
HAL Id: lirmm-00108916
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108916

Submitted on 12 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Tractability of Global Constraints
Christian Bessiere, Emmanuel Hébrard, Brahim Hnich, Toby Walsh

To cite this version:
Christian Bessiere, Emmanuel Hébrard, Brahim Hnich, Toby Walsh. The Tractability of Global
Constraints. CP: Principles and Practice of Constraint Programming, Sep 2004, Toronto, Canada.
pp.716-720, �10.1007/978-3-540-30201-8_53�. �lirmm-00108916�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108916
https://hal.archives-ouvertes.fr

The Tractability of Global Constraints

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich2, and Toby Walsh2

1 LIRMM-CNRS, Montpelier, France.
bessiere@lirmm.fr

2 Cork Constraint Computation Center, University College Cork, Ireland.
{e.hebrard, b.hnich, tw}@4c.ucc.ie

Abstract. Constraint propagation is one of the techniques central to the suc-
cess of constraint programming. Fast algorithms are used to prune the search
space either before or during backtracking search. Propagating global constraints
is intractable in general. In this paper, we characterize a number of important
questions related to constraint propagation. For example, we consider the two
questions: “Is this problem generalized arc-consistent?” and “What are the max-
imal generalized arc-consistent domains?”. We identify dependencies between
the tractability and intractability of these questions for finite domain variables.
Finally, we prove intractability for a range of global constraints.

1 Introduction

It is well known that constraint propagation on binary (or bounded arity) constraints is
polynomial. However, constraint toolkits support an increasing number of non-binary
or global constraints. Global constraints permit users to model problems compactly and
solvers to prune the search space efficiently and effectively. In many problems, the ar-
ity of such global constraints can grow with the problem size. Such global constraints
may therefore exhibit complexities far beyond the quadratic propagation cost of binary
constraints. Indeed, it is easy to see that reasoning with global constraints is intractable
in general. In this paper, we characterize the different reasoning tasks related to con-
straint propagation. For example, does this value have support? As a second example,
what are the maximal generalized arc-consistent domains? We identify dependencies
between the tractability and intractability of these different questions. Afterwards, we
study a range of existing and new global constraints We show that they are NP-hard
to propagate. Thus, we expect that any decomposition will hinder propagation (unless
P=NP).

2 Theoretical Background

A constraint satisfaction problem (CSP) involves a set of variables, each with a do-
main of values, and a set of constraints that specify allowed combinations of values for
subsets of variables. We will denote variables with upper case letters and values with
lower case. We assume a constraint C is given intensionally by a function of the form
fC : D(X1) × . . . × D(Xn) 7→ {True, False} where D(Xi) are the domains of the

variables in the scope var(C) = (X1, . . . , Xn) of the constraint C. (We say that D is
a domain on var(C).) We only consider constraints C for which fC is computable in
polynomial time.

Constraint toolkits usually contain a library of predefined constraint types with a
particular semantics that can be applied to sets of variables with various arities and
domains. A constraint is only an instance of a constraint type on given variables and
domains. For instance, alldifferent is a constraint type. alldifferent(X1, .., X3) with
D(X1) = D(X2) = {1, 2}, D(X3) = {1, 2, 3} is an instance of constraint of the
type alldifferent.

A solution to a CSP is an assignment of values to the variables satisfying the con-
straints. To find such solutions, we often use tree search algorithms that construct par-
tial assignments and enforce a local consistency to prune the search space. One of the
oldest and most commonly used local consistencies is generalized arc consistency. A
constraint C is generalized arc consistent (GAC) iff, when a variable in the scope of C

is assigned any value, there exists an assignment to the other variables in C such that
C is satisfied [5]. This satisfying assignment is called support for the value. In general,
applying GAC can remove any value anywhere in the domain of a variable. This is why
GAC is usually applied to constraints that involve finite domain variables. In the follow-
ing, we will consider finite domain integer variables in which every value in the domain
is given extensionally.

3 Complexity of Generalized Arc Consistency

We characterize five different problems related to genaralized arc consistency reason-
ing. These problems can be adapted to any other local consistency as long as it rules
out values in domains (e.g., bounds consistency, singleton arc consistency, etc.) and not
non-unary tuples of values (e.g., path consistency, relational-k-consistency, etc.)

In the following, PROBLEM(C) represents the class of problems defined by PROB-
LEM on constraints of the type C. PROBLEM(C) will sometimes be written PROBLEM

when no confusion is possible. Note also that we use the notation PROBLEM[data] to
refer to the instance of PROBLEM(C) with the input ’data’. U denotes the set of all
constraint types.

