
HAL Id: lirmm-00108914
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108914v1

Submitted on 28 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Regimes Across Constrainedness Regions
Carla P. Gomes, Cèsar Fernández, Bart Selman, Christian Bessiere

To cite this version:
Carla P. Gomes, Cèsar Fernández, Bart Selman, Christian Bessiere. Statistical Regimes Across Con-
strainedness Regions. CP: Principles and Practice of Constraint Programming, Sep 2004, Toronto,
Canada. pp.32-46, �10.1007/978-3-540-30201-8_6�. �lirmm-00108914�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108914v1
https://hal.archives-ouvertes.fr

Statistical Regimes Across Constrainedness

Regions?

Carla P. Gomes1, Cèsar Fernández2, Bart Selman1, and Christian Bessière3

1 Dpt. of Computer Science, Cornell University, Ithaca, NY 14853, USA,
{carla,selman}@cs.cornell.edu,

2 Dpt. d’Informàtica, Universitat de Lleida, Jaume II, 69, E-25001 Lleida, Spain,
cesar@eup.udl.es,

3 LIRMM-CNRS, 161 rue Ada, 34392, Montpellier Cedex 5, France,
bessiere@lirmm.fr

Abstract. Much progress has been made in terms of boosting the ef-
fectiveness of backtrack style search methods. In addition, during the
last decade, a much better understanding of problem hardness, typi-
cal case complexity, and backtrack search behavior has been obtained.
One example of a recent insight into backtrack search concerns so-called
heavy-tailed behavior in randomized versions of backtrack search. Such
heavy-tails explain the large variations in runtime often observed in prac-

tice. However, heavy-tailed behavior does certainly not occur on all in-
stances. This has led to a need for a more precise characterization of when
heavy-tailedness does and when it does not occur in backtrack search.
In this paper, we provide such a characterization. We identify different
statistical regimes of the tail of the runtime distributions of random-
ized backtrack search methods and show how they are correlated with
the “sophistication” of the search procedure combined with the inherent

hardness of the instances. We also show that the runtime distribution
regime is highly correlated with the distribution of the depth of inconsis-
tent subtrees discovered during the search. In particular, we show that
an exponential distribution of the depth of inconsistent subtrees com-
bined with a search space that grows exponentially with the depth of
the inconsistent subtrees implies heavy-tailed behavior.

1 Introduction

Significant advances have been made in recent years in the design of search en-
gines for constraint satisfaction problems (CSP), including Boolean satisfiability
problems (SAT). For complete solvers, the basic underlying solution strategy is
backtrack search enhanced by a series of increasingly sophisticated techniques,
such as non-chronological backtracking, fast pruning and propagation methods,
nogood (or clause) learning, and more recently randomization and restarts. For

? This work was supported in part by the Intelligent Information Systems Institute,
Cornell University (AFOSR grant F49620-01-1-0076).

example, in areas such as planning and finite model-checking, we are now able to
solve large CSP’s with up to a million variables and several million constraints.

The study of problem structure of combinatorial search problems has also
provided tremendous insights in our understanding of the interplay between
structure, search algorithms, and more generally, typical case complexity. For
example, the work on phase transition phenomena in combinatorial search has
led to a better characterization of search cost, beyond the worst-case notion of
NP-completeness. While the notion of NP-completeness captures the computa-
tional cost of the very hardest possible instances of a given problem, in practice,
one may not encounter many instances that are quite that hard. In general, CSP
problems exhibit an “easy-hard-easy” pattern of search cost, depending on the
constrainedness of the problem [1]. The computational hardest instances appear
to lie at the phase transition region, the area in which instances change from
being almost all solvable to being almost all unsolvable. The discover of “excep-
tionally hard instances” reveals an interesting phenomenon : such instances seem
to defy the “easy-hard-easy” pattern, they occur in the under-constrained area,
but they seem to be considerably harder than other similar instances and even
harder than instances from the critically constrained area. This phenomenon was
first identified by Hogg and Williams in graph coloring and by Gent and Walsh
in satisfiability problems [2, 3]. However, it was shown later that such instances
are not inherently difficult; for example, by renaming the variables such instances
can often be easily solved [4, 5]. Therefore, the “hardness” of exceptionally hard
instances does not reside purely in the instances, but rather in the combination
of the instance with the details of the search method. Smith and Grant provide a
detailed analysis of the occurrence of exceptionally hard instances for backtrack
search, by considering a deterministic backtrack search procedure on ensembles
of instances with the same parameter setting (see e.g., [6]).

