
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221148513

Dynamically Reconfigurable Architectures for Digital Signal Processing
Applications

Conference Paper · December 2001
DOI: 10.1007/978-0-387-35597-9_6 · Source: DBLP

CITATIONS

4
READS

11

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Ethique et TIC : TIC et écologie / Green IT / e-Waste... View project

Iris recognition View project

Lionel Torres
Université de Montpellier

295 PUBLICATIONS 2,456 CITATIONS

SEE PROFILE

Jérome Galy
Université de Montpellier

63 PUBLICATIONS 341 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jérome Galy on 08 October 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221148513_Dynamically_Reconfigurable_Architectures_for_Digital_Signal_Processing_Applications?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221148513_Dynamically_Reconfigurable_Architectures_for_Digital_Signal_Processing_Applications?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Ethique-et-TIC-TIC-et-ecologie-Green-IT-e-Waste?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Iris-recognition-5?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel-Torres?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel-Torres?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Montpellier?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel-Torres?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jerome-Galy?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jerome-Galy?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Montpellier?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jerome-Galy?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jerome-Galy?enrichId=rgreq-651a5060e4439b8fb0f8e180ca9a6797-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE0ODUxMztBUzoxMDc2NjA1MzI5OTA3NzE0QDE2MzM2OTQxMjE0MDE%3D&el=1_x_10&_esc=publicationCoverPdf

Dynamically Reconfigurable Architectures for Digital
Signal Processing Applications

Gilles Sassatelli, Lionel Torres, Pascal Benoit, Gaston Cambon,

Michel Robert, Jerome Galy

URMM, UMR University of Montpellier ll-CNRS C5506,
161 rue Ada, 34392 Montpellier Cedex 5, France
{sassate torres diou cambon robert galy)@lirmmJr

Abstract: Tomorrow's pocket devices will all have Internet-based communication
capabilities. The advent of mobile phones, PDAs (Pocket Data Assistant) and
pocketPC's joint to the newcomer's third generation wireless networks such as
UMTS will soon allow everyone to be connected, everywhere. In this
competitive marketplace where many similar products compete for the
consumer attention, performances level is a very important
criterion.Videoconferencing, digital music broadcast, speech recognition are a
few example of the new features allowed by the new third generation
networks. This kind of multimedia, data oriented content requires highly
efficient architectures; and nowadays mobile system-on-chip solution will no
longer be able to deal with the critical constraints like area, power, and data
computing efficiency. In this paper we will propose a new dynamically
reconfigurable network, dedicated to data oriented applications such as the one
targeted on third generation networks. Principles, realisations and comparative
results will be exposed for some classical applications, targeted on different
architectures.

Key words: Reconfigurable computing, Data flow, Digital Signal Processing

1. INTRODUCTION

Nowadays pocket devices are mostly based on a SoC (System on Chip)
approach (Figure 1). On the same silicon die are grouped heterogeneous IP
(Intellectual Property) modules.
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. Robert et al. (eds.), SOC Design Methodologies

10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

64 G. Sassatelli, L. Torres, P. Benoit, G. Cambon, M. Robert, J. Galy

1.1 1.2 1.3
Figure 1. The three main SoC approaches

There are different ways to face these new problems:

- The easiest, and actual way to deal with this increasing computing
requirements is naturally to use a more powerful DSP/p.P (figure 1.1)
than the ones used today; but it will probably not be feasible for the most
demanding applications, as the resulting processor will grow until the
size of a Pentium (such as the ones which take place in the most
powerful PDA or pocket PCs), with the corresponding area, cost and
consumption problems.

- Another way is to try to identify the future application field, and use a
dedicated core to compute the common parts of the corresponding
algorithms (Figure 1.2). For example, if JPEG and MPEG based
applications are targeted, we will make the choice of implementing a
wired IDCT (Inverse Discrete Cosine Transform) core, which is known
to be the common most time consuming part of both algorithms[7][8] .
An interesting, but restrictive solution as the application field is thus not
extensible.

