
HAL Id: lirmm-00108941
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108941

Submitted on 21 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Block Constraints Budgeting in Timing-Driven
Hierarchical Flow

Olivier Omedes, Michel Robert, Mohamed Ramdani

To cite this version:
Olivier Omedes, Michel Robert, Mohamed Ramdani. Block Constraints Budgeting in Timing-Driven
Hierarchical Flow. DCIS: Design of Circuits and Integrated Systems, Nov 2004, Bordeaux, France.
pp.930-935. �lirmm-00108941�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108941
https://hal.archives-ouvertes.fr

Block constraints budgeting in
timing-driven hierarchical flow

Olivier Omedes
Cadence Design Systems, Inc.

Omedes@cadence.com

Michel Robert
LIRMM UMR CNRS Montpellier II

Michel.Robert@lirmm.fr

Mohamed Ramdani
ESEO Angers

Mohamed.Ramdani@eseo.fr

Abstract— In this paper, we introduce a new block budgeting
algorithm that speeds up timing closure in timing driven hier-
archical flows. After a brief description of the addressed flow,
block budgeting challenges are detailed. Then, we explain why
existing budgeting approaches are not adapted to fulfil these
challenges. A new block budgeting algorithm is proposed. In
order to derive relevant block constraints, this algorithm analyzes
the design flexibility. This Flexibility Aware Budgeting (FAB)
approach is then compared to some previous ones. Experiments
based on commercial EDA tools and real designs show up to
55 % reduction in hierarchical flow run time and lead to a good
flow timing closure.

I. BLOCK BUDGETING CHALLENGES

Any physical synthesis solution has limitations on the
size of circuits that can be handled in a single run. “Divide
and Conquer” approaches have been introduced to overcome
these limitations. In this kind of approach, large designs are
sub-divided into smaller synthesizable sub-blocks.
Fig. 1 depicts a typical timing-driven hierarchical flow. This
flow starts with RTL synthesis and technology mapping.
Resulting netlist is assumed to be too big or too complex
to meet the specified performance. Thus, the design is
partitioned into sub-blocks. These blocks are floorplanned
upon the chip die. In fact, the floorplanning step includes
design physical partitioning, blocks placement and inter-block
net global routing. Then, blocks are optimized. Let’s notice
that partitioning technique not only permits to implement
large designs, but also allows optimizing blocks concurrently,
that can be precious to decrease time to market – this
represents one more reason to use the hierarchical flow.
Optimized blocks are reassembled at the top-level and top
optimization is run. If chip constraints are not met, the whole
process can be repeated.
To implement sub-blocks, EDA tools need constraints.
Blocks constraints are computed by the block budgeting
step. The budgeting step derives blocks IO constraints from
the chip constraints. In order to speed up the hierarchical
flow timing closure, the budgeting process has, first to
assign feasible blocks constraints, and, second, to ensure
that if blocks implementation succeeded, all chip constraints
will be met. These two conditions qualify budgets quality.
Another key point of block budgeting step stays in its low
resources consumption (budgeting that runs slower than flat
optimization is not interesting).
If various delay budgeting approaches have been proposed to

HDL
Description

Standard cells
library

Block
1

IP 1

Block 2

For each block…

Gates
IPs+

RTL Synthesis

Floorplanning

Blocks Integration

Top Optimization

Optimization Optimization

Loop

Fig. 1. Typical hierarchical flow

drive cell placement or net routing [1] [2] [3], there is only a
few academic or industrial works dealing with IO constraints
computing. [4] proposes an interresting RTL delay budgeting
approach but reported that it needs an accurate area-time
projection for each block; that is too much time consuming
for our flow. [5] also presents an IO budgeting method for the
timing-driven hierarchical flow. Unfortunately, the proposed
budgeting is only applied evolving from a previous design
implementation. Thus, it is usable for a second flow iteration
but not to compute IO budgets at a so early stage of the design
process. In fact, there are two main issues to resolve when
computing IO budgets at this design stage. First, at this stage,
design is not optimized yet (just area mapped upon library
standard cells). Consequently, current logic structure is likely
to largely evolve; this logic flexibility has to be taken into
account. Second, IO budgets are not only timing constraints.
Indeed, in the same way a cell delay depends on the driven
load, an output required time assertion, for example, should
depend on the connected load. Thus, block budgeting has to
compute both timing and electrical constraints.

