNA four bases) and creating molecules
of huge lengths, i.e., it is a base-4 computing model instead of
a binary (electronics) or unary (chemical computing) computing
model. DNA computing has been used to solve small-scale func-
tion optimization problems [41], but critics point out that solving
large-scale problems will require excessive amounts of matters.
Still, while DNA computing initially seemed appropriate only for
computing large functions, recent research works demonstrated au-
tomata computations using DNA, opening up interesting possibili-
ties [46].

Molecular electronics is emerging as a possible candidate for
post-lithography electronics [24]. The assets of molecular electron-
ics do not necessarily rest in much smaller transistors but in sim-
pler manufacturing processes relying on molecule growth, and thus
fairly large structures at a reduced cost. Since the manufacturing
process would induce numerous defects, the corresponding com-
puting paradigm must be defect-tolerant, such as the Amorphous
Computing paradigm or more traditional reconfigurable computing
paradigms [16]. Still, existing transistors based on molecular elec-
tronics, e.g., carbon nanotubes, cannot provide signal amplification
and thus, they are not yet compatible with large-scale circuits.

Other very recent research works suggest that it might be
possible to design a whole circuit within a single large-scale
molecule [54], overriding the signal amplification issues. However
in-molecule computing is a very novel technology that is based on
different properties than electric signal propagation, and much re-
search work is still needed before an appropriate computing model
can emerge.

Quantum computing [18] is both a new technology and a new
paradigm. Though it can potentially solve some NP-difficult
problems in polynomial times [52], quantum computing is not a
spatial-oriented technology and it seems restricted to certain algo-
rithms and may not be appropriate as a general-purpose computing
paradigm.

2.4 Blob computing
Blob computing vs. other approaches. Like several current

research works on traditional computers, a Blob computer corre-
sponds to a regular grid of processing elements, memory being
embedded within each processing element and thus implicitly dis-
tributed. The Blob computing model relies on a spatial-oriented

language where a program is a combination of computations and
space management operations. Still, the language is sufficiently
abstract and machine-independent for implementing many algo-
rithms, the Blob computing model being a general-purpose ma-
chine with a special strength for spatial-oriented computations.

The Blob computing model is an alternative model that, like
declarative and dataflow models, embeds implicit parallelism in the
language semantics. As for functional programming languages, the
ability to execute irregular programs with dynamic data structures
is key to the model. On the other hand, unlike dataflow models,
the Blob computing model specifies the algorithm spatial structure.
The general idea is to strike the right balance between the program-
mer effort and machine/compiler effort while achieving high per-
formance. The Blob computing model retains the spatial orienta-
tion of cellular automata-based architectures, but it proposes a more
machine-independent and easier to use language that is suited for
programs with complex data and parallelism properties.

Even though the Blob computer design investigated in this study
is based on traditional electronics, many of the currently emerging
technologies can be characterized as “space-oriented” technologies
(chemical and DNA computing, molecular electronics, in-molecule
computing) and thus, they could ultimately provide an adequate
basis for a Blob computer implementation.

Past work on Blob computing. The initial research studies on
Blob computing were theoretical research works on defining a lan-
guage based on cellular development (Cellular Encoding) [26], on
designing a compiler to translate imperative programs into a cel-
lular code [30], on proving the optimal space/time model perfor-
mance within a simplified framework [31], and finally on introduc-
ing the Blob concept and proving implementation correctness on an
arbitrary architecture [28]. The present and upcoming studies aim
at presenting the principles of Blob computing, Blob programming
and investigating implementation issues of Blob computers.

3. BLOB COMPUTING
The Blob computing model encompasses both a programming

model and an architecture model. In the following sections, we
progressively introduce the different notions at the root of the Blob
computing model and their rationale. In order to explain the pro-
gramming model and the main principles of Blob computing, we
introduce a simplified and abstract representation of a Blob com-
puter called the Abstract Blob Machine. We then introduce the
main instructions of a Blob computer and illustrate Blob program-
ming with simple examples. Finally, we propose a first implemen-
tation of a Blob computer.

3.1 Principles
Network of automata. An abstract Blob machine is composed

of a large number of elementary components called processing el-
ements (PEs), though their behavior, structure and interactions are
very different from the processors found in traditional parallel ma-
chines; the PEs are the abstract equivalent of Blobs. A processing
element implements a finite-state automaton, and more precisely
a Mealy automaton with actions (outputs) specified on the transi-
tion links. Links connect processing elements to form a network;
the network structure can be irregular but processing elements can
only communicate with their neighbors.

The links between PEs are oriented bidirectional links identified
with labels. PEs can send/receive data to/from the other PEs to
which they are linked, i.e., the neighbor PEs. A PE can identify one
of its links using both its label and its direction, e.g., the outgoing
link L1 denoted L1→, see Figure 1, though it can happen that two

or more links have the same label and direction.1

L 1x

A s e n d s v a l u e x t o B t h r o u g h l i n k L 1
B s e n d s v a l u e y t o A t h r o u g h l i n k L 1y

B

A

C

L 2
L 3

A u t o m a t o n / P E
L i n k

Figure 1: PEs and links

The evolution of an abstract Blob machine consists in an infinite
sequence of automata state transitions (computations), communica-
tions between PEs, transitions again, etc. For the sake of simplicity,
we will assume a synchronous model in this study: all computa-
tions, and then all communications are performed simultaneously,
much like in a clocked SIMD machine. However, the final Blob
computer implementation will be an asynchronous machine.