- Yet another way is the reconfigurable computing [2][3][10]. For
example, integrate a FPGA core[1][3], where, depending on the target
application different algorithm/architecture solutions could be
synthesized (figure 1.3). Here, if we target JPEG applications, we will
choose to synthesize the IDCT core in the FPGA, and also an application
dependant part of the algorithm, like Huffman coding, or quantization.
But in the other way if we target MPEG[9] applications, we will still
make the choice of a wired IDCT, but this time we will also select the
motion estimation[6], which is one of the most demanding part of the
MPEG.
This kind of approach seems to be quite interesting; we can thus imagine,

depending on a given application, a video streaming one for example, that
the mobile could directly connect to the vendor's site to download the
corresponding applet, which is nothing else than the configuration file of the
considered reconfigurable network.

Dynamically Reconfigurable Architectures for DSP Applications 65

2. RECONFIGURABLE SOLUTIONS

A closer look to the kind of tomorrow's mobile applications shows a very
data oriented, data intensive trend: the multimedia content needs a very high
number of arithmetic operations; which would naturally imply to synthesize
numbers of arithmetic operators in case of using fme grained reconfigurable
logic (FPGA for example).

Arithmetic operators synthesis is known to be very area costly on fme
grained reconfigurable networks. Due to the highly combinational character of
adders and multipliers, the resulting functional frequencies are also often very
low making FPGA-like architectures bad candidates for arithmetic level data
computing.

Coarse grained reconfigurable architectures[2] [3] featuring hardwired
arithmetic operators are much more adapted to dataflow oriented
computations.

3. SYSTEM OVERVIEW

Our architecture follows the classical bi-Iayer FPGA principles. Here are
the main characteristics:
- The operative layer is no longer CLB (Configurable Logic Block) based,

but use a coarse-grained granularity component: The Dnode (Data node).
It is a datapath component, with an ALU and a few registers, as shown in
figure 3. This component is configured by a microinstruction code.
The configuration layer follows the same principle as FPGAs, it's a RAM
which contains the configuration of all the component of the operative
layer.
We also use a custom RISC core [5] with a dedicated instruction set; its
task is to manage dynamically the configuration of the network and also to
control the data transfers between the reconfigurable core and the host
CPU.

66 G. Sassatelli, L. Torres, P. Benoit, G. Cambon, M Robert, J. Galy

CONFIG

ContIg
Controller

MANAGEMENTCOOE

Figure 2. System Overview

Dnode

This architecture is thus not intended to be a stand-alone solution, rather
an IP core for dataflow oriented computing, which would take place in a SoC.
Figure 2 shows schematically our system in a SoC context. The IlP can thus
confide the most demanding part of a given application to our IP core. So it
downloads to the RISC memory the corresponding configuration program
(which manages the dynamical reconfiguration).

From a functional point of view:
- The host processor first sends the management code to the configuration

controller memory (the custom RISe has its own program memory). This
is a object code, ready to be executed, and specially designed to manage
dynamically the configuration of the network (the content of the RAM
thus changes from one cycle to another), as to say, the functionality of the
operating layer. Each clock cycle, the configuration controller is able to
change up to the entire content of the RAM thanks to its dedicated
instruction set.

- Once done, our core is ready to compute. The host processor sends the
data to the operating layer via a specific scheme and then get back the
computed data. As the configuration is dynamically managed, it is
possible to multiplex the sent data, and to compute them by several
sequential (hardware multiplexing) or concurrent (static) synthesised
datapaths.

4. OPERATING LAYER ARCHITECTURE

In this section we will describe more precisely the operating layer
architecture.

Dynamically Reconjigurable Architectures for DSP Applications 67

4.1 4.1 Dnode architecture

It essentially consists in an ALU-Multiplier, able to make all the classical
arithmetic and logic operations : addition, multiplication, subtraction, roll,
shift and so on. This optimised architecture is able, in the same clock cycle,
to make all possible operations, even between two different registers. Its
corresponding microinstruction code, the configuration code, comes from a
memory location in the configuration layer. As previously said, this code
evolves during the computing phase, the functionality can thus be changed
from one clock cycle to another, from an addition to a multiplication, load to
register, etc.

Each Dnode has in fact two execution modes :
- Global mode (normal mode), already described : the Dnode executes the

microinstruction code which comes from the configuration layer, managed
by the Rise configuration controller.
Local mode : The stand-alone mode : Each Dnode has 7 registers, a up to
6-states counter and a 6 to 1 multiplexer forming a small local controller.
Each one of the 6 first registers can contain a Dnode microinstruction
code, and each clock cycle the counter increases the value on the
multiplexer address input, thus sending the content of a register to the
datapath part of the Dnode.