Recently, researchers have noted that for a proper understanding of search
behavior one has to study full runtime distributions [3, 7–10]. In our work we
have focused on the study of randomized backtrack search algorithms [8]. By
studying the runtime distribution produced by a randomized algorithm on a
single instance, we can analyze the variance caused solely by the algorithm, and
therefore separate the algorithmic variance from the variance between different
instances drawn from an underlying distributions. We have shown previously
that the runtime distributions of randomized backtrack search procedures can
exhibit extremely large variance, even when solving the same instance over and

over again. This work on the study of the runtime distributions of randomized
backtrack search algorithms further clarified that the source of extreme variance
observed in exceptional hard instances was not due to the inherent hardness of
the instances: A randomized version of a search procedure on such instances in
general solves the instance easily, even though it has a non-negligible probabil-
ity of taking very long runs to solve the instance, considerably longer than all
the other runs combined. Such extreme fluctuations in the runtime of backtrack
search algorithms are nicely captured by so-called heavy-tailed distributions,
distributions that are characterized by extremely long tails with some infinite

2

moments [3, 8]. The decay of the tails of heavy-tailed distributions follows a
power law — much slower than the decay of standard distributions, such as
the normal or the exponential distribution, that have tails that decay exponen-
tially. Further insights into the empirical evidence of heavy-tailed phenomena of
randomized backtrack search methods were provided by abstract models of back-
track search that show that, under certain conditions, such procedures provably
exhibit heavy-tailed behavior [11, 12].

Main Results So far, evidence for heavy-tailed behavior of randomized back-
track search procedures on concrete instance models has been largely empirical.
Moreover, it is clear that not all problem instances exhibit heavy-tailed behavior.
The goal of this work is to provide a better characterization of when heavy-tailed
behavior occurs, and when it does not, when using randomized backtrack search
methods. We study the empirical runtime distributions of randomized backtrack
search procedures across different constrainedness regions of random binary con-
straint satisfaction models.4 In order to obtain the most accurate empirical run-
time distributions, all our runs are performed without censorship (i.e., we run
our algorithms without a cutoff) over the largest possible size. Our study reveals
dramatically different statistical regimes for randomized backtrack search algo-
rithms across the different constrainedness regions of the CSP models. Figure 1
provides a preview of our results. The figure plots the runtime distributions (the
survival function, i.e., the probability of a run taking more than x backtracks)
of a basic randomized backtrack search algorithm (no look-ahead and no look-
back), using random variable and value selection, for different constrainedness
regions of one of our CSP models (model E; instances with 17 variables and
domain size 8). We observe two regions with dramatically different statistical
regimes of the runtime distribution.

In the first regime (the bottom two curves in Fig. 1, p ≤ 0.07), we see heavy-
tailed behavior. This means that the runtime distributions decay slowly. In the
log-log plot, we see linear behavior over several orders of magnitude. When we
increase the constrainedness of our model (higher p), we encounter a different
statistical regime in the runtime distributions, where the heavy-tails disappear.
In this region, the instances become inherently hard for the backtrack search
algorithm, all the runs become homogeneously long, and therefore the variance
of the backtrack search algorithm decreases and the tails of its survival function
decay rapidly (see top two curves in Fig. 1, with p = 0.19 and p = 0.24; tails
decay exponentially).

4 Hogg and Willimans (94) provided the first report of heavy-tailed behavior in the
context of backtrack search. They considered a deterministic backtrack search proce-
dure on different instances drawn from a given distribution. Our work is of different
nature as we study heavy-tailed behavior of the runtime distribution of a given ran-

domized backtrack search method on a particular problem instance, thereby isolating
the variance in runtime due to different runs of the algorithm.

3

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of backtracks

model E <17,8,p> BT Random

Non-Heavy-Tailed

Heavy-Tailed

Phase transition
p=0.25

p=0.05
p=0.07
p=0.19
p=0.24

Fig. 1. Heavy-tailed (linear behavior) and non-heavy-tailed regime in the runtime of
instances of model E 〈17, 8, p〉. CDF stands for Cummulative Density Function.