Exploiting space and parallelism. The core asset of a network
of automata is its ability to exploit both space and parallelism. In a
network of automata there is no distinction anymore between mem-
ory and processing units: data are distributed among the different
automata which can all perform computations in parallel on their
stored data. Intuitively, a network of automata behaves like a pro-
cessor that performs in-memory computations only, and in a dis-
tributed way. The size and structure of a network of automata can
be adjusted to accommodate either a greater number of data (more
memory) or a greater number of parallel computations (more arith-
metic and logic operators). Moreover, space and parallelism are
intricately related: by exploiting space to distribute data over sev-
eral automata, a network of automata enables parallel operations
on these data. Consider Figure 2 for instance: once spatially devel-
oped, a network of automata can perform parallel computations on
values in PEs, see parallel adds, and connections between
PEs realize dataflow dependencies between PE values, see sum
reduction.

Figure 2: Sum reduction & Parallel adds on array items

Self-Developing network. Since exploiting space is at the core
of the Blob computing paradigm, a Blob computer has the ability
to expand, contract or alter the network of PEs. Therefore, besides
sending/receiving data, a PE can duplicate itself creating along the
required links, merge with another PE, destroy itself or add/remove
any of its links. In other terms, an abstract Blob machine is a self-
developing network of automata.

1In that case, sending a value to any of them will send a value
to all of them, and as a result, a PE can receive multiple values
simultaneously (unlike in a traditional finite-state automaton).

Consequently, a Blob program performs two types of operations:
traditional data and control operations, and network development
operations. It is possible to perform either separately or simulta-
neously both types of operations. In certain cases, it is more ef-
ficient to set up the network and then send data at a rapid pace
to perform computations, while in other cases, the network needs
to adjust dynamically to the amount of data (the equivalent of dy-
namic allocation) and computations (a program with both control
and computing intensive parts).

Figure 3: Separate development and computations (automaton).

Figure 4: Separate development and computations (execution).

Let us illustrate the principles of a Blob computer with a sim-
ple example which consists in sorting a list of numbers. In the
corresponding automaton, see Figure 3, network development and
computations are separated.2 Consider Figure 4 which represents
the development of a network of three PEs used to sort a list of 3
numbers. Each PE can store one number of the list. At the be-
ginning, there is a single empty PE which has a special input link
through which values are received. This PE receives a first input
value which is the list size. The automaton specifies that the PE
replicates and passes the decremented list size to the new PE, and
so on until the list size is equal to 0.

After the development, the network receives a sequence of val-
ues. Each automaton acts as follows: if it has no value, it stores the
incoming value; if its own value is larger than the incoming value,
it sends its own value to the outgoing link (to the upper PE) and
stores the incoming value. Finally, if its own value is smaller than
the incoming one, it sends the incoming value to the outgoing link.
The list is sorted when all automata are idle.

2A formal description of these automata is given in Section 3.2.

Figure 5: Simultaneous development and computations (automa-
ton)

Figure 6: Simultaneous development and computations (execu-
tion)

Using simultaneous computations and network development, it
is possible to write a more efficient program for the same task, and
to accommodate an arbitrarily large data set size. Consider again
the problem of sorting a list of integers where the list size is now ar-
bitrarily large. The corresponding automaton is shown in Figure 5.
At the beginning, there is again a single PE with its special input,
but the list size is not provided, see Figure 6. Each automaton per-
forms simultaneously network development and value sorting as
follows : when an automaton receives a value, it tests its state and
value. If its state is Empty it creates a PE between itself and the
source of its incoming link and stores the new value in this new
PE, remaining in the Empty state; the new PE is in the Element
state. Whenever a PE in Element state receives a value, it acts
as the previous automaton of Figure 3 (passing the value to the up-
per PE if it is smaller than its own). Thus, the network of PEs (a
1-dimensional network in this case) expands to accommodate new
values and sorts them simultaneously.

Putting it all together. Consider a simple FIR (Finite Im-
pulse Response filter) algorithm that performs a MAC (Multiply-
Accumulate) on N parameters, see Figure 7. This example ex-
ploits parallelism at different levels: pipeline parallelism since data
are streamed into the network in a pipelined manner, parallel multi-
plications of the N parameters with the current values, and parallel
and pipelined additions in a tree-like manner to compute the final
result at each step. In this case, there is no need for adjusting the
network size during the computations, so the network is developed
first.

The development phase of the program consists in creating the

Figure 7: FIR (C program and automaton)

N parallel multipliers and for each pair of multiplier PEs to create
an adder PE, and again for each pair of adder PEs another adder
PE and so on. In Figure 7, the states on the left build the multi-
pliers chain while the states on the right build the adder tree. The
resulting network is shown in Figure 8 for N = 6 and N = 8.
The computing phase consists in fetching the lower values for the
multiplier PEs and sending the result to the adder PEs, and for the
adder PEs in adding the two incoming values and passing the result
to the next adder PE, and so on.

* k 0
* k 1
* k 2
* k 3
* k 4
* k 5

+

+

+

+

+

N = 6 N = 8

* k 0
* k 1
* k 2
* k 3

+

+
+

* k 0
* k 1
* k 2
* k 3

+

+
+

+

Figure 8: FIR (network)

In the FIR algorithm, the greater the number of parameters (N),
the greater the filter accuracy. In the C version of the FIR filter
in Figure 7, the number of elementary operations (+, ×) is equal
to 2 × N . In the Blob version of FIR, the number of PEs is also
equal to 2 × N , and the execution time is in O(logN). In the C
version, greater accuracy comes at the cost of increased running
time, while in the Blob version, achieving greater accuracy costs
additional space and little additional time.

Note that it is possible to write a parallel version of FIR for a
multiprocessor machine with the same execution time complex-
ity, but a Blob program simultaneously expresses both the algo-
rithm implicit parallelism and how to develop the network to ex-

ploit space for this program. The role of the Blob computer will
then consist in appropriately mapping this PE network on the hard-
ware.