Dnode control un"

out

Figure 3. The Dnode Architecture

68 G. Sassatelli, L. Torres, P. Benoit, G. Cambon, M Robert, J. Galy

In this last mode the Dnode is like a basic RISC CPU able to compute
various (otherwise control intensive) algorithms like MACs, serial digital
filters, FIFO/LIFO emulation. This scheme, joint to a specific input/output
Data controller allows very efficient, high bandwidth dataflow oriented
computation.

4.2 The ring architecture

Related works[1][2][3] propose mesh, array or crossbar-based operating
layer architecture.

Mesh-based architectures[2][3], even very flexible usually suffers from
routing problems. Each reconfigurable block must features full routing
capabilities with the nearest neighbours for direct communications. Routing
over longer distances are achieved by dedicated lines, and with new silicon
technologies allowing giant reconfigurable architectures, this requires
important routing capabilities, with no-more maintainable propagation delays
(general SOC problem, die-long interconnections cause hard timing problems).

Crossbar based arrays[3]. The routing capabilities are again usually quite
satisfying, but area costly. The scalability of these architectures is also limited
for the same reasons as mesh-based networks; and more specially FPGAs.
The largest ones are facing propagation delay problems implying P&R tools
to spend lot of time in routing phase.

Linear array-based architectures[3]. Aiming to map pipeline character of
datapaths, they are often bi-dimensionals. Feedback operations (opposite
dataflow direction, figure 5) of all kinds of digital signal processing like
algorithm require additional routing resources and are often area and
performance costly thus limiting the scalability for next generations.

Our approach proposes an original linear array like architecture to solve
routing relative problems. This one is based on curled bi-datapath structure.

4.2.1 Forward: The main DataOow

We use a curled, pipelined systolic structure as shown in figure 4. All the
Dnodes form a ring, which length (Dnodes layers number) and width (Dnodes
per-layer number) can easily be scaled.

We use a curled, pipelined systolic structure as shown in figure 4. All the
Dnodes form a ring, which length (Dnodes layers number) and width (Dnodes
per-layer number) can easily be scaled.

Dynamically Reconfigurable Architectures for DSP Applications 69

Layer n-1

Forward
Dataflow

Layer n

Layer n+1

Figure 4. The ring architecture

The Dnodes are organised in layers; a Dnode layer is connected to the two
adjacent ones by also dynamically reconfigurable switch components able to
make any interconnection between two stages. These switches also manage
data transfers with the host by dedicated FIFOs, and optional RISC
communications via a shared bus.

In normal mode, each Dnode can be seen as an arithmetic operator of a
datapath which computes a data each clock cycle. In stand-alone mode each
Dnode can be seen as a autonomous CPU. The structure is also flexible in the
way that all Dnodes have not to run in the same mode, allowing the Systolic
Ring to compute either in global mode (normal mode), local mode (stand
alone) or hybrid (normal and stand-alone) mode.

4.2.2 Reverse: The secondary flow

The data feedback problem is addressed here: we use special feedback
pipelines (figure 5), forming a reverse Dataflow to avoid complex routing
structures. The last task that accomplishes each switch is to write
unconditionally (no control needed) the computed result of the previous D
node layer in a dedicated pipeline (each switch owns its pipeline), which
allows the feedback of each data to the previous stages. These ones can then
choose to get these data through the switches, which have direct access to all
the pipelines. This technique ensures a good scalability of the architecture, as
the routing problem is thus removed.

70 G. Sassatelli, L. To"es, P. Benoit, G. Cambon, M Robert, J. Galy

0.111 f •• dback

...............
.....

".

Figure 5. The feedback network

5. COMPARISONS & REALISATIONS

5.1 Comparative Results

A 8 Dnodes version has a maximal computing power of 1600 MIPS at the
typical 200 MHz evaluated functional frequency, quite impressive compared
to the 400 MIPS of a Pentium II 450 MHz processor. The theoretical
maximum bandwidth of this version of the structure is about 3 Gbytes/s,
however often limited by the communication protocol between the host CPU
and the core. To program this structure we wrote an assembling tool, which
parse both configuration controller level (for the control) and Ring level
assembler primitives. It directly generates the machine object code, ready to
be executed in the architecture.

5.1.1 Motion estimation algorithm implementation

In the application field targeted by third generation systems we can fmd
lots of video-relative techniques. One of these well known computing intensive
algorithm is the motion estimation. Widely used in video compression
techniques for broadcasting, storing, and videoconferencing, his task is to
remove the temporal redundancy in video streams, as the DCT's is to remove
the spatial redundancy.

