
HAL Id: lirmm-00108883
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108883

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Summarizing Multidimensional Databases Using Fuzzy
Rules

Yeow Wei Choong, Anne Laurent, Dominique Laurent, Pierre Maussion

To cite this version:
Yeow Wei Choong, Anne Laurent, Dominique Laurent, Pierre Maussion. Summarizing Multidimen-
sional Databases Using Fuzzy Rules. IPMU: Information Processing and Management of Uncertainty,
Jul 2004, Perugia, Italy. pp.99-106. �lirmm-00108883�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108883
https://hal.archives-ouvertes.fr

Summarizing Multidimensional Databases Using Fuzzy Rules

Yeow Wei Choong, Pierre Maussion

HELP Institute
Kuala Lumpur - MALAYSIA

choongyw@help.edu.my
maussp@help.edu.my

Anne Laurent

LIRMM
Université Montpellier II
Montpellier - FRANCE

laurent@lirmm.fr

Dominique Laurent

LICP
Université de Cergy-Pontoise
Cergy-Pontoise - FRANCE

dominique.laurent@dept-info.u-cergy.fr

Abstract

In the context of multidimensional
data, OLAP tools are appropriate
for the navigation in the data, aim-
ing at discovering pertinent and ab-
stract knowledge. However, due to
the size of the dataset, a system-
atic and exhaustive exploration is
not feasible. Therefore, the prob-
lem is to design automatic tools to
ease the navigation in the data and
their visualization. In this paper, we
present a novel approach allowing to
build automatically blocks of similar
values in a given data cube and to as-
sociate these blocks with rules. Our
method is based on a levelwise algo-
rithm (a la Apriori) and on the fuzzy
set theory. The latter is considered
here due to the fact that some of the
blocks computed by our algorithm
can overlap.

Keywords: Multidimensional
Databases, Levelwise Algorithms,
Fuzzy Rules, Data Visualization.

1 Introduction

Multidimensional databases have been stud-
ied and used for about 10 years [5]. Rela-
tional databases have been intially proposed
for On-Line Transactional Processing (OLTP)
in order to facilitate and manage transaction-
oriented applications. However, relational
databases are not suitable for the analysis of

huge volumes of data, referred to as On-Line
Analytical Processing (OLAP) in the litera-
ture. Multidimensional databases have been
proposed to cope with this problem.

In this context, data are stored in multidimen-
sional tables, the so-called data cubes, defined
over several dimensions. The data within the
cube is called measure. For instance, Figure
1 displays sale results in a data cube defined
over two dimensions.

OLAP tools provide users with operations
that ease manipulation of data in order to di-
cover relevant information.

However, data are often voluminous, and
thus, an exhaustive exploration is impossi-
ble. Moreover, users of such systems are non-
computer scientists but rather decision mak-
ers or experts of the data. Although many
reporting tools exist in commercial softwares,
it is still very difficult to visualize multidimen-
sional databases so that relevant information
is automatically displayed. Cube dimension-
ality is normally greater than 4, which makes
visualization difficult.

In this paper, an automatic processing is pro-
posed to facilitate multidimensional data vi-
sualization. Our method identifies automat-
ically sub-cubes of similar data. In the pre-
vious example, the sub-cube defined by prod-
ucts P1, P2 and city C1 is a block correspond-
ing to the measure value 6. Since a block is a
sub-cube, it can be associated with a rule. For
instance, the rule associated with the block
mentioned above is: If PRODUCT = P1 or

P2 and CITY = C1 Then sales = 6.

In this case, all cells of the block contain the
same measure value. However, it is not always
the case. For instance, the block correspond-
ing to products P1, P2, P3 and cities C3 and
C4 is mainly composed by the measure value
5. Therefore, one may consider it as being as-
sociated with 5. Similarly, a block associated
with the measure value 2 can be considered
for products P3, P4 and cities C4, C5, C6.
These two blocks overlap since they share a
cell for product P3 and city C4. As illus-
trated by this example, blocks may overlap.
Fuzzy logic is used in order to convey these
overlappings, making it possible to represent
information such as for product P2 and in a
lower manner for product P3.