Scalability: Blob computing versus processors and multi-
processors. The execution of the above FIR example on a Blob
computer benefits from the pipeline parallelism (signal values are
pipelined into the machine) and the fine-grain parallelism (parallel
adds) both already exploited in superscalar processors. Blob com-
puting does not propose new ways to improve performance, but
rather a programming and architecture paradigm that achieves eas-
ier and better scalability. For instance, scaling up a traditional su-
perscalar processor to execute 6 instructions in parallel instead of 4
means scaling up the size and capacity of many of its components,
see Section 2, and preferably recompiling the program. Scaling up
a Blob computer to achieve more parallelism for the same example
simply means increasing the amount of space available for Blobs
(PEs), without even changing the program.

More generally, a Blob computer can circumvent many of the
main performance bottlenecks of today’s microprocessors and mul-
tiprocessors:

1. By expressing its algorithm as an automaton using Cellular
Encoding, the program provides implicit parallelism to the archi-
tecture, so that dynamic instruction-level parallelism or complex
compiler-based static analysis for finding program parallelism are
no longer necessary. One may argue that additional efforts are re-
quired from the user, but our experience with Cellular Encoding
tends to show that writing a cellular code does not mean spending
special efforts to find parallelism in an algorithm but rather express-
ing an algorithm using a fairly natural space-oriented perspective,
see Section 4 for examples. With respect to parallelism, the biggest
benefit comes from avoiding the sequential bias of imperative lan-
guages.

2. As a result, a program is no longer a sequence of instruc-
tions with a single program counter but a large set of automata that
evolve concurrently. Consequently, an if statement does not stall a
whole program until it is resolved, thus there is no need for complex
and hard-to-scale branch prediction mechanisms [34] anymore.

3. Memory latency issues no long exist as such since memory
and computations are merged into Blobs (PEs). The problem now
consists in making sure that Blobs that need to communicate are
located closed to each other to minimize communication time.

4. In fact, placing Blobs within the available space becomes the
main issue and it is similar to the difficult issue of distributing tasks
over many processing elements in a multiprocessor. However, in a
Blob computer, there is no longer a distinction between processing
elements and the interconnection network (processing elements are
the interconnection network). Thus, the problem becomes finding
the optimal way to place objects on a continuous space; while this
problem is NP-hard, we will see in Section 3.3 that mimicking ba-
sic physical laws like pressure and elasticity provides a simple and
efficient heuristic. Still, we have yet to perform extensive measure-
ments on the performance of this heuristic.

5. As mentioned above, a Blob computer is a large “continuous”
space, i.e., it can be viewed as both a processor or a multiproces-
sor. As a result, in a Blob program/computer there is no distinction
between the fine-grain parallelism (ILP) of superscalar processors
and the coarse-grain parallelism of multiprocessors. Consequently,
it is no longer necessary to search the right balance between both
types of parallelism as processor performance or the number of
processors evolve. Only SMT processors [60] can combine the ex-
ploitation of fine-grain and coarse-grain parallelism on the same
architecture, but SMT processors are based on superscalar-like ar-
chitectures which are difficult to scale.

3.2 Programming a Blob computer

(a) : i n i t i a l s t a t e (a) (b) : C p L a 1 (C o p y L i n k)

(b) (c) : C p N (C o p y N o d e) (a) (d) : S e t P - a 1 (S e t P o l a r i t y)
 C p N a 2 (C o p y N o d e
 & a d d l i n k a 2)

(a) (e) : M g N a 1 (M e r g e N o d e) (a) (d) : R m N (R e m o v e N o d e)

a 1 + a 1 -

a 1 +

a 1 +

a 1 -
a 1a 2

Figure 9: Blob instructions

As mentioned above, an automaton of a Blob computer per-
forms two types of operations: traditional arithmetic and logic op-
erations and network development operations. Therefore, in the
abstract Blob machine, we introduce instructions to specify tradi-
tional arithmetic and logic operations, and we introduce control sig-
nals to specify network development operations, see Section 3.3.
These instructions and signals are the equivalent of assembly in-
structions in a traditional processor.

Network development signals either expand or contract the net-
work of automata. The process of duplicating a PE is split into two
steps:

1. First, the links to/from the PE are duplicated using the CpL
(Copy Link) signal. To distinguish between two links of a pair,
each link is automatically assigned a polarity (+ or -), see Figure 9.

2. Then, the PE is duplicated using the CpN (Copy Node)
signal which creates two copies of the PE distinguished again by a
polarity (+ or -). During the duplication process, duplicated links
bind to duplicated PEs depending on their polarity.

Conversely, it is possible to remove a link using the RmL
(Remove Link) signal or a PE using the RmN (Remove
Node) signal (the PE self-destructs). The complete set of the ab-
stract Blob machine control signals is listed in Figure 9.

The SetP (Set Polarity) instruction enables asymmetric
link repartition during PE duplication. Consider a link L to/from
a PE: using signal CpL, the link L is duplicated and, after the PE
is itself duplicated using signal CpN, one link copy is associated
with each of the PE copies. Now, if we want only one of the two
PE copies to have an L link, we would use signal SetP to polarize
the link, e.g., SetP+, instead of signal CpL; then, when signal
CpN is used, the link would be attached only to the PE with the
corresponding polarity, e.g., +, see Figure 9, (a) → (d).

Note that after PE duplication, links keep their polarity; applying
CpL to a polarized link still creates two copies with opposite polar-
ity. Even though instances of the same link have the same address
and direction, and thus cannot be distinguished, we have shown
that it is possible to have a universal and tractable programming
model [28].

Another important signal is MgN (Merge Node): when a PE
is removed using RmN, the links to/from the PE are removed as
well, and consequently, the target PEs of these deleted links are not
connected anymore. Using signal MgN it is possible to remove a
PE and still preserve connectivity, see Figure 9, (a) → (e).

Figure 10: FIR automaton

The FIR automaton of Figure 7 using Blob instructions is shown
in Figure 10.