A common intuitive understanding of the extreme variability of backtrack
search is that on certain runs the search procedure may hit a very large incon-
sistent subtree that needs to be fully explored, causing “thrashing” behavior.

To confirm this intuition and in order to get further insights into the statisti-
cal behavior of our backtrack search method, we study the inconsistent sub-trees
discovered by the algorithm during the search (see Figure 2).

1st. inconsistent
subtree with

depth 3
2nd. inconsistent

subtree with
depth 4 3rd. inconsistent

subtree with
depth 2

. .

..

Fig. 2. Inconsistent subtrees in backtrack search.

The distribution of the depth of inconsistent trees is quite revealing: when
the distribution of the depth of the inconsistent trees decreases exponentially

4

(see Figure 3, bottom panel, p = 0.07) the runtime distribution of the backtrack
search method has a power law decay (see Figure 3, top panel, p = 0.07). In other
words, when the backtrack search heuristic has a good probability of finding rela-
tively shallow inconsistent subtrees, and this probability decreases exponentially
as the depth of the inconsistent subtrees increases, heavy-tailed behavior occurs.
Contrast this behavior with the case in which the survival function of the run-
time distribution of the backtrack search method is not heavy-tailed (see Figure
3, top panel, p = 0.24). In this case, the distribution of the depth of inconsistent
trees no longer decreases exponentially (see Figure 3, bottom panel, p = 0.24).

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of backtracks

model E <17,8,p> BT Random

p=0.07
p=0.24

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 2 4 6 8 10 12 14 16 18

P
D

F

IST Depth (N)

Model E <17,8,p> BT Random

p=0.07
p=0.24

Fig. 3. Example of a heavy-tailed instance (p = 0.07) and a non-heavy-tailed instance

(p = 0.24): (top) Survival function of runtime distribution, (bottom) probability density
function of depth of inconsistent subtrees encountered during search. The subtree depth
for p = 0.07 instance is exponentially distributed.

In essence, these results show that the distribution of inconsistent subprob-
lems encountered during backtrack search is highly correlated with the tail be-

5

havior of the runtime distribution. We provide a formal analysis that links the
exponential search tree depth distribution with heavy-tailed runtime profiles. As
we will see below, the predictions of our model closely match our empirical data.

2 Definitions, Problem Instances, and Search Methods

Constraint Networks A finite binary constraint network P = (X ,D, C) is
defined as a set of n variables X = {x1, . . . , xn}, a set of domains

D = {D(x1), . . . , D(xn)}, where D(xi) is the finite set of possible values for
variable xi, and a set C of binary constraints between pairs of variables. A
constraint Cij on the ordered set of variables (xi, xj) is a subset of the Cartesian
product D(xi)×D(xj) that specifies the allowed combinations of values for the
variables xi and xj . A solution of a constraint network is an instantiation of the
variables such that all the constraints are satisfied. The constraint satisfaction
problem (CSP) involves finding a solution for the constraint network or proving
that none exists. We used a direct CSP encoding and also a Boolean satisfiability
encoding (SAT) [13].

Random Problems The CSP research community has always made a great use
of randomly generated constraint satisfaction problems for comparing different
search techniques and studying their behavior. Several models for generating
these random problems have been proposed over the years. The oldest one,
which was the most commonly used until the middle 90’s, is model A. A network
generated by this model is characterized by four parameters 〈N, D, p1, p2〉, where
N is the number of variables, D the size of the domains, p1 the probability of
having a constraint between two variables, and p2, the probability that a pair
of values is forbidden in a constraint. Notice that the variance in the type of
problems generated with the same four parameters can be large, since the actual
number of constraints for two problems with the same parameters can vary
from one problem to another, and the actual number of forbidden tuples for
two constraints inside the same problem can also be different. Model B does not
have this variance. In model B, the four parameters are again N, D, p1, and p2,
where N is the number of variables, and D the size of the domains. But now,
p1 is the proportion of binary constraints that are in the network (i.e., there are
exactly c = bp1 ·N ·(N−1)/2c constraints), and p2 is the proportion of forbidden
tuples in a constraint (i.e., there are exactly t = bp2 · D2c forbidden tuples in
each constraint). Problem classes in this model are denoted by 〈N, D, c, t〉. In
[14] it was shown that model B (and model A as well) can be “flawed” when we
increase N . Indeed, when N goes to infinity, we will almost surely have a flawed

variable (that is, one variable which has all its values inconsistent with one of the
constraints involving it). Model E was proposed to overcome this weakness. It is
a three parameter model, 〈N, D, p〉, where N and D are the same as in the other
models, and bp · D2 · N · (N − 1)/2c forbidden pairs of values are selected with
repetition out of the D2 ·N · (N − 1)/2 possible pairs. There is a way of tackling