The goal of this work is to identify blocks and
their overlappings (as shown in Figure 1) as
quickly as possible and then to build the cor-
responing rules (fuzzy or not).

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��

��

P1

P2

P3

P4

C1 C2 C3 C4 C5 C6 CITY

PRODUCT

6 6

6

8

8 8

5

8

8

5

5

8 2

2

5

5 5

6

2

2 2

8

75

2

Figure 1: Data cube and associated blocks

Building such blocks facilitates visualization.
The more the relevance of the blocks, the
more the representation quality. In [4], the
authors study different manners to represent
data cubes. In particular, the authors high-
light the fact that some representations are
more relevant than others since they allow to
display the cube according to user-specified
criteria. In this work, we consider as rele-
vant the configurations where same measure
values are grouped. Another organization is
possible, as described in [4], where the data
are organized so that the measure is ordered
in an increasing manner over all the dimen-
sions. However, it is an NP-hard problem to
automatically build such a representation of a
cube. In this paper, the organization of data
is not altered before the block identification,
although it could be interesting.

It is also relevant to use the blocks computed

by our approach in order to assess the quality
of the representation of the cube. More pre-
cisely, this quality is related to the following:

- the proportion of cells included in the blocks
(the higher the proportion, the lower amount
of cells not covered by the rules),

- the number of built blocks (the more blocks
there are, the more data are heterogeneous),

- the number of blocks in comparison with the
number of measure values (if several blocks
are built for the same measure value, then it
is not stored in a contigous manner),

- the number of overlappings between blocks
and their size (the higher the number of over-
lapping blocks, the more mixed are the data).

2 Multidimensional Databases

“A data warehouse is a subject-oriented, in-
tegrated, time-variant and non-volatile collec-
tion of data in support of management’s de-
cision making process” [8]. Such systems, de-
voted to intensive decision-oriented querying,
are different from classical relational database
management systems which are not suitable
in the OLAP framework. Multidimensional
databases have thus been proposed in [5].
Data are represented as multidimensional ta-
bles. No consensual definition has emerged
for now concerning data representation and
manipulation.

Generally, a multidimensional database is a
set of hypercubes (hereafter cubes). A cube
can be seen as a set of cells and a cell rep-
resents the association of a measure with one
member in each dimension. Hierarchies may
be defined over dimensions, for instance to de-
scribe sales in function of states and not of
cities.

Definition 1 - Cube. A k-dimensional
cube, or simply a cube, is a tuple
〈C, dom1, . . . , domk, domm,mC〉 where

- C is the name of the cube,
- dom1, . . . , domk are k finite sets of symbols for

the members associated with dimensions 1, . . . , k
respectively,
- let dommes be a finite totally ordered set of mea-

sures. Let ⊥ 6∈ dommes be a constant (to represent

null values). Then domm = dommes ∪ {⊥},
- mC is a mapping: dom1× . . .×domk → domm.

A cell c of a k-dimensional cube C is a
(k + 1)-tuple 〈v1, . . . , vk,m〉 such that for ev-
ery i = 1, . . . , k, vi is in domi and where
m = mC(v1, . . . , vk). Moreover, m is called
the content of c and c is called a m− cell.

Operations are defined to manipulate data
cubes: selection, projection, rotation, and
switch. Switch is defined to modify cube rep-
resentations without altering the data.

PRODUCT

P4 8 8 8 2 2 2
P2 5 6 8 5 6 75
P1 8 6 6 5 5 2
P3 5 8 5 2 2 8

C3 C1 C2 C4 C5 C6 CITY

Figure 2: Inverting dimension values.

[4] details a study on cube representations.
The authors propose an approach to restruc-
ture the dataset in order to obtain an appro-
priate representation.

Definition 2 - Representation. A rep-
resentation of a cube C is a set R =
{rep1, . . . , repk} where for every i = 1, . . . , k,
repi is a one-to-one mapping from domi to
{1, . . . |domi|}.

Figures 1 and 2 display two different repre-
sentations of the same cube.