3.3 Investigating the implementation issues of
a Blob computer

A traditional computer can be considered as an implementation
of a Turing machine, replacing the tape with an efficient mem-
ory mechanism (register, addressable memory) while retaining the
main structural underpinning of the model: the separation between
an active processing part and a passive memory part. With respect
to the infinite memory size of the abstract Turing model, the lim-
itation of traditional computers are their finite-size memory which
restricts the scope and dimension of target applications. Likewise, a
Blob computer is an implementation of the abstract Blob machine.
In this case, we need to find a mechanism for implementing a net-
work of PEs, while retaining the main concepts of the paradigm:

1. separate processor/memory parts are replaced with a large set
of simple hardware components, called cells, capable of perform-
ing both elementary arithmetic/logic operations and storing small
amounts of data; once combined into a network, several such cells
provide the same capability as one or several processor+memory
pairs,

2. these cells can communicate with their neighbors and thereby
form a network, Figure 11 shows an example 2-D grid network
topology where each cell has 8 neighbors; there is no other com-
munication links between cells,

3. a PE automaton is the software running on the hardware cell
network: the automaton is split into a set of elementary computing
or memory operations, called particles; one particle is mapped to
one cell, but a particle can move on the cell network and change
cell; since PEs are made of particles and particles can move, PEs
can move as well; moreover a PE can create new particles and map
them on available neighbor cells; overall, with this particle/cell im-
plementation, it is possible to create the illusion that PEs can move
and duplicate as in a self-developing network,

4. through particles and cells, each PE is in fact assigned a given
area of the hardware cell network; consequently, the different PEs
of a program rest on distinct areas of the hardware cell network, and
thus the PEs automata can execute concurrently; in other terms,
implementing PEs using particles and a hardware cell network is
enough to exploit the implicit parallelism of a network of PEs.

L o g i c
+

M e m o r y

N e t w o r k

C e l l
Figure 11: The hardware cell network

The abstract Blob model assumes an infinite space size. The
limitation of the Blob computer is naturally the finite space size
which restricts the scope and dimension of target applications.

Implementing a PE automaton using “particles”. In a tradi-
tional processor, programs are decomposed into a restricted set of
different elementary operations (assembly instructions). Because
any program can be decomposed into a long sequence of a few such
simple operations, one simple architecture component, the ALU, is
enough to execute almost any program. The processor is a generic
implementation of a program even though it is less efficient than a
dedicated circuit like an ASIC.

For the same reason, we do not use a typical automaton imple-
mentation (a state register, a more or less large memory for the state
transition table, plus a given number of input and output registers)
where the table size and the number of input/output registers are
fixed, thus limiting the size and number of variables of individual
PE automata. Instead, we decompose a PE automaton into a set of
individual state transitions, i.e., particles. Each particle performs
one state transition of the automaton and/or one of the arithmetic
and logic operations associated with this state transition, see Sec-
tion 3.2. The cell is the hardware component associated with the
particle: one particle per cell. Note again that in a traditional pro-
cessor the program is spread over time (a sequence of elementary
instructions performed on the same CPU), while in a Blob com-
puter it is spread over space (a group of elementary particles).

Consider again the example of Figure 3. The automaton has 6
transitions and almost all transitions except one perform a single
operation. The corresponding group of particles is shown in Fig-

ure 12. For instance, consider the transition ELEMENT → ELE-
MENT: IF Value> Store THEN SEND Value TO Link1 OUT-
GOING. It is implemented with 3 particles: one particle to perform
the test, another particle to send the value to the link and a final par-
ticle to broadcast the new state thus finishing the state transition.

Figure 12: Coding a state transition using particles

The set of particles in a PE actually implements a dataflow
graph, e.g., Figure 12 shows the dataflow graph of the abovemen-
tioned transition. Whenever a particle has received all its input
variables, it performs its operations and possibly sends a result to
other particles. Within a PE, particles communicate using signals.
These signals are broadcasted to all particles, there is no particle
address nor networks for propagating signals. Particles can only
send signals to the particles in the neighbor cells, and the signals
are passed from cell to cell until all PE particles are reached. A sig-
nal contains the following information: the transition source state
identifier, identifier type (either a PE register or a link), an identifier
and a value.

Consider again the same transition and the corresponding set
of particles in Figure 12; when receiving Value through its
link, the PE sends the following internal signal to its parti-
cles: STATE=Element, TYPE=variable, VARIABLE=Value,
VALUE=xxx. The (state, variable) pair corresponds to the expected
input of the test particle; since no other variable is expected (vari-
able Store is stored inside the particle), it performs the test and if
the condition is true it broadcasts the following signal: STATE=(the
target state of the transition since this is the last particle in the
dataflow graph; in this case, the target state is ELEMENT again),
TYPE=link, VARIABLE=(link address), VALUE=(the value con-
tained in Store). The PE will then send this value to the correspond-
ing link; inter-PE communications are explained later.

C e l l w i t h p a r t i c l e
E m p t y c e l l

P a r t i c l e A b r o a d c a s t s
S i g n a l w a v e f r o n t s

P a r t i c l e B b r o a d c a s t s

Figure 13: Signal broadcasts within a Blob

The Blob: the group of particles in a PE. Each particle in a
PE automaton uses a hardware cell; when visualized on a 2-D grid,
as in Figure 14, this group of particles look like a blob, especially
when it is moving and changing shape when particles move, repli-
cate or collide with other PE particles, hence the term Blob com-
puting.

Whenever a particle reaches a hardware cell, it sets a special bit
which indicates that the cell is now part of a Blob. Implicitly, this
bit serves to implement a topological definition of the Blob: the
Blob is a region of the hardware cell network (a set of connected
hardware cells), see Figure 14. This region also defines a local
communication area among particles of the same Blob: whenever
a broadcasted signal reaches a cell that is not in the Blob, the signal
is ignored, i.e., it dies outside the Blob.