In this paper, we propose a block budgeting method
that addresses these two issues. Logic flexibility awareness
is obtained using a logical effort cell modeling [6] and

- 930 -DCIS 2004

some simple restructuring or rebalancing algorithms inspired
from [7] [8]. The logical effort theory is also used to better
correlate timing constraints with block load specifications.
The following section is devoted to this Flexibility Aware
Budgeting (FAB) description.

II. FLEXIBILITY AWARE BUDGETING

A. Principles

In timing-driven hierarchical flow, at budgeting stage, design
is likely to be only area mapped (or not homogeneously
optimized). Cells are just implementing RTL functions and
are surely not adapted to the load they will have to drive.
Moreover, most of time, their logical structure is balanced and
it is not taking into account that, for example, one input is more
timing critical than another one. Consequently, at budgeting
stage, current structure delays fall far short of the design
achievable performance; this initial design implementation is
highly flexible. If we run delay budgeting using these initial
delays and loads, we are quite sure to produce irrelevant
IO constraints. To avoid that, the first FAB step aims at
computing more relevant delayand load values for all design
components. “more relevant” stands for delay and load values
that take into account the optimization possibilities: buffering,
restructuring, ... Then, timing analysis is performed. This
timing analysis gives information about the amount of slack
available for each timing paths – slack is defined as the dif-
ference between required and arrival times. To ensure timing
closure, these slacks (positive or negative) must be distributed
between timing paths components. This slack distribution is
also called delay budgeting since it consists to increase or
decrease components delays – also called budgets. From an
optimization point of view, it’s obvious that some components
are harder to optimize and should, then, receive more budget.
One way to favor these components is to use a weighted slack
allocation algorithm. In FAB approach, we implement an IMP
like algorithm [9] – weights are detailed in the following. As
we said, in our approach, budgets are not only delays but also
load specifications.
The very last FAB step computes the block IO constraints
from the budgeted design.

B. Logical Effort Theory

In fact, the very first FAB step consists in standard cells
characterization using the logicaleffort theory. The concept of
logical effort has been proposed to model the load-independent
gate delay:

dabs
� τ � d � τ

�
p � f � � τ

�
p � g � h � (1)

This model divides the gate delay into two parts. First part is
the load independent parasitic delayp (its major contribution is
capacitance of transistors source / drain). Second part (f � g � h)
is the effort delay. The logical effortg depends only on the
gate topology and on its ability to produce output current. The
electrical efforth (also called gain) is defined to be:

h � Cout � Cin

WhereCout is the connected load value andCin, the gate input
capacitance. Finally,τ is a technology dependent factor. All
these values are easy to characterize for simple gates (inverter,
nand, nor, xnor...). The logical effort theory also defines the
branching effortb as the ratio of the total output capacitance
to the capacitance which is on the path being analyzed. Given
a string ofNg monofanout (b = 1) gates, the path delay is:

D � ∑
Ng

pi � gihi
� P � ∑

Ng

gihi

This string, or path, is also characterized by a path logical
effort G and a path electrical effortH :

G � ∏gi H � ∏hi
� Cin � path

Cout � path

The GH product is also called path effort and notedF . [6]
explains thatD is minimized whenF is equally spread between
stages :

f̂ � Ng
�

F D̂ � Ng f̂ � P (2)

Unfortunately, the number of stagesN is very likely to evolve
during optimization, and thus optimal effort̂f computation
can be fairly ineffective. Indeed, on hard to optimize paths,
optimization process will surely add some buffering com-
ponents (inverters or buffers). Since, buffering components
logical effort is defined as 1, we can write:

N � Ng � Nbu f f̂ � N
�

F

D̂ � N � f̂ � P � �
N � Ng � 	 pbu f

Nbu f and pbu f are respectively the number of added buffering
components, and their unit parasitic delay. Differentiating with
respect ofN and setting the result to zero gives the following
displaymath forf̂ to minimize path delay:

f̂
�
1 � ln

�
f̂ � � � pbu f

� 0 (3)

(3) can be solved using numerical method (Newton-Raphson
for example) and obtained̂f value permits to define an optimal
electrical effort for each type of gate:

ĥ � f̂ � g

This result is fundamental for our approach sinceĥ will be
used for delays and drive strengths initialization. Following
table shows some experimental results for a 90 nm technology
(τ � 7 � 2 ps).