6

the problem of flawed variables in model B. In [15] it is shown that by putting
certain constraints on the relative values of N , D, p1, and p2, one can guarantee
that model B is sound and scalable, for a range of values of the parameters. In
our work, we only considered instances of model B that fall within such a range
of values.

Search Trees A search tree is composed of nodes and arcs. A node u represents
an ordered partial instantiation I(u) = (xi1 = vi1 , . . . , xik

= vik
). A search tree

is rooted at the particular node u0 with I(u0) = ∅. There is an arc from a node
u to a node uc if I(uc) = (I(u), x = v), x and v being a variable and one of its
values. The node uc is called a child of u and u a parent of uc. Every node u
in a tree T defines a subtree Tu that consists of all the nodes and arcs below u
in T . The depth of a subtree Tu is the length of the longest path from u to any
other node in Tu. An inconsistent subtree (IST) is a maximal subtree that does
not contain any node u such that I(u) is a solution. (See Fig. 2.) The maximum
depth of an inconsistent subtree is referred to the “inconsistent subtree depth”
(ISTD). We denote by T (A, P) the search tree of a backtrack search algorithm
A solving a particular problem P , which contains a node for each instantiation
visited by A until a solution is reached or inconsistency of P is proved. Once
assigned a partial instantiation I(u) = (xi1 = vi1 , . . . , xik

= vik
) for node u,

the algorithm will search for a partial instantiation of some of its children. In
the case that there exists no instantiation which does not violate the constraints,
algorithm A will take another value for variable xik

, and start again checking the
children of this new node. In this situation, it is said that a backtrack happens.
We use the number of wrong decisions or backtracks to measure the search cost

of a given algorithm [16].5

Algorithms In the following, we will use different search procedures, that differ
in the amount of propagation they perform, and in the order in which they gen-
erate instantiations. We used three levels of propagation: no propagation (back-
tracking, BT), removal of values directly inconsistent with the last instantiation
performed (forward-checking, FC), and arc consistency propagation (maintaining
arc consistency, MAC). We used three different heuristics for ordering variables:
random selection of the next variable to instantiate (random), variables pre-
ordered by decreasing degree in the constraint graph (deg), and selection of the
variable with smallest domain first, ties broken by decreasing degree (dom+deg)
and always random value selection. For the SAT encodings we used the Davis-
Putnam-Logemann-Loveland procedure. More specifically we used a simplified
version of Satz [17], without its standard heuristic, and with static variable or-
dering, injecting some randomness in the value selection heuristics.

5 In the rest of the paper sometimes we refer to the search cost as runtime. Even
though there are some discrepancies between runtime and the search cost measured
in number of wrong decisions or backtracks, such differences are not significant in
terms of the tail regime of the distributions.

7

Heavy-tailed or Pareto-like Distributions As we discussed earlier, the run-
time distributions of backtrack search methods are often characterized by very
long tails or heavy-tails (HT). These are distributions that have so-called Pareto
like decay of the tails. For a general Pareto distribution F (x), the probability
that a random variable is larger than a given value x, i.e., its survival function,
is:

1 − F (x) = P [X > x] ∼ Cx−α, x > 0,

where α > 0 and C > 0 are constants. I.e., we have power-law decay in the tail of
the distribution. These distributions have infinite variance when 1 < α < 2 and
infinite mean and variance when 0 < α ≤ 1. The log-log plot of the tail of the
survival function (1 − F (x)) of a Pareto-like distribution shows linear behavior
with slope determined by α.

3 Empirical Results

In the previous section, we defined our models and algorithms, as well as the
concepts that are central in our study: the runtime distributions of our backtrack
search methods and the associated distributions of the depth of the inconsistent
subtrees found by the backtrack method. As we discussed in the introduction,
our key findings are: (1) we observe different regimes in the behavior of these
distributions as we move along different instance constrainedness regions; (2)
when the depth of the inconsistent subtrees encountered during the search by the
backtrack search method follows an exponential distribution, the corresponding
backtrack search method search exhibits heavy-tailed behavior. In this section,
we provide the empirical data upon which these findings are based.

