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Dynamically Reconfigurable Architectures for Digital 
Signal Processing Applications 
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161 rue Ada, 34392 Montpellier Cedex 5, France 
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Abstract: Tomorrow's pocket devices will all have Internet-based communication 
capabilities. The advent of mobile phones, PDAs (Pocket Data Assistant) and 
pocketPC's joint to the newcomer's third generation wireless networks such as 
UMTS will soon allow everyone to be connected, everywhere. In this 
competitive marketplace where many similar products compete for the 
consumer attention, performances level is a very important 
criterion.Videoconferencing, digital music broadcast, speech recognition are a 
few example of the new features allowed by the new third generation 
networks. This kind of multimedia, data oriented content requires highly 
efficient architectures; and nowadays mobile system-on-chip solution will no 
longer be able to deal with the critical constraints like area, power, and data 
computing efficiency. In this paper we will propose a new dynamically 
reconfigurable network, dedicated to data oriented applications such as the one 
targeted on third generation networks. Principles, realisations and comparative 
results will be exposed for some classical applications, targeted on different 
architectures. 

Key words: Reconfigurable computing, Data flow, Digital Signal Processing 

1. INTRODUCTION 

Nowadays pocket devices are mostly based on a SoC (System on Chip) 
approach (Figure 1). On the same silicon die are grouped heterogeneous IP 
(Intellectual Property) modules. 
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2002
M. Robert et al. (eds.), SOC Design Methodologies
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1.1 1.2 1.3 
Figure 1. The three main SoC approaches 

There are different ways to face these new problems: 

- The easiest, and actual way to deal with this increasing computing 
requirements is naturally to use a more powerful DSP/p.P (figure 1.1) 
than the ones used today; but it will probably not be feasible for the most 
demanding applications, as the resulting processor will grow until the 
size of a Pentium (such as the ones which take place in the most 
powerful PDA or pocket PCs), with the corresponding area, cost and 
consumption problems. 

- Another way is to try to identify the future application field, and use a 
dedicated core to compute the common parts of the corresponding 
algorithms (Figure 1.2). For example, if JPEG and MPEG based 
applications are targeted, we will make the choice of implementing a 
wired IDCT (Inverse Discrete Cosine Transform) core, which is known 
to be the common most time consuming part of both algorithms[7][8] . 
An interesting, but restrictive solution as the application field is thus not 
extensible. 

- Yet another way is the reconfigurable computing [2][3][10]. For 
example, integrate a FPGA core[1][3], where, depending on the target 
application different algorithm/architecture solutions could be 
synthesized (figure 1.3). Here, if we target JPEG applications, we will 
choose to synthesize the IDCT core in the FPGA, and also an application 
dependant part of the algorithm, like Huffman coding, or quantization. 
But in the other way if we target MPEG[9] applications, we will still 
make the choice of a wired IDCT, but this time we will also select the 
motion estimation[6], which is one of the most demanding part of the 
MPEG. 
This kind of approach seems to be quite interesting; we can thus imagine, 

depending on a given application, a video streaming one for example, that 
the mobile could directly connect to the vendor's site to download the 
corresponding applet, which is nothing else than the configuration file of the 
considered reconfigurable network. 
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2. RECONFIGURABLE SOLUTIONS 

A closer look to the kind of tomorrow's mobile applications shows a very 
data oriented, data intensive trend: the multimedia content needs a very high 
number of arithmetic operations; which would naturally imply to synthesize 
numbers of arithmetic operators in case of using fme grained reconfigurable 
logic (FPGA for example). 

Arithmetic operators synthesis is known to be very area costly on fme 
grained reconfigurable networks. Due to the highly combinational character of 
adders and multipliers, the resulting functional frequencies are also often very 
low making FPGA-like architectures bad candidates for arithmetic level data 
computing. 

Coarse grained reconfigurable architectures[2] [3] featuring hardwired 
arithmetic operators are much more adapted to dataflow oriented 
computations. 

3. SYSTEM OVERVIEW 

Our architecture follows the classical bi-Iayer FPGA principles. Here are 
the main characteristics: 
- The operative layer is no longer CLB (Configurable Logic Block) based, 

but use a coarse-grained granularity component: The Dnode (Data node). 
It is a datapath component, with an ALU and a few registers, as shown in 
figure 3. This component is configured by a microinstruction code. 
The configuration layer follows the same principle as FPGAs, it's a RAM 
which contains the configuration of all the component of the operative 
layer. 
We also use a custom RISC core [5] with a dedicated instruction set; its 
task is to manage dynamically the configuration of the network and also to 
control the data transfers between the reconfigurable core and the host 
CPU. 
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CONFIG 

ContIg 
Controller 

MANAGEMENTCOOE 

Figure 2. System Overview 

Dnode 

This architecture is thus not intended to be a stand-alone solution, rather 
an IP core for dataflow oriented computing, which would take place in a SoC. 
Figure 2 shows schematically our system in a SoC context. The IlP can thus 
confide the most demanding part of a given application to our IP core. So it 
downloads to the RISC memory the corresponding configuration program 
(which manages the dynamical reconfiguration). 