Block matching and specially Full Search Block Matching (FSBM)
algorithm is the most popular implementation, also recommended by several
standard committees (MPEG (video) and H.261 (videoconferencing)
standards).

72 G. Sassatelli, L. Torres, P. Benoit, G. Cambon, M Robert, J. Galy

The last N-l operations (accumulation) are achieved in int(Jn(N»+ 1 clock
cycles for N <= Nx.

In a 16 Nodes version of our structure, and with the previous specified
codec (N=8) the computation of the MAD for a candidate block requires 13
clock cycles. Each reference block requires the computation of 289 candidate
blocks and there are 1320 reference blocks in each frame. The total
processing time of an image frame is 1320x289x13=4959240 cycles. At the
200MHz estimated frequency the computation time would be 24ms, which is
two times smaller than the frame period (1/15s).

Table 1 shows the performances of the Systolic Ring compared with the
ASIC architecture implemented in [12] and Intel MMX instructions[13] using
the criterion of the number of cycles (the three architectures can achieve
comparable functional frequencies) needed for matching a 8x8 reference block
against its search area of 8 pixels displacement.

Systolic Ring ASIC[12] MMX (13]
3757 581 28900

Table 1 : Motion Estimation performance comparison (cycles)

Our structure shows again its efficiency in a such computing intensive
context. The ASIC implementation is much faster than our solution at the
price of flexibility: The Systolic Ring provides the advantage of hardware
reuse and is also almost 8 times faster than a MMX solution.

5.2 Synthesis results & future work

The entire architecture (reconfigurable core and configuration controller)
has been described in both behavioural and structural VHDL. A 8 Dnodes, 16
bits data width version has been fully simulated, and synthesised in both
HCMOS7 and HCMOS8, respectively 0.25J.1m and O.l8J.1m ST
technology. Table 3 shows the comparative synthesis results in both
technologies.

Dnode area
Ring-8 area

Estimated Frequency

O.25fJ.m
0.06mm2
0.9 mm2

180 MHz
Table 3 : Synthesis Results

O.18fJ.m
0.04mm2
0.7mm2

200 MHz

The low area of each Dnode, joint to the exposed specific architecture
shows that this one could easily be scaled to larger realizations. Figure 7
shows a foreseeable .18J.1m technology, 12 mm2 die area SOC for high
constrained embedded solution. Our specific architecture allows the

Dynamically Reconfigurable Architectures for DSP Applications 73

integration of a powerful 64 Dnodes version of our core (3.4 mm2 on-die area)
with a widely used ARM7 CPU, able to run various operating systems like
windows CE, Linux. This kind of solution could provide a great computation
power/cost ratio, which combines the flexibility of a CPU / reconfigurable
architecture couple with the efficiency of applications dedicated cores.

Figure 7. A forseeable SoC

6. CONCLUSION

We have proposed a new coarse grain dynamically reconfigurable
architecture which proves its efficiency in data oriented processing. Its
scalability shows that its field of applications is not limited to high
constrained embedded applications, but can also make be worth its faculties in
other contexts, where high data bandwidth processing remains critical. A
sma1l8-Dnodes version of this structure already provides up to 1600 MIPS of
raw power for data dominated applications with a sustained data rate of 3
Gbytes/s at 200 MHz, either in global or local mode.

Our future work takes place in the translation of the structure to Boating point
and also in the writing of an efficient compiling tool, the key to industrial success
for coarse grain reconfigurable architectures.

7. REFERENCES

[I] Stephen Brown and J. Rose, "Architecture of FPGAs and CPLDs: A Tutorial," IEEE
Design and Test of Computers, Vol. 13, No.2, pp. 42-57, 1996.

[2] Why reconfigurable computing, Department of Computer Science, Computer
Structures Group, http://xputers.informatik. uni-kl.del.

[3] R. Hartenstein, H. Griinbacher (Editors): The Roadmap to Reconfigurable computing
Proc.FPL2000, Aug.27 -30,2000;LNCS,Springer-Verlag2000.

	Dynamically Reconfigurable Architectures for DigitalSignal Processing Applications
	1. INTRODUCTION
	2. RECONFIGURABLE SOLUTIONS
	3. SYSTEM OVERVIEW