B l o b R e g i o n

C e l l w i t h
p a r t i c l e
E m p t y C e l l

Figure 14: Implementing a Blob using particles on hardware cells

Blob movement and division. When Blobs are duplicated, they
need additional space, thereby moving neighbor Blobs in the 2-D
space. Now, how can we organize the movement and placement
of all Blobs and the particles inside ? Mapping a program task
graph to a processor network is a central and NP-complete prob-
lem of parallel computing [49]. The topology of a Blob computer
is particular: instead of using a traditional computer network, it
partitions space into neighboring elements that can only interact
with each other. Then, the problem consists in finding a proper lay-
out for objects of varying size and shape in a 2-D (or 3-D) space.
Moreover, this layout must dynamically adjust to changing Blob
positions, shape and population count. One of the key ingredients
of the Blob machine is a novel bio-inspired placement algorithm to
address this issue; “nature” had to solve a similar placement prob-
lem for arranging billions of neurons in the 20 cm3 of our skull:
the development of neuronal cells is genetically programmed but
the actual placement of neurons is largely influenced by fundamen-
tal physical laws such as pressure exerted among cells.

The Blob computer attempts to emulate this placement method
by implementing the following properties:

• A Blob computer simulates some of the traditional laws that
guide objects relative placement, movement and shape in nature,
such as pressure. Since the program is expressed as a set of physical
objects (Blobs) which can move over time within the space (hard-
ware cell network), their placement, movement and shape are ruled
by these physical laws. Since these laws are enforced permanently,
they can accommodate the dynamic and continuous development
of the objects.

• Since, by essence, the same physical laws apply to all parts
of the space, to enforce them in the whole system, one only needs
to implement them locally at the level of each individual machine
component (a hardware cell).

• Besides the basic physical laws, it is possible to add more phys-
ical laws to better take into account object properties. For example,
the fact that communicating objects need to be placed nearby can
be modeled using elasticity.

While the detailed implementation of a Blob computer is still
on-going work and is out of the scope of the present study (see [29]
for preliminary results and more details), we outline below the main
intuitions.

Movement is based on gas particles principles. Gas particles
essentially move using two main rules: (1) a gas particle modifies
the trajectory of another particle by communicating its momentum
to the other particle when they collide, (2) while a gas particle can
move in a certain direction, its trajectory is not straight but locally
erratic (i.e., seemingly random over a short distance). The role
of the first rule is to implement the pressure that a Blob exerts on
another Blob through its particles. The role of the second rule is to
let the particles of a Blob (and thus the Blob itself) find a path by
themselves (implicitly using trial and error through their random
movement) without having the programmer explicitly specify the
Blob path. Figure 15 illustrates the movement of Blob particles
(during a Blob division).

Figure 15: 3 Blob division stages.

Both rules share an important property: they are local rules, i.e.,
they manage Blob movements without knowledge of what is hap-
pening in other space areas. As a result, they are easy to implement
and they significantly reduce the architecture and program com-
plexity compared to more traditional computers. The general self-
organizing principle of a Blob architecture is summarized by the
following observation from Turing in his work on biological mor-
phogenesis [61]: “Global order can arise from local interactions”.

Blob division. Similarly, Blob division is managed by a set of
local rules. This process is inspired from (though not identical to)
biological cells mitosis [29], i.e., the division of biological cells.
When a Blob receives a division signal, all particles duplicate; each
particle is flagged − or +; using a signal wave, particles are gath-
ered in two sets (only − particles and only + particles); then, when
the separation is complete, the two sets become two independent
Blobs, see Figure 15.

Inter-Blob communications. We have not yet tested the low-
level implementation of inter-Blob communications, but we envi-
sion them as follows. Blobs are connected to each other using links.
Links are implemented using specific Blobs, called Link Blobs. At
both ends, these link Blobs are attached to standard Blobs using a
single special link particle. In order to keep as a compact spatial
Blob distribution as possible for a given program, these link Blobs
are driven by elasticity laws, i.e., they have the same physical be-
havior as springs or rubber bands: both ends attempt to get close
to each other. That property is again implemented as a simple rule
on the link particles: they are attracted to the direction of their im-
mediate neighbor particle on the Blob link membrane. Since this
particle is in the same direction as the other end of the Blob link, the
particle implicitly attempts to go in the direction of the link particle
at the other end of the link Blob.

4. EXPERIMENTS AND EXAMPLES OF
APPLICATION

4.1 Experimental Framework
We have written two Blob computer simulators: a functional

simulator and a performance simulator. The first simulator is an
Abstract Blob Machine simulator: it interprets simple arithmetic
and logic operations, register storage operations and the network
development operations described in Section 3.2. To a certain ex-
tent, this simulator is a functional simulator, i.e., an emulator: it
can execute a Blob program but does not provide any information
on the program performance. The performance simulator describes
a simplified implementation of the Blob computer; even though
the notion of pressure and elasticity have been implemented in that
simulator, their implementation is much more simple than the rules
described in Section 3.3. One physical rule (Blob division) has
been implemented thoroughly in the SIMP/STEP cellular automata
simulator by Bach and Toffoli [59], and the corresponding results
are presented in [29] and an example in Figure 15. In the per-
formance simulator, PEs automata are decomposed into particles
and particle computations and communications (signal broadcasts)
are simulated. This second simulator provides information on pro-
gram execution time and space, i.e., Blob computer performance
metrics, see Figure 20. The goal of the performance simulator is to
validate the concept of “particles” and show they can be used to im-
plement complex computations. Due to the spatial nature of Blob
executions, the simulator comes with a graphical user interface for
visualizing the development of Blob programs, see Figures 19, 23.

In the next paragraphs, we show how to program three fairly dif-
ferent kinds of problems using a Blob computer: the QuickSort
algorithm, the Kung and Leiserson [37] matrix multiply algorithm,
and a neural network program used for robot control [27]. Perfor-
mance metrics are shown for the QuickSort algorithm only. Except
for the QuickSort Blob program which mixes network development
and computations, only the computational parts of the Blob pro-
grams are shown below, the development phase is omitted though
illustrated in the figures.