Cell g ĥ p d̂
 ps �
Inverter 1.01 3.71 1.16 4.90
Nand 2 1.41 2.62 2.41 6.10
Xnor 2 1.62 2.31 12.59 16.33

C. FAB Initialization process

FAB walks on an acyclic directed timing graphG � �
V � E �

which represents the circuit timing structure.V denotes the
set of vertices or nodes – nodes are circuit and cells IO.
E denotes the set of edges or arcs which represent timing
relations between nodes. Each edgee is annotated with a delay

- 931 -DCIS 2004

valued
�
e � which corresponds to its delay budget. Each node

v is associated with a budgeted loadCb
�
v � which corresponds

to the maximum drivable load of this node.π � �
v � andπ � �

v �
respectively denote the set ofv predecessors and successors.
In the timing graph, we distinguish some interesting structures
that are:� Cones: a cone is a set of mono-fanout logic and is

completely identified by a set of cone inputs and one
cone output. ConeC implements a boolean functionFC .� Buffer trees: a buffer tree is a set of interconnections and
buffering components. In following algorithms, a simple
mono-fanout net is considered like a particular buffer tree.

FAB initialization process depends on a standard load
value Cre f that can be either computed during the library
characterization or user specified. In practice, its value is
similar to the 1X inverter input capacitance. FAB initialization
starts with the less flexible design instances which are IPs
(Intellectual Property Blocs or small custom-designed blocks)
and registers (sequential elements). IPs and registers timing
arc delays are set to their propagation delay values when
outputs are drivingCre f . Budgeted loadCb of IPs and registers
outputs is set toCre f . Budgeted load of IPs and registers
inputs is set to their input capacitance value and is marked as
fixed. Then, the flexibility aware initialization (FAI) step can
start.

FAI is based upon two design transforms that are quite
easy to anticipate. The first one consists in gates and cones
fan-in ordering [7] [8].
Fig. 2 illustrates such a fan-in ordering on a small cone.
Ordering starts when budgeted arrival times (BAT) and loads
at cone inputs have been computed. It begins by remapping
FC using only inverter, NAND and XNOR gates (cf. Fig.
2-b) – NOR gate is voluntary not used because of its low
driving capability. Then, the structure is unbalanced in order
to get a minimal BAT at the cone output (cf. Fig. 2-c).

? / ?

0 / 1

0 / 2

Budgeted AT / Load

3 / 1

0 / 1

0 / 2

3 / 1

? / ?

a

b

0 / 1

0 / 2

3 / 1

6 / 2c

2ˆ/2ˆ: == hdNand2
1ˆ/1ˆ: == hdInv

Fig. 2. C Restructuring

Cone arcs delays and output budgeted load are computed as
explained in algorithm 1.

Algorithm 1 Quick C Restructuring Evaluation

Require: π � �
SinkOfCone

�
C � � already treated.

Ensure: sink � SinkOfCone
�
C � treated

RemapFC (Fig. 2-b) and rebalance it (Fig. 2-c).
d

�
v � sink � � ∑

v � sink
d̂

Cb
�
sink � � min

v � π � � C �
	
Cb

�
v � � ∏

v � sink
ĥ

The second transform is about buffering. It consists in 2
phases. The first phase computes a balance buffer tree to drive
the wholeB buffer tree fanout (number of leaves). Budgets
are computed for all buffer tree branches in the same time.
On the contrary, in the second phase, leaves are treated
one after the other. This second phase aims at adding some
budget to branches that are driving large fixed loads (such
as IPs input capacitance). Some budgets are also added in
order to do block interconnections buffering (interconnection
capacitances are estimated from the initial floorplan).
Algorithm 2 and fig. 3 illustrate this second transform.