In this paper, we consider a fixed k-
dimensional cube C and a fixed representation
of C, R = {rep1, . . . , repk}. Given a dimen-
sion di in C, and v1 and v2 in domi, v1 and
v2 are said contiguous if repi(v1) and repi(v2)
are consecutive integers, i.e. if |repi(v1) −
repi(v2)| = 1. Moreover, the interval [v1, v2]
is the set of all contiguous values between v1

and v2. In our approach, a block of C is a
sub-cube of C.

Definition 3 - Block. A block b is a set of
cells defined over a cube C by b = δ1 × . . . ×
δk where δi are intervals of contiguous values
from domi, for i = 1, . . . , k.

Note that in the case where an interval is not

specified on a dimension di, the interval is set
to δi = ALL = domi. Therefore, we shall
consider a block as defined by k intervals.

Definition 4 - Block Overlapping. Two
blocks overlap if they share at least one cell.

It is easy to see that two blocks b = δ1× . . .×
δk and b′ = δ′1 × . . . × δ′k overlap iff for each
dimension di, δi ∩ δ′i 6= ∅.

In our formalism, a slice is defined as a par-
ticular block.

Definition 5 - Slice. Let vi be a value from
domi. A slice of C associated with vi, denoted
T (vi), is the block δ1× . . .× δk such that δi =
{vi}, and for all j 6= i, δj = ALL.

A slice is an hyperplan, reduced to a sin-
gle row in the particular case of a two-
dimensional cube. Two slices defined on the
same dimension di are said to be contiguous if
they are associated with two contiguous val-
ues from di. For instance in Figure 1, the
slices T (P3) and T (P4) are contiguous since
P3 and P4 are contiguous in the considered
representation. Cells are considered as neigh-
bors if they share a side or a corner in the rep-
resentation. For instance, in Figure 1 the cells
〈P2, C2, 8〉 and 〈P3, C1, 8〉 are neighbors.

Definition 6 - Cell Neighborhood. Two
distinct cells c = 〈v1, . . . , vk,m〉 and c′ =
〈v′1, . . . , v

′

k,m
′〉 are neighbors if for every i =

1, . . . , k, |repi(vi)− repi(v
′

i)| ≤ 1.

We note that in a k-dimensional cube, a cell
has 3k − 1 neighbors.

Support and confidence are defined for blocks
as follows.

Definition 7 - Support. The support of a
block b from C for a measure value m is de-
fined as: supp(b,m) = # cells containing m in b

cells in C
.

Considering a user-given minimum support
threshold σ and a measure value m, a block
b such that supp(b,m) > σ is called σ-
frequent for m. Note that the support is anti-
monotonic, meaning that for all blocks b, b′

and for each measure value m:

b ⊆ b′ ⇒ supp(b,m) ≤ supp(b′,m).

This property is used in our Apriori-like algo-
rithm, given in the forthcoming section.

Definition 8 - Confidence. The confidence
of a block b for a measure value m is defined
as: conf(b,m) = # cells containing m in b

cells in b
.

Given a measure value m, a support threshold
σ, a confidence threshold γ, Most-General and
Most-Specific blocks with respect to m, σ and
γ are defined as follows.

Definition 9 - MG-Block. Given σ a sup-
port threshold, m a measure value, and b
a σ-frequent block for m, b is said to be
most-general (MG) for m and the confidence
threshold γ if
• conf(b, m) > γ
• there does not exist a block b′ such that:
- b′ is σ-frequent for m

- ∃j ∈ [1, k] such that δ′j = ALL and δj 6= ALL

- ∀j′ ∈ [1, k], j′ 6= j ⇒ δ′j = δj

- conf(b′, m) > γ.

Definition 10 - MS-Block. Given σ a sup-
port threshold, m a measure value, and b a
σ-frequent block for m, b is said to be most-
specific (MS) for m and the confidence thresh-
old γ if
• conf(b, m) > γ
• there does not exist a block b′ such that:
- b′ is σ-frequent for m

- ∃j ∈ [1, k] such that δ′j 6= ALL and δj = ALL

- ∀j′ ∈ [1, k], j′ 6= j ⇒ δ′j = δj

- conf(b′, m) > γ.