Table 1 contains the five problems. The first problem we consider is GACSUPPORT.
It is at the core of all the generic arc consistency algorithms. The second problem,
ISITGAC, is not directly related with operations used in basic propagation algorithms.
It is largely introduced for academic purposes. The third question, NOGACWIPEOUT,
can be used to decide if we do not need to backtrack at a given node in the search
tree. (Note that D′ ⊆ D stands for: ∀Xi ∈ var(C), D′(Xi) ⊆ D(Xi).) An algorithm
like GAC-Schema [4] removes values from the initial domains of variables till we have
the maximal generalized arc consistent subdomains. That is, the set of subdomains that
are GAC and any larger set of subdomains are not GAC. MAXGAC characterizes this
“maximality” problem. We finally consider GACDOMAIN, the non-decision problem
of returning the domains that a GAC algorithm computes.

In the following, we describe the relationships between the tractability and in-
tractability of the different problems defined above.

2

Table 1. The five problems related to genaralized arc consistency

Problem Instance Question/Output
GACSUPPORT(C) C ∈ C, D on var(C), X ∈

var(C), and v ∈ D(X)
Does value v for X have a support on C in
D?

ISITGAC(C) C ∈ C, D on var(C) Does GACSUPPORT[C, D, X, v] answer
“yes” for each variable X ∈ var(C) and
each value v ∈ D(X)?

NOGACWIPEOUT(C) C ∈ C, D on var(C) Is there any non empty D′ ⊆ D on which
ISITGAC[C, D′] answers “yes”?

MAXGAC(C) C ∈ C, D on var(C), and
D ⊆ D0

Is it the case that ISITGAC[C, D] answers
“yes” and 6 ∃D′, D ⊂ D′ ⊆ D0, on which
ISITGAC[C, D′] answers “yes”?

GACDOMAIN(C) C ∈ C, D0 on var(C) The domain D such that
MAXGAC[C, D0, D] answers “yes”

3.1 Tractable cases

The five problems defined above are not independent. Knowledge about the tractability
of one can give information on the tractability of others. We identify here the depen-
dencies between the tractabilities of the different questions.

Theorem 1. Given a constraint type C,

1. GACSUPPORT ∈ P iff NOGACWIPEOUT ∈ P iff GACDOMAIN ∈ P

2. {GACSUPPORT, NOGACWIPEOUT, GACDOMAIN} ∈ P ⇒ ISITGAC ∈ P

3. {GACSUPPORT, NOGACWIPEOUT, GACDOMAIN} ∈ P ⇒ MAXGAC ∈ P

4. MAXGAC ∈ P ⇒ ISITGAC ∈ P

Proof. (1) If GACSUPPORT is in P, then we can answer NOGACWIPEOUT just by
checking that at least one value in the domain of a variable X in var(C) has support.
Indeed, all the values in the support themselves have support.

If NOGACWIPEOUT is in P, we can check that (X, v) has support just by calling
NOGACWIPEOUT with only v in the domain of X .

It is trivial that if GACSUPPORT is in P, using a generic GAC algorithm that calls
GACSUPPORT a polynomial number of times, we will have the output of GACDO-
MAIN in polynomial time.

By calling GACDOMAIN with only (X, v) in the domain of X , the obtained do-
main will be non empty iff (X, v) has a support, then answering GACSUPPORT in
polynomial time if GACDOMAIN was in P.

(2) Trivial.
(3) Trivial.
(4) If MAXGAC is in P, it is sufficient to call it with D both as the initial and current

domain to answer ISITGAC on D. ut

3

GACDomain

NoGACWipeOutGACSupport

maxGAC

IsItGAC

if tail in P then head in P

GACDomain

GACSupport NoGACWipeOut

maxGAC

IsItGAC

if tail is NP−hard then head is NP−hard

Fig. 1. Summary of the dependencies between problems

3.2 Intractable cases

We can identify similar dependencies between these questions when they are intractable.
Interestingly, we have only been able to identify the inverse relationships between MAX-
GAC, ISITGAC and the other three problems. It is a challenging open question to prove
either that one of these results which is just an implication reverses or that it does not
reverse in general.

Theorem 2. Given a constraint type C,

1. GACSUPPORT is NP-complete iff NOGACWIPEOUT is NP-complete iff GAC-
DOMAIN is NP-hard

2. ISITGAC is NP-complete ⇒ GACSUPPORT, NOGACWIPEOUT, GACDOMAIN

are NP-hard
3. MAXGAC is NP-hard ⇒ GACSUPPORT, NOGACWIPEOUT, GACDOMAIN are

NP-hard
4. ISITGAC is NP-complete ⇒ MAXGAC is NP-hard

Proof. (1) GACSUPPORT(C) can be transformed in NOGACWIPEOUT(C): Given C ∈
C, GACSUPPORT[C, D, X, v] is solved by calling NOGACWIPEOUT[C, D|D(X)={v}].