src

Fixed
Fixed

First phase Second phase

bufferingDelay

bC

bC
bC

)(sinkCb

Fig. 3. B Buffering

These two transforms are combined and evaluated by
traversing the graph in topological order (BFS) from primary
inputs to primary outputs (this ensures that when treating
nodev, all π � �

v � nodes have already been treated).
It’s important to remark that these transform are not really
applied (netlist is not edited) but just evaluated to get some
budget values. This allows a significant computing gain. For
this reason, these transforms are qualified of “virtual”. FAB
initialization produces a graphwhich is annotated with timing
and load initial budgets.

D. FAB allocation

Timing analysis on this budgeted graph shows paths with
both negative and positive slacks. Negative slack identifies
hard to optimize paths whereas positive one characterizes more
flexible paths where budgets (bothd andCb) can be increased.
As explained in FAB principles section, path slackSπ is
distributed among path arcs using the IMP algorithm. IMP
is an iterative algorithm which adds a timing budget∆d

�
e � at

each iteration.∆d
�
e � is computed as follow :

∆d
�
e � � we

min
π � Πe

Sπ

max
π � � Πe

Wπ �

- 932 -DCIS 2004

Algorithm 2 Quick B Buffering Evaluation

Require: src � Source
�
B � already treated.

Ensure: π �
�
src � treated.

if Fanout
�
B � � Cre f � Cb

�
src � then

bufferingDelay � 0
tempCb � Cb

�
src � � Fanout

�
B �

else
effort � Fanout

�
B � � Cre f � Cb

�
src �

Nb � logĥbu f

�
e f f ort �

bufferingDelay � Nb
�
gbu f � Nb

�
e f f ort � pbu f � (cf. Eq. 2)

tempCb � Cre f

end if /* End of first phase */

for each v � π �
�
src � do

d
�
src � v � � bufferingDelay

if isFixed
�
Cb

�
v � � then

effort � Cb
�
v � � tempCb

if effort � 1 then
Nb � logĥbu f

�
effort �

d
�
src � v � �� Nb

�
gbu f � Nb

�
effort � pbu f � (cf. Eq. 2)

end if
else

Cb
�
v � � tempCb

end if
end for /* End of second phase */

Where we is the e arc weight, Πe is the set of all paths
traversinge and,Sπ andWπ are respectivelyπ path slack and
total weight. A proof of IMP convergence to null slack on
final budgeted timing graph is given in [2].
The main difficulty in slack allocation is to find out relevant
weights for arcs. In FAB context, weights have to qualify arcs
optimization hardness. Given the way initial arcs delays have
been computed (using virtual restructuring and buffering), they
give a good idea of optimization timing needs. Consequently,
we use these initial delays as weights for the IMP allocation.
IPs (or fixed blocks) and sequential elements receives a null
weight since their flexibility is also nearly null; indeed IPs are
impossible to remap and sequential elements are also fixed
since we fixed the load they will have to drive.
If this slack allocation is quite typical, FAB not only allocates
timing budgets, it also modifies node budgeted capacitance
according to the added delay budget. Indeed, if we add delay
to an arc, it’s obvious to think that the load it can drive is also
increased. So, if we differentiate (1) with respect toCout , we
obtain:

∂d
∂Cout

� g
Cin

� ∆Cout
� Cin

g
∆d

Consequently, FAB allocation is ran as described by algorithm
3. At the end of this allocation, we get a full budgeted
timing graph with null slack everywhere and each node is
also constrained by a maximal drivable capacitance.