4.2 QuickSort
QuickSort is a recursive “divide & conquer” algorithm and it

works as follows. At any recursion level, the algorithm creates
three lists: the sets of data larger, smaller than the pivot and equal
to the pivot; the process is then recursively called on the “smaller”
and “larger” lists, Figure 16.

FUNCTION QUICKSORT→ LIST OF NUMBERS

INPUT l: LIST OF NUMBERS

v ← l[1]
left← LIST OF THE ELEMENTS OF l STRICTLY SMALLER THAN v
right← LIST OF THE ELEMENTS OF l STRICTLY GREATER THAN v
middle← LIST OF THE ELEMENTS OF l EQUAL TO v
RETURN (CONCAT(QUICKSORT(left),

CONCAT(middle,QUICKSORT(right))))

FIGURE 16: QuickSort algorithm

S o r t

E l t [0]
1 0

E l t [1]
3

E l t [5]
5

E l t [4]
1 4

E l t [3]
4 2

E l t [2]
1 3

S o r t

E l t [0]
1 0

S o r t

E l t [i]
v E l e m e n t P E : c o n t a i n s t h e V a l u e (v) a n d i t s I n d e x (i)

S o r t i n g P E : r e c u r s i v e l y r e p l i c a t e s t o d i v i d e t h e a r r a y

E l t [1]
3

E l t [5]
5

E l t [4]
1 4

E l t [3]
4 2

E l t [2]
1 3

+
-

+

-
+

+
S o r t

E l t [4]
1 4

E l t [2]
1 3

S o r t

E l t [1]
3

E l t [5]
5

E l t [3]
4 2

S o r t

E l t [0]
1 0

Figure 17: One iteration of the QuickSort algorithm

Initially, there is a single list value per PE Elmt and all PEs
are connected to a central Sort PE; each of the Elmt PE has a
unique index ranging from 0 to N − 1 where N is the list size, see
Figure 17. The Sort queries the 0 index and the corresponding list
value from all PEs; it then broadcasts this value, which it is the pivot
value, to all PEs. Each PE then polarizes its link with the Sort PE
as follows: if its own value is strictly smaller than the pivot value,
it sets the polarity to −, or to + otherwise. Then the Sort PE
divides itself into two polarized PEs, so that all values smaller than
the pivot value remain with the − PE, and all other values with
the + PE. Using a second division of the + PE, a third Sort PE
is created that is only linked to the pivot PE. Then, the Sort +
PE and the Sort − PE communicate with their respective list to
recompute the index of all their PEs and set a new 0 index in each
list. The process then starts again recursively. The corresponding
automaton is shown on Figure 18. Note that the full QuickSort
Blob program has a final phase that builds a true list by scanning
all PEs and destroying them in the process.

The full QuickSort Blob program was run on the particle-level
simulator. The execution time complexity is in O(

√
N) as com-

pared to O(Nlog(N)) at best on a traditional processor, and the
space complexity is in O(N), see Figures 20, 21. The execution
time is expressed in number of hardware cell cycles. A single tran-
sition operation, passing a signal from one cell to another, or pass-
ing a particle from one cell to another all require a single cycle.

Figure 18: Quicksort automaton

P

1

4

2

2

2

2

2

2

2

44
4

4

4

26

1

1

4

4

1

4 1

4

4

4

4

4

4

3

3

4

4
4

4

4

16

23

3
3

2323

22

22

22

22

16
23

23

23

16

22

22

22

22

16

Figure 19: Simulated execution of the Blob program

The number of particles per Blob is equal to 76. The total num-
ber of particles may seem large but it is actually equal to the num-
ber of memory and register elements (temporary list elements) nor-
mally used in the algorithm run on a traditional processor. In a Blob
computer, the development is spatially-oriented and all intermedi-
ate variables become particles. It is possible to optimize the spatial
cost by several orders of magnitude through several tradeoffs that
we have not yet explored: the number of state transition opera-
tions per particle, and finding an intermediate programming style
between the spatial-only Blob programs and the time-only impera-
tive language programs.

4.3 Matrix Multiply
The principle of the Kung and Leiserson matrix multiply algo-

rithm is again to view the process in a spatial, but also a streamed,
manner, see Figure 22 (note that in this figure, PEij actually corre-
sponds to the matrix element cij). The matrices on the top and the
left are the operand matrices, while the matrix in the middle is the
result matrix. First, a00 and b00 are sent to c00 which will contain

Figure 20: Time performance

Figure 21: Space performance

the inner product of a0j and bi0 at the end of the algorithm; c00 is
now equal to a00×b00, and a00 is passed to c01 while b00 is passed
to c10. In the next step, c00 receives a01 and b10, c01 receives b01

(and a00 from c00), and c10 receives a10 (and b00 from c00); and so
on.

Again, due to its spatial nature, this algorithm easily translates
into a Blob program. The first part consists in developing the net-
work of PEs; in this case, one PE is associated with each cij ele-
ment. The development is performed as shown in Figure 23, each
PE having the same automaton and the only input is the matrix di-
mension. The upper and leftmost PEs are attached to input/output
ports. Then, each resulting PE only keeps the computational part
of the automaton, shown in Figure 24 and the computations are
performed as described in the above paragraph. The space require-
ments are in O(N2) where N is the matrix dimension, and the
execution time is in O(N).

Note that Blob computing and programming is not only dedi-
cated to programs with large data sets. Computing-intensive pro-
grams with small data sets also strongly benefit from Blob comput-
ing by spatially developing parallel or recursive computations.

4.4 Neural Network
This example neural network controls the locomotion of a 6-

legged robot using a simplified model: for each leg, there are two
sensory neurons Na, Nb activated when the leg reaches an extreme
position (to know when it must retract or expand), and two motor
neurons Ma, Mb to move the leg up/down and forward/backward.