We present results for the survival functions of the search cost (number of
wrong decisions or number of backtracks) of our backtrack search algorithms.
All the plots were computed with at least 10,000 independent executions of a
randomized backtrack search procedure on a given (uniquely generated) problem
satisfiable instance. For each parameter setting we considered over 20 instances.
In order to obtain more accurate empirical runtime distributions, all our runs
were performed without censorship, i.e., we run our algorithms without any
cutoff.6 We also instrumented the code to obtain the information for the corre-
sponding inconsistency sub-tree depth (ISTD) distributions.

Figure 4 (top) provides a detailed view of the heavy-tailed and non-heavy-
tailed regions, as well as the progression from one region to the other. The figure
displays the survival function (log-log scale) for running (pure) backtrack search
with random variable and value selection on instances of Model E with 17 vari-
ables and a domain size of 8 for values of p (the constrainedness of the instances)
ranging from 0.05 ≤ p ≤ 0.24. We clearly identify the heavy-tailed region in

6 For our data analysis, we needed purely uncensored data. We could therefore only
consider relatively small problem instances. The results appear to generalize to larger
instances.

8

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model E <17,8,p> BT Random

p=0.05

p=0.24

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14 16

P
D

F

IST Depth (N)

Model E <17,8,p> BT Random

p=0.05

p=0.24

Fig. 4. The progression from heavy-tailed regime to non-heavy-tailed regime: (top)
survival function of runtime distribution; (bottom) probability density function of the

corresponding inconsistent sub-tree depth (ISTD) distribution.

which the log-log plot of the survival functions exhibits linear behavior, while in
the non-heavy-tailed region the drop of the survival function is much faster than
linear. The transition between regimes occurs around a constrainedness level of
p = 0.09.

Figure 4 (bottom) depicts the probability density function of the correspond-
ing inconsistent sub-tree depth (ISTD) distributions. The figure shows that while
the ISTD distributions that correspond to the heavy-tailed region have an expo-
nential behavior (below we show a good regression fit to the exponential distri-
bution in this region), the ISTD distributions that correspond to the non-heavy-
tailed region are quite different from the exponential distribution.

For all the backtrack search variants that we considered on instances of model
E, including the DPLL procedure, we observed a pattern similar to that of
figure 4. (See bottom panel of figure 6 for DPLL data.)

9

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of bactracks

model B <20,8,60,t> BT Random

t=7
t=20

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of backtracks

model B <50,10,167,t> MAC Random

t=33
t=45

Fig. 5. Heavy-tailed and non-heavy-tailed regimes for instances of model B: (top)
〈20, 8, 60, t〉, using BT-random, (bottom) 〈50, 10, 167, t〉, using MAC-random.

We also observed a similar behavior — a transition from heavy-tailed region
to non-heavy-tailed region with increased constrainedness — for instances of
Model B, for different problem sizes and different search strategies. Figure 5
(top) shows the survival functions of runtime distributions of instances of model
B 〈20, 8, 60, t〉, for different levels of constrainedness, solved with BT-random.
Fig.5 (bottom) shows the survival functions of runtime distributions of instances
of model B 〈50, 10, 167, t〉, for different levels of constrainedness, solved with
MAC-random, a considerably more sophisticated search procedure. The top panel
of Fig.6 gives the DPLL data. Again, the two different statistical regimes of the
runtime distributions are quite clear.

To summarize our findings:

– For both models (B and E), for CSP and SAT encodings, for each backtrack
search strategies, we clearly observe two different statistical regimes — a
heavy-tailed and a non-heavy-tailed regime.

10

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

model B <20,8,60,t> DP random

t=11
t=20

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

model E <25,10,p> DP random

p=0.07
p=0.12

Fig. 6. Heavy-tailed and non-heavy-tailed regimes for instances of (top) model B
〈20, 8, 60, t〉, using DP-random (DPLL procedure with static variable ordering and random

value selection) and (bottom) model E 〈25, 10, p〉 using DP-random.

– As constrainedness increases (p increases), we move from the heavy-tailed
region to the non-heavy-tailed region.