3 Block Generation

In this paper, our goal is to discover blocks b
such that supp(b,m) > σ and conf(b,m) > γ,
where σ and γ are respectively support and
confidence thresholds specified by the user,
and where m is a measure value appearing
in the cube. Our method is based on a lev-
elwise Apriori-like algorithm [1], for scalabil-
ity reasons. The proposed algorithm builds
MS-blocks, which correspond to rules in which
the measure value is determined by the great-
est number of dimensions. However, this al-
gorithm is also suitable for the mining of
MG-blocks, which correspond to the less spe-
cific rules. The user can decide whether he

PRODUCT

P1 5 3 7 8 8 10
P2 4 5 1 8 8 8
P3 8 8 8 5 9 12
P4 8 8 8 6 3 1

C1 C2 C3 C4 C5 C6 CITY

Figure 3: The Cube for Example 1

(she) wants MS- or MG-blocks. The proposed
method is outlined in algorithms 1 and 2. Al-
gorithm 2 computes the blocks, provided the
intervals are computed.

Regarding the computation of the intervals,
we introduce the following notation: Given a
measure value m and a slice T (v) associated
to value v in domi, let v′ be the value in domi

such that rep−1
i (v′) = rep−1

i (v) − 1. If c is
a m-cell in T (v), then we denote by µ(c) the
number of m-cells in T (v′) that are neighbors
of c.

Then, the computation of the intervals for di-
mension di is based on two additional thresh-
olds denoted by µ and ν. µ is a minimum
number of m-cells in T (v′) that are neighbors
of a given m-cell c in T (v). ν is the minimum
ratio between the number of m-cells in T (v)
having at least µ m-cells neighbors in T (v ′)
and the total number of m-cells in T (v). The
following example illustrates how µ and ν are
used in our approach.

Example 1 Consider the cube C shown in Fig-
ure 3 in which blocks are to be computed accord-
ing the support and confidence thresholds equal
to 1/12 and 50% respectively. Let b be the block
[P1, P4]×[C1, C5]. Clearly, supp(b, 8) > 1/12, but
conf(b, 8) ≤ 50%, showing that b cannot be output
by our method. On the other hand, for the mea-
sure value 8, the blocks b1 = [P1, P2] × [C4, C5]
and b2 = [P3, P4] × [C1, C3] have their supports
and confidences greater than 1/12 and than 50%
respectively.

In order to see how our method can actually out-
put b1 and b2, let us consider µ = 2 and ν = 60%,
and let us detail the computation for the slice
T (C3), assuming that T (C1) and T (C2) have al-
ready been considered. In this case, an interval of
the form [C1, NIL] is under construction (NIL
stands for an unknown value). At this stage of
the computation, we know that C1 and C2 belong
to this interval, and we have to decide for C3. To

this end, we first compute supp(T (C3), 8) and, as
the result is greater than 1/12, the process contin-
ues (note that, otherwise NIL would be replaced
by C2). The two 8-cells in T (C3) to consider are
c = 〈P3, C3, 8〉 and c′ = 〈P4, C3, 8〉, and we have
µ(c) = µ(c′) = 2. Since T (C3) contains two 8-
cells, then the ratio between the number of 8-cells
in T (C3) having at least µ 8-cells neighbors in
T (C2) and the number of 8-cells in T (C3) is 1,
which is greater than 60%. In this case, we con-
sider that C3 should belong to the interval under
construction, and thus, its current value remains
[C1, NIL].

The same computation for the slice T (C4) gives
the following:
- supp(T (C4), 8) = 2 and thus the computation
can continue
- the 8-cells c = 〈P1, C4, 8〉 and c′ = 〈P2, C4, 8〉
are such that µ(c) = 0 and µ(c′) = 1.
Thus, the ratio between the number of 8-cells in
T (C4) having at least µ 8-cells neighbors in T (C3)
and the number of 8-cells in T (C4) is 0. In this
case, we consider that C4 should not belong to the
interval under construction. Thus, this interval is
set to [C1, C3] and the “new” interval [C4, NIL]
is considered. Continuing this process, it can be
seen that C5 is incorporated in [C4, NIL], and
that C6 is not, since supp(T (C6), 8) ≤ 1/12.
Therefore, we obtain the interval [C4, C5].