Figure 22: PE network for the Kung & Leiserson matrix multiply
algorithm

(a) (b)

Figure 23: Network development: (a) principles, (b) simulation

The robot moves alternatively three of its legs forward and three
of its legs backward. Since there are 12 sensors and 12 actuators,
there are 12 input ports and 12 output ports. As for the algorithm
of Section 4.3, the Blob program starts with a development phase
illustrated in Figure 25. The automaton of one leg control neuron
is shown in Figure 26. Since neural networks are also a type of
“spatial” computation by nature, they lend well to Blob spatial de-
velopment: one or a few PEs per neuron and parallel execution of
the different neurons/PEs.

5. CONCLUSIONS AND FUTURE WORK
This article presents the Blob computing model which can scale

more easily with technology and space than current processors and
multiprocessors. These properties are embedded both in the lan-
guage (Cellular Encoding) and the architecture (Blobs) which is
based on cellular automata. We have also investigated implemen-
tation issues of a Blob computer, and presented simple execution
examples on a simplified Blob computer implementation.

Future studies will focus on implementation issues of a Blob
computer. We also wish to investigate more traditional processor
organizations that retain some, though not all, of the principles of
Blob computing.

Figure 24: The computing part of the automaton

Figure 25: Neural network development

6. REFERENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight,

R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous
computing. Communications of the ACM, 43(5):74–82, 2000.

[2] L. Adleman. Molecular computation of solutions to combinatorial
problems,. Science, 266, November 1994.

[3] J-P. BANÂTRE and D. Le MÉTAYER. Gamma and the chemical
reaction model : Ten years after. In J.-M. Andreoli, H. Gallaire, and
D. Le Métayer, editors, Coordination Programming: Mechanisms,
Models and Semantics, pages 1–39, 1996.

[4] M. Baron. Microprocessor report. Tidbits, March 2001.
[5] G. Berry and G. Gonthier. The Esterel synchronous programming

language: Design, semantics, implementation. Science of Computer
Programming, 19(2):87–152, 1992.

[6] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger,
D. Padua, P. Petersen, W. Pottenger, L. Rauchwerger, P. Tu, and
S. Weatherford. Parallel programming with Polaris. IEEE Computer,
29(12):78–82, December 1996.

[7] F. Bodin, T. Kisuk, P. Knijnenburg, M. O’Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space. In Workshop
on Profile and Feedback-Directed Compilation at PACT, 1998.

[8] J. M.P. Cardoso and H. C. Neto. Fast hardware compilation of
behaviors into an FPGA-based dynamic reconfigurable computing
system. In Proc. of the XII Symposium on Integrated Circuits and
Systems Design, pages 150–153. IEEE Computer Society Press,
October 1999.

[9] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon.
Stream computations organized for reconfigurable execution
(SCORE). In FPL, pages 605–614, 2000.

[10] L. Chen, S. Dropsho, and D. H. Albonesi. Dynamic data dependence
tracking and its application to branch prediction. In Proceedings of

Figure 26: Neural network automaton

the 9th International Symposium on High-Performance Computer
Architecture, pages 65–77, February 2003.

[11] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow
analysis. In ppopp, pages 92–102, Santa Barbara, California, July
1995.

[12] M. Conrad. On design principles for a molecular computer. Commun.
ACM, 28(5):464–480, 1985.

[13] Z. Cvetanovic and D. Bhandarkar. Performance characterization of
the alpha 21164 microprocessor using TP and SPEC workloads. In
HPCA, pages 270–280, 1996.

[14] A. Dandalis and V. K. Prasanna. Run-time performance optimization
of an FPGA-based deduction engine for sat solvers. ACM Trans. Des.
Autom. Electron. Syst., 7(4):547–562, 2002.

[15] A. DeHon. Reconfigurable Architectures for General-Purpose
Computing. PhD thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 1996.

[16] A. DeHon. Very large scale spatial computing. In Third International
Conference on Unconventional Models of Computation, pages
27–37, October 2002.

[17] André DeHon. The density advantage of configurable computing.
Computer, 33(4):41–49, 2000.

[18] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society of London Ser. A,
A439:553–558, 1992.

[19] Jr. F. H. Carvalho, R. M. F. Lima, and R. D. Lins. Coordinating
functional processes with Haskell#. In Proceedings of the 2002 ACM
symposium on Applied computing, pages 393–400. ACM Press, 2002.

[20] P. Fradet and D. Le Métayer. Structured Gamma. Science of
Computer Programming, 31(2–3):263–289, 1998.

[21] T. Gautier, P. Le Guernic, and L. Bernard. Signal: A declarative
language for synchronous programming of real time system.
Computer Science, pages 257–277, 1987.

[22] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: an
analytical representation of cache misses. In Proceedings of the 11th
international conference on Supercomputing, pages 317–324. ACM
Press, 1997.

[23] P. N. Glaskowsky. Microprocessor report. Network Processors
Mature in 2001, February 2002.

[24] S. C. Goldstein and M. Budiu. Nanofabrics: spatial computing using
molecular electronics. In Proceedings of the 28th annual
international symposium on Computer architecture, pages 178–191.
ACM Press, 2001.

[25] F. Gruau. Process of translation and conception of neural networks,
based on a logical description of the target problem, us patent en 93
158 92, december 30, 1993.

[26] F. Gruau. Automatic definition of modular neural networks. Adaptive
Behaviour, 3(2):151–183, 1995.

[27] F. Gruau. Modular genetic neural networks for 6-legged locomotion.
Artifical Evolution, pages 201–219, 1995.

[28] F. Gruau and P. Malbos. The Blob: A basic topological concept for
hardware-free distributed computation. In Unconventional Models of
Computation (UMC’02), Kobe, Japan, pages 151–163, 2002.

[29] F. Gruau and G. Moszkowski. Time-efficient self-reproduction on a

2-d cellular automaton. In 1st International Workshop on Biologically
inspired Approaches To Advanced Information Technology, 2004.