– The transition point from heavy-tailed to non-heavy-tailed regime is depen-
dent on the particular search procedure adopted. As a general observation,
we note that as the efficiency (and, in general, propagation strength) of the
search method increases, the extension of the heavy-tailed region increases
and therefore the heavy-tailed threshold gets closer to the phase transition.

– Exponentially distributed inconsistent sub-tree depth (ISTD) combined with
exponential growth of the search space as the tree depth increases implies
heavy-tailed runtime distributions. We observe that as the ISTD distribu-
tions move away from the exponential distribution, the runtime distributions
become non-heavy-tailed.

These results suggest that the existence of heavy-tailed behavior in the cost
distributions depends on the efficiency of the search procedure as well as on the

11

level of constrainedness of the problem. Increasing the algorithm efficiency tends
to shift the heavy-tail threshold closer to the phase transition.

For both models, B and E, and for the different search strategies, we clearly
observed that when the ISTD follows an exponential distribution, the corre-
sponding distribution is heavy-tailed. We refer to the forthcoming long version
of this paper for the probability density functions of the corresponding incon-
sistent sub-tree depth distributions (ISTD) of model B, and for data on the
regression fits (see also below) for all curves.

4 Validation

Let X be the search cost of a given backtrack search procedure, Pistd[N] be
the probability of finding an inconsistent subtree of depth N during search, and
P [X > x|N] the probability of having a inconsistent search tree of size larger
than x, given a tree of depth N . Assuming that the inconsistent search tree
depth follows an exponential distribution in the tail and the search cost inside
an inconsistent tree grows exponentially, then the cost distribution of a search
method is lower bounded by a Pareto distribution. More formally:7

Theoretical Model

Assumptions:

– Pistd[N] is exponentially distributed in the tail, i.e.,

Pistd[N] = B1e
−B2N , N > n0 (1)

where B1, B2, and n0 are constants.
– P [X > x|N] is modeled as a complementary Heavyside function, 1 − H(x − kN),

where k is a constant and

H(x − a) =

{

0, x < a
1, x ≥ a

Then, P [X > x] is Pareto-like distributed

P [X > x] ≈ βx−α

for x > kn0 , where α and β are constants.

7 See forthcoming extended version of the paper for further details. A similar analysis
goes through using the geometric distribution, the discrete analogue of the exponen-
tial.

12

Derivation of result:

Note that P [X > x] is lower bounded as follows

P [X > x] ≥

∫

∞

N=0

Pistd[N] P [X > x|N]dN (2)

This is a lower bound since we consider only one inconsistent tree contributing
to the search cost, when in general there are more inconsistent trees. Given the
assumptions above, Eq. (2) results

P [X > x] ≥

∫

∞

N=0

Pistd[N] (1 − H(x − kN))dN =

∫

∞

N=
ln x

ln k

Pistd[N]dN

Since x > kn0 , we can use Eq.(1) for Pistd[N], so Eq.(3) results in:

P [X > x] ≥

∫

∞

N=
ln x

ln k

B1e
−B2NdN =

B1

B2

e−B2
ln x

ln k = βx−α; α =
B2

ln k
; β =

B1

B2

In order to validate this model empirically we consider an instance of model
B 〈20, 8, 60, 7〉, running BT-random, the same instance plotted in Fig. 5(a), for
which heavy-tailed behavior was observed (t = 7). The plots in Fig. 7 provide the
regression data and fitted curves for the parameters B1, B2, and k, using n0 = 1.
The good quality of the linear regression fit suggests that our assumptions are
very reasonable. Based on the estimated values for k, B1, and B2, we then
compare the lower bound predicted using the formal analysis presented above
with the empirical data. As we can see from Fig. 7, the theoretical model provides
a good (tight) lower bound for the empirical data.