Similar considerations on the dimension

PRODUCT show that the blocks b1 and b2

can be computed for µ = 2 and ν = 60%.

8
2

1

0

8
12 03

P1

P2

P3

P4

C1 C2 C3 C4 C5 C6 CITY

PRODUCT

6 6 5 5 2

7565586

8

8 8

5 5

8 2

2 2

2 2

8

8

Figure 4: Occurences of measure value 8

Figure 4 illustrates the construction of the
blocks for value 8. Figure 5 illustrates the
result of this process for all measure values
(2, 5, 6, 8, 75). Four blocks are built:
b1 = [P1, P2]× [C1, C1] for value 6

b2 = [P3, P4]× [C1, C3] for value 8

b3 = [P1, P3]× [C3, C4] for value 5

b4 = [P3, P4]× [C4, C6] for value 2

Note that there are two overlappings (between
b2 and b3, and between b3 and b4).

It is also worth mentioning that the sup-
port threshold determines the minimal size
of blocks while the confidence threshold de-
termines the homogeneity of the cell values
within a block. Indeed, for a given value of
support σ, denoting by N the number of cells
of the cube, a block can be frequent only if
it contains at least σ ∗N cells. Moreover, for
a given value of confidence γ, a block of car-
dinality M is kept only if it contains at least
γ ∗M cells having the measure value m.

The algorithm is easily modified to build less
specific rules. For this purpose, at each step
the confidence of blocks is computed, and the
scan of dimensions is stopped for each block
having a sufficient confidence.

Figure 5: Output of Algorithm 1

As seen previously, blocks output by the
above algorithm may overlap. In our ap-
proach, overlappings are computed based on
the fact that two blocks overlap if and only if
all intervals defining these blocks have a non-
empty intersection. The proposed algorithm,
which is omitted here, associates each block
bj in B with the set Bj of all blocks b in B
such that b 6= bj and b overlaps bj .

In our example (Figure 5), the following sets
of blocks are obtained: B1 = ∅, B2 = {b3},
B3 = {b2, b4}, B4 = {b3}.

4 Rule Generation

In our model, one rule is associated with each
block. When a block bj = δ1,j × . . . × δk,j

does not overlap any other block (Bj = ∅),
the generated rule for bj is as follows:

If d1 ∈ δ1,j and . . . and dk ∈ δk,j Then mj

where mj is the associated measure value. For

Algorithm 1: Computation of L1(m)

L1(m)← ∅ ;
foreach dimension di i=1,. . . ,k do

intervals(m, i)← ∅ ; currentInterval ← [NIL, NIL] ;
foreach j = 1, . . . , |domi| do

compute supp(T (rep−1
i (j)), m) ;

if supp(T (rep−1
i (j)), m) ≤ σ then

if currentInterval = [α, NIL] then

/*close the current interval at position j − 1 and set the current interval to the empty
interval */ intervals(m, i)← intervals(m, i) ∪ {[rep−1

i (α), rep−1
i (j − 1)]} ;

currentInterval ← [NIL, NIL] ;

else

if currentInterval = [NIL, NIL] then

/*start a new current interval at position j */ currentInterval ← [j, NIL] ;

else

/* currentInterval = [α, NIL] */ ;
Let neighbors(j, m) be the number of cells in T (rep−1

i (j)) having at least µ neighbors
in T (rep−1

i (j − 1)) containing m ;
Let M be the number of cells in T (rep−1

i (j)) containing m ;
if (neighbors(j, m)/M) ≤ ν then

/*close the current interval at position j − 1 and start a new current interval at
position j */ intervals(m, i)← intervals(m, i) ∪ {[rep−1

i (α), rep−1
i (j − 1)]} ;

currentInterval ← [j, NIL] ;

L1(m)← L1(m) ∪ intervals(m, i) ;
B1(m)← {δ1 × . . .× δk | (∃i, δi ∈ intervals(i, m)) and (∀j 6= i, δj = ALL)}

Algorithm 2: Discovery of MS-blocks
Data : data cube C, σ: support threshold, γ: confidence threshold, ν: homogeneity threshold.