[30] F. Gruau, J-Y. Ratajszczak, and G. Wiber. A neural compiler.
Theoretical Computer Science, 141(1, 2):1–52, April 1995.

[31] F. Gruau and J. T. Tromp. Cellular gravity. In 741, page 10. Centrum
voor Wiskunde en Informatica (CWI), ISSN 1386-3681, 1999.

[32] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data-flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[33] C. Hankin, D. Le Métayer, and D. Sands. Refining multiset
transformers. Theoretical Computer Science, 192(2):233–258, 1998.

[34] T. H. Heil, Z. Smith, and J. E. Smith. Improving branch predictors by
correlating on data values. In Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture, pages
28–37. IEEE Computer Society, 1999.

[35] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, ,
and P. Roussel. The microarchitecture of the pentium 4 processor.
Intel Technology Journal Q1, 2001.

[36] J.W. Klop. Term rewriting systems. In Handbook of Logic in
Computer Science, volume 2. Clarendon Press, 1992.

[37] H.T. Kung and C.E. Leiserson. Systolic array for VLSI. In Addison
Wesley, editor, Introduction to VLSI systems, C. A. Mead and L. A.
Conway, 1980.

[38] J. Mazoyer. Computations on one dimensional cellular automata.
Annals of Mathematics and Artificial Intelligence, 16:285–309, 1996.

[39] J. Moreira. Memory models for the Bluegene/L Supercomputer.
http://www.dagstuhl.de/03431/Proceedings/, 2003.

[40] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A
design space evaluation of grid processor architectures. In
Proceedings of the 34th annual ACM/IEEE international symposium
on Microarchitecture, pages 40–51. IEEE Computer Society, 2001.

[41] A. Narayanan and S. Zorbalas. DNA algorithms for computing
shortest paths. In John R. Koza, Wolfgang Banzhaf, Kumar
Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H.
Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors,
Genetic Programming 1998: Proceedings of the Third Annual
Conference, pages 718–724, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 1998. Morgan Kaufmann.

[42] B. Nitzberg and V. Lo. Distributed shared memory: A survey of
issues and algorithms. In IEEE Computer, pages 52–60, 1991.

[43] G. M. Papadopoulos and D. E. Culler. Monsoon: an explicit
token-store architecture. In Proceedings of the 17th annual
international symposium on Computer Architecture, pages 82–91.
ACM Press, 1990.

[44] D. Parello, O. Temam, and J-M. Verdun. On increasing architecture
awareness in program optimizations to bridge the gap between peak
and sustained processor performance matrix-multiply revisited. In
Proceedings of the Proceedings of the IEEE/ACM SC2002
Conference, page 31. IEEE Computer Society, 2002.

[45] G. Paun. Computing membranes. Journal of Computer and System
Sciences, 1(61):108–143, 2000.

[46] J. A. Rose, Y. Gao, M. Garzon, and R. C. Murphy. DNA
implementation of finite-state machines. In John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 479–490,
Stanford University, CA, USA, 13-16 1997. Morgan Kaufmann.

[47] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low
latency approach to high bandwidth instruction fetching. In
International Symposium on Microarchitecture, pages 24–35, 1996.

[48] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ilp, tlp, and dlp with the
polymorphous TRIPS architecture. In Proceedings of the 30th annual
international symposium on Computer architecture, pages 422–433.
ACM Press, 2003.

[49] V. Sarkar. Partitioning and scheduling parallel programs for
multiprocessors. MIT Press, 1989.

[50] G. Sassatelli, L. Torres, P. Benoit, T. Gil., C. Diou, G. Cambon, and
J. Galy. Higly scalable dynamically reconfigurable systollic
ring-architecture for DSP application. In Design Automation and Test
in Europe Conference and Exhibition, march 2002.

[51] H. Sharangpani and K. Arora. Itanium processor microarchitecture.
IEEE Micro, 20(5):24–43, october 2000.

[52] P. W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In IEEE Symposium on Foundations of
Computer Science, pages 124–134, 1994.

[53] M. Sipper. Co-evolving non-uniform cellular automata to perform
computations. Physica D, 92:193–208, 1996.

[54] R. Stadler, S. Ami, M. Forshaw, and C. Joachim. A memory/adder
model based on single c60 molecular transistors. Nanotechnology,
12:350–357, 2001.

[55] A. Terechko, E. Le Thenaff, M. Garg, and J. van Eijndhoven.
Inter-cluster communication models for clustered VLIW processors.
In Proceedings of the 9th International Symposium on
High-Performance Computer Architecture, pages 354–364, February
2003.

[56] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A
language for streaming applications. In Computational Complexity,
pages 179–196, 2002.

[57] C. D. Thompson. The VLSI complexity of sorting. IEEE
Transactions on Computers, C-32(12):1171–1184, 1983.

[58] T. Toffoli. Programmable matter methods. Future Generation
Computer Systems, 16(2–3):187–201, 1999.

[59] T. Toffoli and T. Bach. A common language for ”programmable
matter” (cellular automata and all that). Bulletin of the Italian
Association for Artificial Intelligence, March 2001.

[60] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. In 25 years of the
international symposia on Computer architecture (selected papers),
pages 533–544. ACM Press, 1998.

[61] A. M. Turing. The chemical basis of morphogenesis. Phil. Trans.
Roy. Soc. of London, Series B: Biological Sciences(237):37–72,
1952.

[62] P. M. B. Vitanyi. Locality, communication, and interconnect length in
multi-computers. SIAM Journal of computing, 1988.

[63] J. Wahle, L. Neubert, J. Esser, and M. Schreckenberg. A cellular
automaton traffic flow model for online simulation of traffic. Parallel
Computing, 27(5):719–735, 2001.

[64] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera: a
high-performance architecture with a tightly-coupled reconfigurable
functional unit. In Proceedings of the 27th annual international
symposium on Computer architecture, pages 225–235. ACM Press,
2000.