From a functional point of view: 
- The host processor first sends the management code to the configuration 

controller memory (the custom RISe has its own program memory). This 
is a object code, ready to be executed, and specially designed to manage 
dynamically the configuration of the network (the content of the RAM 
thus changes from one cycle to another), as to say, the functionality of the 
operating layer. Each clock cycle, the configuration controller is able to 
change up to the entire content of the RAM thanks to its dedicated 
instruction set. 

- Once done, our core is ready to compute. The host processor sends the 
data to the operating layer via a specific scheme and then get back the 
computed data. As the configuration is dynamically managed, it is 
possible to multiplex the sent data, and to compute them by several 
sequential (hardware multiplexing) or concurrent (static) synthesised 
datapaths. 

4. OPERATING LAYER ARCHITECTURE 

In this section we will describe more precisely the operating layer 
architecture. 
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4.1 4.1 Dnode architecture 

It essentially consists in an ALU-Multiplier, able to make all the classical 
arithmetic and logic operations : addition, multiplication, subtraction, roll, 
shift and so on. This optimised architecture is able, in the same clock cycle, 
to make all possible operations, even between two different registers. Its 
corresponding microinstruction code, the configuration code, comes from a 
memory location in the configuration layer. As previously said, this code 
evolves during the computing phase, the functionality can thus be changed 
from one clock cycle to another, from an addition to a multiplication, load to 
register, etc. 

Each Dnode has in fact two execution modes : 
- Global mode (normal mode), already described : the Dnode executes the 

microinstruction code which comes from the configuration layer, managed 
by the Rise configuration controller. 
Local mode : The stand-alone mode : Each Dnode has 7 registers, a up to 
6-states counter and a 6 to 1 multiplexer forming a small local controller. 
Each one of the 6 first registers can contain a Dnode microinstruction 
code, and each clock cycle the counter increases the value on the 
multiplexer address input, thus sending the content of a register to the 
datapath part of the Dnode. 

Dnode control un" 

out 

Figure 3. The Dnode Architecture 
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In this last mode the Dnode is like a basic RISC CPU able to compute 
various (otherwise control intensive) algorithms like MACs, serial digital 
filters, FIFO/LIFO emulation. This scheme, joint to a specific input/output 
Data controller allows very efficient, high bandwidth dataflow oriented 
computation. 

4.2 The ring architecture 

Related works[1][2][3] propose mesh, array or crossbar-based operating 
layer architecture. 

Mesh-based architectures[2][3], even very flexible usually suffers from 
routing problems. Each reconfigurable block must features full routing 
capabilities with the nearest neighbours for direct communications. Routing 
over longer distances are achieved by dedicated lines, and with new silicon 
technologies allowing giant reconfigurable architectures, this requires 
important routing capabilities, with no-more maintainable propagation delays 
(general SOC problem, die-long interconnections cause hard timing problems). 

Crossbar based arrays[3]. The routing capabilities are again usually quite 
satisfying, but area costly. The scalability of these architectures is also limited 
for the same reasons as mesh-based networks; and more specially FPGAs. 
The largest ones are facing propagation delay problems implying P&R tools 
to spend lot of time in routing phase. 

Linear array-based architectures[3]. Aiming to map pipeline character of 
datapaths, they are often bi-dimensionals. Feedback operations (opposite 
dataflow direction, figure 5) of all kinds of digital signal processing like 
algorithm require additional routing resources and are often area and 
performance costly thus limiting the scalability for next generations. 

Our approach proposes an original linear array like architecture to solve 
routing relative problems. This one is based on curled bi-datapath structure. 

4.2.1 Forward: The main DataOow 

We use a curled, pipelined systolic structure as shown in figure 4. All the 
Dnodes form a ring, which length (Dnodes layers number) and width (Dnodes 
per-layer number) can easily be scaled. 

We use a curled, pipelined systolic structure as shown in figure 4. All the 
Dnodes form a ring, which length (Dnodes layers number) and width (Dnodes 
per-layer number) can easily be scaled. 
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Layer n-1 

Forward 
Dataflow 

Layer n 

Layer n+1 

Figure 4. The ring architecture 

The Dnodes are organised in layers; a Dnode layer is connected to the two 
adjacent ones by also dynamically reconfigurable switch components able to 
make any interconnection between two stages. These switches also manage 
data transfers with the host by dedicated FIFOs, and optional RISC 
communications via a shared bus. 

In normal mode, each Dnode can be seen as an arithmetic operator of a 
datapath which computes a data each clock cycle. In stand-alone mode each 
Dnode can be seen as a autonomous CPU. The structure is also flexible in the 
way that all Dnodes have not to run in the same mode, allowing the Systolic 
Ring to compute either in global mode (normal mode), local mode (stand
alone) or hybrid (normal and stand-alone) mode. 