Result : set of blocks B associated with C
foreach measure value m from C do

Compute L1(m) ;
for l = 2 to k do

Bl(m)← ∅ ;
Generate from Li

l−1 candidates δi1 × . . .× δil
such that ∀p, p′ ∈ [1, l], ip 6= ip′ ;

Let Ll(m) be this set ;
Pruning: Delete from Ll(m) all candidates δi1 × . . .× δil

such that there exists p ∈ {1, . . . , l}
such that δi1 × . . .× δip−1

× δip+1
× . . .× δil

is not frequent. ;
foreach remaining candidate δi1 × . . .× δil

do

Let b be the block δ1 × . . .× δk where δp = δpj
if dimension dp has been treated and

δp = ALL otherwise.
if supp(b, m) ≤ σ then remove δi1 × . . .× δil

from Ll(m) else Bl(m)← Bl(m) ∪ {b}

Let B(m) be the set of all MS blocks b in
l=k
⋃

l=1

Bl(m) such that conf(b, m) > γ

B ←
⋃

m

B(m)

if the data cube must be visualized then

foreach b ∈ B do replace the values of all cells of b by the measure value associated to b.
/*Cells not belonging to a block are set to null. (Note that a cell may contain several values.)*/

instance, the rule built for the block b1 (Figure
1) is:

If CITY ∈ [C1, C1] and PRODUCT ∈ [P1, P2] Then 6

If an overlapping is detected, then a fuzzy rule
is built. Membership functions can be defined
in different manners. In our approach, we de-
fine the membership function based on the
number of overlapping blocks: for dimension
values where there is no overlapping, the de-
gree is 1, and if there are p overlapping blocks,
then the degree is 1

p
.

Algorithm 3 describes this computation.

For instance, consider block b3 = [P1, P3] ×
[C3, C4] with B3 = {b2, b4}. For dimen-
sion PRODUCT, the interval δPRODUCT,3 =
[P1, P3] is divided into two sub-intervals
[P1, P2] and [P3, P3]. Applying the same
method on dimension CITY , we obtain:

ΓPRODUCT,3(P) =







1 if P ∈ [P1, P2]
1
3 if P ∈ [P3, P3]
0 otherwise

ΓCITY,3(C) =







1
2 if C ∈ [C3, C3]
1
2 if C ∈ [C4, C4]
0 otherwise

Note that the intervals [C3, C3] and [C4, C4]
can be merged into the single one [C3, C4].
Figure 6 illustrates the membership functions
built for each block (or rule).

5

0

1/2

1

6

2

5

8

26 8 5

1 1/3 0 1 1/3 0 1 1/3 0

P1

P2

P3

P4

C1 C2 C3 C4 C5 C6 CITY

6

6

8

8 8

2

5

5

5

8 2

2

5

5

2

2 2

8

6

8 2

PRODUCT

0

1/2

1

1 0

Figure 6: Fuzzy Set Construction

5 Related Work

Research work on (fuzzy) image segmentation
may appear as related works [10]. Although

Algorithm 3: Computation of Fuzzy Sets
Data : n sets of blocks Bj

Result : Fuzzy Sets

foreach set of blocks Bj = {bj1 , . . . , bjl
} with

bjp
= δ1,jp

× . . .× δk,jp
and δr,jp

= [αr,jp
, βr,jp

]
(r = 1, . . . , k) do

foreach dimension di do

foreach q = 1, . . . , l do

αi,jq
← max(αi,j , αi,jq

) ;
βi,jq

← min(βi,j , βi,jq
) ;

Sort the set {αi,jq
| q =

1, . . . , l} ∪ {βi,jq
| q = 1, . . . , l} ;

let
Inti,j = {[α1

i,j , β
1
i,j], . . . , [α

r
i,j , β

r
i,j]}

be the set of all sub-intervals of
[αi,j , βi,j] ;
Associate membership function Γi,j

to [αi,j , βi,j] as defined by:
foreach sub-interval
[αs

i,j , β
s
i,j] ∈ Inti,j do

foreach value v from domi do

Γi,j(v) =
{

0 if v 6∈ [αs
i,j , β

s
i,j]

1
(1+ns) otherwise

ns : # blocks bjp
∈ Bj s.t.