5 Conclusions and Future Work

We have studied the runtime distributions of complete backtrack search meth-
ods on instances of well-known random CSP binary models. Our results reveal
different regimes in the runtime distributions of the backtrack search procedures
and corresponding distributions of the depth of the inconsistent sub-trees. We
see a changeover from heavy-tailed behavior to non-heavy-tailed behavior when
we increase the constrainedness of the problem instances. The exact point of
changeover depends on the sophistication of the search procedure, with more
sophisticated solvers exhibiting a wider range of heavy-tailed behavior. In the
non-heavy-tailed region, the instances become harder and harder for the back-
track search algorithm, and the runs become nearly homogeneously long. We
have also shown that that there is a clear correlation between the the distribu-
tions of the depth of the inconsistent sub-trees encountered by the backtrack
search method and the heavy-tailedness of the runtime distributions, with expo-
nentially distributed sub-tree depths leading to heavy-tailed search. To further
validate our findings, we compared our theoretical model, which models expo-
nentially distributed subtrees in the search space, with our empirical data: the

13

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2 4 6 8 10 12

P
is

td
[N

]

N

Data
Regression

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 2 4 6 8 10 12

IS
T

 c
os

t[N
]

N

Data
Regression, k=4.832

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08 1e+10

P
[X

>
x]

x

Data
Model

Fig. 7. Regressions for the estimation of B1=0.015, B2=0.408 (top plot; quality of
fit R2 = 0.88), and k = 4.832 (middle plot; R2 = 0.98) and comparison of lower

bound based on the theoretical model with empirical data (bottom plot). We have
α = B2/ ln(k) = 0.26 from our model; α = 0.27 directly from runtime data. Model B
〈20, 8, 60, t〉, using BT-random.

14

theoretical model provides a good (tight) lower bound for the empirical data.
Our findings about the distribution of inconsistent subtrees in backtrack search
give, in effect, information about the inconsistent subproblems that are created
during the search. We believe that these results can be exploited in the design
of more efficient restart strategies and backtrack solvers.

Acknowledgments We would like to thank the anonymous reviewers for their
comments and suggestions.

References

1. Hogg, T., Huberman, B., Williams, C.: Phase Transitions and Search Problems.

Artificial Intelligence 81 (1-2) (1996) 1–15
2. Gent, I., Walsh, T.: Easy Problems are Sometimes Hard. Artificial Intelligence 70

(1994) 335–345
3. Hogg, T., Williams, C.: The Hardest Constraint Problems: a Double Phase Tran-

sition. Artificial Intelligence 69 (1994) 359–377
4. Smith, B., Grant, S.: Sparse Constraint Graphs and Exceptionally Hard Problems.

In: Proceedings IJCAI’95, Montral, Canada (1995) 646–651

5. Selman, B., Kirkpatrick, S.: Finite-Size Scaling of the Computational Cost of
Systematic Search. Artificial Intelligence 81 (1996) 273–295

6. Smith, B., Grant, S.: Modelling Exceptionally Hard Constraint Satisfaction Prob-
lems. In: Proceedings CP’97, Linz, Austria (1997) 182–195

7. Frost, D., Rish, I., Vila, L.: Summarizing CSP Hardness with Continuous Proba-
bility Distributions. In: AAAI-97, Providence RI (1997) 327–333

8. Gomes, C., Selman, B., Crato, N.: Heavy-tailed Distributions in Combinatorial
Search. In: Proceedings CP’97, Linz, Austria (1997) 121–135

9. Hoos, H. PhD Thesis,TU Darmstadt (1998)
10. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
11. Chen, H., Gomes, C., Selman, B.: Formal Models of Heavy-tailed Behavior in

Combinatorial Search. In: Proceedings CP’01, Paphos, Cyprus (2001) 408–421
12. Williams, R., Gomes, C., Selman, B.: Backdoors to Typical Case Complexity.

(2003)
13. Walsh, T.: SAT vs CSP. In: Proceedings CP’00, Singapore (2000) 441–456
14. Achlioptas, D., Kirousis, L., Kranakis, E., Krizanc, D., Molloy, M., Stamatiou, Y.:

Random Constraint Satisfaction: a More Accurate Picture. In: Proceedings CP’97,
Linz, Austria (1997) 107–120

15. Xu, K., Li, W.: Exact Phase Transition in Random Constraint Satisfaction Prob-

lems. JAIR 12 (2000) 93–103
16. Bessiere, C., Zanuttini, B., Fernandez, C.: Measuring Search Trees. In Hnich,

B., ed.: Proceedings ECAI’04 Workshop on Modelling and Solving Problems with
Constraints, Valencia, Spain (2004)

17. Li, C., Ambulagan: Heuristics Based on Unit Propagation for Satisfiability Prob-
lems. In: Proceedings IJCAI’97, Nagoya, Japan (1997) 366–371

15