4.2.2 Reverse: The secondary flow 

The data feedback problem is addressed here: we use special feedback 
pipelines (figure 5), forming a reverse Dataflow to avoid complex routing 
structures. The last task that accomplishes each switch is to write 
unconditionally (no control needed) the computed result of the previous D
node layer in a dedicated pipeline (each switch owns its pipeline), which 
allows the feedback of each data to the previous stages. These ones can then 
choose to get these data through the switches, which have direct access to all 
the pipelines. This technique ensures a good scalability of the architecture, as 
the routing problem is thus removed. 
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0.111 f •• dback 

............... 
..... 

". 

Figure 5. The feedback network 

5. COMPARISONS & REALISATIONS 

5.1 Comparative Results 

A 8 Dnodes version has a maximal computing power of 1600 MIPS at the 
typical 200 MHz evaluated functional frequency, quite impressive compared 
to the 400 MIPS of a Pentium II 450 MHz processor. The theoretical 
maximum bandwidth of this version of the structure is about 3 Gbytes/s, 
however often limited by the communication protocol between the host CPU 
and the core. To program this structure we wrote an assembling tool, which 
parse both configuration controller level (for the control) and Ring level 
assembler primitives. It directly generates the machine object code, ready to 
be executed in the architecture. 

5.1.1 Motion estimation algorithm implementation 

In the application field targeted by third generation systems we can fmd 
lots of video-relative techniques. One of these well known computing intensive 
algorithm is the motion estimation. Widely used in video compression 
techniques for broadcasting, storing, and videoconferencing, his task is to 
remove the temporal redundancy in video streams, as the DCT's is to remove 
the spatial redundancy. 

Block matching and specially Full Search Block Matching (FSBM) 
algorithm is the most popular implementation, also recommended by several 
standard committees (MPEG (video) and H.261 (videoconferencing) 
standards ). 
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The last N-l operations (accumulation) are achieved in int(Jn(N»+ 1 clock 
cycles for N <= Nx. 

In a 16 Nodes version of our structure, and with the previous specified 
codec (N=8) the computation of the MAD for a candidate block requires 13 
clock cycles. Each reference block requires the computation of 289 candidate 
blocks and there are 1320 reference blocks in each frame. The total 
processing time of an image frame is 1320x289x13=4959240 cycles. At the 
200MHz estimated frequency the computation time would be 24ms, which is 
two times smaller than the frame period (1/15s). 

Table 1 shows the performances of the Systolic Ring compared with the 
ASIC architecture implemented in [12] and Intel MMX instructions[13] using 
the criterion of the number of cycles (the three architectures can achieve 
comparable functional frequencies) needed for matching a 8x8 reference block 
against its search area of 8 pixels displacement. 

Systolic Ring ASIC[12] MMX (13] 
3757 581 28900 

Table 1 : Motion Estimation performance comparison (cycles) 

Our structure shows again its efficiency in a such computing intensive 
context. The ASIC implementation is much faster than our solution at the 
price of flexibility: The Systolic Ring provides the advantage of hardware 
reuse and is also almost 8 times faster than a MMX solution. 

5.2 Synthesis results & future work 

The entire architecture (reconfigurable core and configuration controller) 
has been described in both behavioural and structural VHDL. A 8 Dnodes, 16 
bits data width version has been fully simulated, and synthesised in both 
HCMOS7 and HCMOS8, respectively 0.25J.1m and O.l8J.1m ST 
technology. Table 3 shows the comparative synthesis results in both 
technologies. 

Dnode area 
Ring-8 area 

Estimated Frequency 

O.25fJ.m 
0.06mm2 
0.9 mm2 

180 MHz 
Table 3 : Synthesis Results 

O.18fJ.m 
0.04mm2 
0.7mm2 

200 MHz 

The low area of each Dnode, joint to the exposed specific architecture 
shows that this one could easily be scaled to larger realizations. Figure 7 
shows a foreseeable .18J.1m technology, 12 mm2 die area SOC for high 
constrained embedded solution. Our specific architecture allows the 
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integration of a powerful 64 Dnodes version of our core (3.4 mm2 on-die area) 
with a widely used ARM7 CPU, able to run various operating systems like 
windows CE, Linux. This kind of solution could provide a great computation 
power/cost ratio, which combines the flexibility of a CPU / reconfigurable 
architecture couple with the efficiency of applications dedicated cores. 

Figure 7. A forseeable SoC 

6. CONCLUSION 

We have proposed a new coarse grain dynamically reconfigurable 
architecture which proves its efficiency in data oriented processing. Its 
scalability shows that its field of applications is not limited to high
constrained embedded applications, but can also make be worth its faculties in 
other contexts, where high data bandwidth processing remains critical. A 
sma1l8-Dnodes version of this structure already provides up to 1600 MIPS of 
raw power for data dominated applications with a sustained data rate of 3 
Gbytes/s at 200 MHz, either in global or local mode. 

Our future work takes place in the translation of the structure to Boating point 
and also in the writing of an efficient compiling tool, the key to industrial success 
for coarse grain reconfigurable architectures. 
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