[αs
i,j , β

s
i,j] ⊆ [αi,jp

, βi,jp
]

the goals are the same, it is not possible to ap-
ply such methods due to problems of scalabil-
ity and because also of the multidimensional
nature of data.

Segmentation methods (e.g. clustering) have
been proposed in the multidimensional con-
text [2, 6]. In [7], the authors study the gen-
eration of fuzzy partitions over numerical di-
mensions. However, these propositions are
not related to the measure value and thus
are different from our work where the mea-
sure value is the central criterion.

[9] aims at compressing data cubes. However
there is no consideration on cube representa-
tions and homogeneous blocks generation.

[3] proposes a method to divide cubes into re-
gions and to represent those regions. How-
ever, the authors aim at representing the
whole cube. They use statistical methods to
construct an approximation of the cube, while
we aim at discovering relevant rules as fast as
possible which may not cover the whole cube.

In [11], the authors propose the concept of
condensed data cube. However, the authors
aim at condensing the cube without loss of
information while we aim at displaying rele-
vant information to the user, which may be a
partial representation of data.

6 Conclusion

In this paper, an efficient method for summa-
rizing and visualizing multidimensional data
is proposed. In our approach, blocks of ho-
mogeneous data are built and the block over-
lapping is managed using fuzzy sets. Each
block is associated with one rule (fuzzy or
not). The set of these rules is meant to sum-
marize the cube. Further work include the
implementation of our method, the introduc-
tion of fuzziness within blocks in order to dis-
cover blocks of almost the same value instead
of homogeneous blocks, and the study of the
pre-treatments in order to organize cubes in
a relevant manner before mining blocks.

Acknowledgements

The authors acknowledge the French Embassy

in Malaysia for its support.

References

[1] R. Agrawal and T. Imielinski and A. Swami
(1993). Mining Association Rules Between
Sets of Items in Large Databases. In Proc.
of ACM SIGMOD pp 207-216.

[2] R. Agrawal, J. Gehrke, D. Gunopulos and P.
Raghavan (1998). Automatic Subspace Clus-
tering of High Dimensional Data for Data
Mining Applications. In Proc. ACM SIG-
MOD. pp 94-105.

[3] D. Barbara and M. Sullivan (1997). Quasi-
cubes: Exploiting approximation in multidi-
mensional database. In SIGMOD Rec., 26:12-
17.

[4] Y.W. Choong, D. Laurent and P. Marcel
(2003). Computing Appropriate Representa-
tion for Multidimensional Data. In DKE Int.
Journal. 45:181-203.

[5] E.F. Codd, S.B. Codd and C.T. Salley (1993).
Providing OLAP to user-analysts: An IT
mandate. In Technical Report. Arbor Soft-
ware Corporation.

[6] M. Ester, H.-P. Kriegel, J. Sander, M. Wim-
mer and X. Xu (1998). Incremental Cluster-
ing for Mining in a Data Warehousing Envi-
ronment. In Proc. VLDB. pp. 323-333.

[7] A. Gyenesei and J. Teuholsa (2003). Multidi-
mensional Partitioning of Attribute Ranges
for Mining Frequent Fuzzy Patterns. In Proc.
of FIP.

[8] B. Inmon (1992). Building the Data Ware-
house. John Wiley & Sons.

[9] L. Lakshmanan, J. Pei and J. Han (2002).
Quotient Cube: How to Summarize the Se-
mantics of a Data Cube. In Proc. of VLDB,
pages 778-789.

[10] S. Philipp-Foliguet (2000). Segmentation
d’images en régions floues. In Proc. LFA. pp.
189-196 (french).

[11] W. Wang, H. Lu, J. Feng and J. Xu Yu
(2002). Condensed Cube: An Effective Ap-
proach to Reducing Data Cube Size, In Proc.
ICDE.