NOGACWIPEOUT[C, D] can be reduced to GACSUPPORT by calling GACSUP-
PORT[C, D, X, v] for each value v in D(X) for one of the X in var(C). GAC leads to
a wipe out iff none of these values has a support.

GACSUPPORT(C) can be reduced to GACDOMAIN(C) since GACSUPPORT[C, D,

X, v] answers “yes” iff GACDOMAIN[C, D| D(X)={v}] doesn’t return empty domain.
GACDOMAIN[C, D] can be reduced to GACSUPPORT by performing a polynomial

number of calls to GACSUPPORT[C, D, X, v], one for each v ∈ D(X), X ∈ var(C).
When the answer is “no” the value v is removed from D(X), otherwise it is kept. The
domain obtained at the end of this process represents the output of GACDOMAIN.

(2) ISITGAC[C, D] can be reduced to GACSUPPORT by performing a polynomial
number of calls to GACSUPPORT[C, D, X, v], one for each v ∈ D(X), X ∈ var(C).
If one of them answers “no” ISITGAC answers “no”, otherwise it answers “yes”.

(3) MAXGAC[C, D0, D] can be reduced to GACSUPPORT. We perform a poly-
nomial number of calls to GACSUPPORT[C, D0, X, v], one for each v ∈ D0(X),
X ∈ var(C). When the answer is “yes” the value v is added to a (initially empty)
set D′(X). MAXGAC answers “yes” if and only if the domain D ′ obtained at the end
of the process is equal to D.

(4) ISITGAC[C, D] can be transformed in MAXGAC[C, D, D]. ut

4

Table 2. A list of counting constraints that are intractable to propagate with GAC.

Name Definition
nvalue(N, [X1, . . . , Xn]) N = {Xi | 1 ≤ i ≤ n}

egcc([X1, . . . , Xn], [O1, . . . , Om]) ∀j, Oj =
∑

i
|Xi = j|

rgcc([[X1, . . . , Xn]], [o1, . . . , om]) ∀j, oj =
∑

i
|Xi = j|

common(N, M, [X1, . . . , Xn], [Y1, . . . , Ym]) N = {i | Xi = Yj} and M = {j | Xi = Yj}

cardpath(N, [X1, . . . , Xm], C) N =
∑m−k+1

i=1
|C(Xi, . . . , Xi+k−1)|

4 Examples of intractable constraints

In the long version of this paper [3], we give a number of constraints for which the
complexity of GAC was not known. We use the basic tools of computational complexity
to show their tractability or intractability. Table 2 gives some of the intractability results
we obtained for counting constraints on integer variables. Proofs are in [3].

The nvalue constraint was proposed in [6]. The extended global cardinality con-
straint, egcc, allows the Oj to be variables and not just fixed intervals as in [8]. egcc
has been proved intractable in [7]. The rgcc constraint is a simple gcc in which repe-
titions of variables are allowed in the sequence [[X1, . . . , Xn]]. The common constraint
was introduced in [1]. The cardpath constraint [2], ensures that when we slide C down
the sequence X1, . . . , Xm it holds N times. cardpath is intractable even if enforcing
GAC on C is polynomial and the sequence of variables [X1, . . . , Xm] does not contain
any repetition.

Aknowledgements The last three authors are supported by Science Foundation Ireland and
an ILOG software grant. We thank Marie-Christine Lagasquie for some advice on reducibility
notions.

References

1. N. Beldiceanu. Global constraints as graph properties on a structured network of elementary
constraints of the same type. SICS Technical Report T2000/01.

2. N. Beldiceanu and M. Carlsson. Revisiting the cardinality operator and introducing
cardinality-path constraint family. In Proceedings ICLP’01, pages 59–73, 2001.

3. C. Bessiere, E. Hebrard, , B. Hnich, and T. Walsh. The tractability of global constraints.
Technical Report APES-83-2004, APES Research Group, May 2004.

4. C. Bessiere and J.C. Régin. Arc consistency for general constraint networks: Preliminary
results. In Proceedings IJCAI’97, pages 398–404, 1997.

5. R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings ECAI’88, pages 651–
656, 1988.

6. F. Pachet and P. Roy. Automatic generation of music programs. In Proceedings CP’99, pages
331–345, 1999.

7. C. Quimper. Enforcing domain consistency on the extended global cardinality constraint is
NP-hard. TR CS-2003-39, School of Computer Science, University of Waterloo, 2003.

8. J-C. Régin. Generalized arc consistency for global cardinality constraints. In Proceedings
AAAI’96, pages 209–215, 1996.

5