Algorithm 3 FAB allocation

Ensure: � e � E � Slack
�
e � � 0

/* TraversingG in topological order */
repeat

for each arc e such thatSlack
�
e � �� 0 do

∆d � Slack
�
e � Weight � e �

max
π � Πe

Wπ

d
�
e � �� ∆d

if isNull
�
∆d � then

Weight
�
e � � 0

setFixed
�
Cb

�
sink

�
e � � �

end if
if isNotFixed

�
Cb

�
sink

�
e � � � then

Cb
�
sink

�
e � � �� ∆d � Cb

�
source

�
e � � � ge

end if
end for

until � e � E � Slack
�
e � � 0

E. Blocks constraints derivation

Using the full budgeted timing graph, deriving relevant
blocks constraints becomes easy. BAT stands for Budgeted

Algorithm 4 FAB derivation
Require: � e � E � Slack

�
e � � 0

for each Blocks portp do
if isInputPort

�
p � then

set arrival time
�
BAT

�
p � �

set max input capacitance
�
Cb

�
p � �

else
set required time

�
BAT

�
p � �

set output load
�
Cb

�
p � �

end if
end for

Arrival Time and is computed by propagating budgeted delays.
Algorithm 4 gives optimization constraints to facilitate block
integration and top level timing closure. Indeed, for an input
port, FAB ensures that if themax input capacitance is not
exceeded, the port arrival time will be at least the one asserted.
In the same way, block optimization have to implement block
such that logic will be able to drive theoutput load with
respect to therequired time assertion.

III. VALIDATION

A. Experimental Setup and Metrics

To qualify block IO budgets quality, we need to remember
two important points. First, block optimization is a very
chaotic step for which small constraints changes are likely to
produce very different block implementations. Second, block
constraints set is quite large and constraints are highly linked
between them. Hence, if we want to compare budgeting
algorithms results just looking at blocks implementations or
constraints, we are likely to fail. In fact, the most significant
approach to evaluate budgeting methods is to use them in

- 933 -DCIS 2004

a typical timing-driven hierarchical flow. Then, metrics like
optimization runtime, and slacks of blocks and top level can
be used to appreciate budgeting results. Metrics we use are
defined on fig. 4. Of course, this flow and these metrics favor
rapid to close methods but this is what we are looking for.

RTL Synthesis / Partitionning

Concurrent Block
Optimization

Optimization

Out

Top Level

In

Timing Closure ?

Tests (Hierarchical)

Frequencies :

Techno : 250, 180, 130 nm

Nb Gates : 100k 5M

50 200 MHz

− WBSlack : Worst Block Slack

− FTSlack : Final Top Slack

Metrics Definition :

− FMem : Total Flow Memory

− FRun : Total Flow Runtime

− BRun : Budgeting Runtime

FTSlack

FMem

FRun

IP

BRun

WBSlack

Budgeting

Timing constraints VHDL / Verilog

Fig. 4. Validation metrics

B. Some other used approaches

In the results section, we compare FAB approach with two
other used block budgeting algorithms. The first one is called
critical-path budgeting (CPB). Its principle is to treat block IO
ports one after other and, to adjust current port arrival time
according to delays of the critical path which crosses it. So,
block IO port p budgeted arrival time is computed as follow:

BAT
�
p � � CurrentArrivalTime

�
p � � Slack

�
p � dle f t

dle f t � dright

Where dle f t and dright are respectively delays of the left
and right part of the most critical path traversingp. This
budgeted arrival time is then used in algorithm 4 to assert
block constraints. Capacitance assertions are computed using
current load value for outputs load and driving cell load limit
for inputs max capacitance.
Of course, due to completely not optimized design state,
current values (arrival times, loads and driving cells) are
surely irrelevant and thus, resulting IO budgets quality is
doubtful. However, this approach has the advantage to be
really fast (runtime wise).

The second approach, called IMPT, is based upon IMP
algorithm but doesn’t include a FAI like step. For reasons
explained above, it would be ineffective to use current design
delays as weights. However, it could be a good idea to set
weights using the logical effort theory.
Concerning loads assertions, a common way to avoid asserting
huge values is to truncate them (limits can be specified by
users). Fig. 5 shows truncation examples. This kind of
truncation is part of IMPT approach.

C. Results

Benchmarks specifications are given in table I. As we can
see in the “Initial Slack” column, initial designs slack falls

load = 2 x C

BLOCK

out

C

Current load = 10 x C

in

INVXL

Current driver

INVX1

Truncate

out

in

Truncate

Fig. 5. Truncation of block input port driver and block output port load.

far short of designs constraints. Table I also summarizes flat
flow results.
Table II details fig. 4 flow results when using either CPB or
IMP T budgeting algorithms to drive one pass of hierarchical
optimization.
Runtime and memory wise, there is no doubt that the “divide
and conquer” approach is faster and lighter than the flat one.
Even if the timing closure is not obtained at the end of this
first pass, the average runtime gain of about 66 % lets us
with time to run a second iteration and to achieve this timing
closure. The average memory need, which is about 35 % less
than the one observed when using the flat flow, will not be
increased in following iterations.
Now, let’s compare the CPB and IMPT timing results. The
WBSlack column shows the worst block slack measured
after blocks optimization. The - 0.94 ns WBSlack obtained
when using the CPB algorithm shows well that this approach
assigns some irrelevant block constraints. On the contrary,
blocks constraints derived by IMPT budgeting seem more
relevant (or at less more feasible) since the average WBSlack
is only - 0.27 ns – drivers and loads truncation is very
helpful for that. Of course, having more feasible blocks
constraints is not sufficient to ensure top level timing closure;
these constraints have also to allow a feasible top level
optimization. However, if we look at FTSlack columns for
both CPB and IMPT algorithms, we can conclude that
IMP T computes better blocks constraints than CPB. Indeed,
at the end of this first hierarchical optimization pass, the
top level slack is nearer from timing closure when using
the IMP T budgeting algorithm (IMPT average top slack is
about - 0.40 ns whereas CPB one is about - 0.94 ns). Hence,
IMP T budgeting leads to a better implementation to start a
second iteration.

Now, let’s look at the results obtained when using our
new budgeting approach (Table III). Resources wise, the
average gain stays similar to previous budgeting algorithms.
Concerning the timing closure, load and drive constraints
derivation – in parallel with timing ones – as done in FAB
seems to be more relevant than simple truncation. Indeed,
FAB WBSlacks stand out better than IMPT ones (average
gain is about 0.18 ns) and, as expected, this improves
top-level optimization results (average gain is about 0.15 ns).

- 934 -DCIS 2004

TABLE I

BENCHMARKS SPECIFICATIONS

Design Number of Netlist Size G � V � E � Initial Flat flow results

Name blocks & IPs Cell Net
�
E

� �
V

�
Slack (ns) CPU (s) Mem (Mb) Slack (ns)

TEST1 3 & 3 7k 10k 32k 19k - 60.65 935 124 - 0.01

TEST2 3 & 16 82k 130k 330k 187k - 60.35 5400 650 0.01

TEST3 4 & 6 102k 154k 278k 164k - 135.45 4250 1234 0.00

TEST4 3 & 20 134k 175k 1054k 624k - 89.59 27700 1180 0.00

TEST5 10 & 16 275k 355k 1656k 1065k - 22.07 44100 1950 - 0.02

TABLE II

PREVIOUS BLOCK BUDGETING RESULTS– CPBAND IMP T ALGORITHMS.

Design CPB Hier. Flow Results IMP T Hier. Flow Results

Name FRun (s) FMem (Mb) WBSlack (ns) FTSlack (ns) FRun (s) FMem (Mb) WBSlack (ns) FTSlack (ns)

TEST1 720 102 - 0.28 - 0.21 1250 101 - 0.08 - 0.06

TEST2 3800 456 - 1.87 - 0.63 3550 457 - 0.17 - 0.41

TEST3 2850 900 - 0.26 - 1.79 2900 850 - 0.08 - 0.17

TEST4 12000 635 - 1.16 - 1.16 9800 635 - 0.19 - 0.44

TEST5 8600 1123 - 1.14 - 1.13 10500 1280 - 0.87 - 0.91

∆ vs. Flat Flow - 66 % - 37 % - 0.94 ns - 0.98 ns - 66 % - 35 % - 0.27 ns - 0.40 ns

TABLE III

NEW BLOCK BUDGETING RESULTS – FAB ALGORITHM .

Design FAB Hier. Flow Results

Name FRun (s) FMem (Mb) WBSlack (ns) FTSlack (ns)

TEST1 800 107 0.00 - 0.04

TEST2 3300 456 - 0.08 - 0.33

TEST3 2900 930 - 0.03 - 0.16

TEST4 14000 690 - 0.12 - 0.25

TEST5 11700 1347 - 0.25 - 0.47

∆ - 60 % - 31 % - 0.09 ns - 0.25 ns

When we look closer at why timing closure was not obtained
at the end of this first pass, we found out that some drive
sizing and some buffering transforms was hardly impossible
to anticipate since cells were not placed yet at budgeting step.
However, for all testcases, the top-level timing closure has
been obtained by just running a quick top-level optimization
after the first flow iteration in order to fix these drive /
buffering problems – this is not always true with CPB and
IMP T approaches for which deeper optimizations are needed
(these results have not been reported in this paper). It’s
important to notice that, even with this additional top-level
optimization, average runtime stays about 30 % less compared
to flat flow runtime (memory gain is about 20 %).

IV. CONCLUSIONS

In this paper, we introduced a new budgeting approach
that speeds up timing closure of a timing driven hierarchical
flow. The initial budget allocation step of this new approach
(FAI) allowed us to quickly identify paths that were “really”
critical (following optimizations iterate on these paths).

FAB IO constraints computing (BRun) is about 10 to 20
times slower than CPB and about the same than IMPT, but
this runtime stays lower than 10 % of FRun (e.g., about 15
minutes for TEST5). In addition, if we look at the results
obtained for 5 commercial designs, it is obvious that taking
more time to derive relevant IO constraints leads to a better
timing performance predictability and to a faster hierarchical
flow timing closure.

In the future, by integrating FAB approach to a physical
prototyping tool, we should be able to take into account
some more physical parameters such as blocks congestion
and aspect ratios. This could also be helpful to compute more
relevant weights or budgets for blocks interconnections.

REFERENCES

[1] M. Sarrafzadeh, D. A. Knol, and G. E. T´ellez, “A delay budgeting
algorithm ensuring maximum flexibility in placement,” inIEEE Trans.
Computer-Aided Design, vol. 16, Nov. 1997, pp. 1332–1341.

[2] H. Youssef, R.-B. Lin, and E. Shragowitz, “Bounds on net delays for
VLSI circuits,” in IEEE Proc. Of ISCAS, 1992, pp. 815–824.

[3] J. Frankle, “Iterative and adaptive slack allocation for performance-driven
layout,” in IEEE/ACM Proc. of DAC, June 1992, pp. 536–542.

[4] C.-C. Kuo and A. C.-H. Wu, “Delay budgeting for a timing-closure-driven
design method,” inIEEE Proc. of ICCAD, 2000.

[5] K. Shi and G. Godwin, “Hybrid hierarchical timing closure methodology
for a high performance and low power dsp,” inIEEE/ACM Proc. of DAC,
2005, pp. 850–855.

[6] I. Sutherland, B. Sproull, and D. Harris,Logical Effort: Designing Fast
CMOS Circuits. MORGAN KAUFMANN PUBLISHERS, 1999.

[7] P. G. Paulin and F. J. Poirot, “Logic decomposition algorithms for the
timing optimization of multi-level logic,” inIEEE Proc. of ICCD, 1989,
pp. 329–333.

[8] K. J. Singh, A. R. Wang, R. K. Brayton, and A. Saugiovanni-Vincentelli,
“Timing optimisation of combinational logic,” inIEEE Proc. of ICCAD,
1988, pp. 282–285.

[9] H. Youssef and E. Shragowitz, “Timing constraints for correct perfor-
mances,” inIEEE Proc. of ICCAD, 1990, pp. 24–27.

- 935 -DCIS 2004

	isbn923: ISBN 2-9522971-0-X
	isbn924: ISBN 2-9522971-0-X
	isbn925: ISBN 2-9522971-0-X
	isbn926: ISBN 2-9522971-0-X
	isbn927: ISBN 2-9522971-0-X
	isbn928: ISBN 2-9522971-0-X

