
HAL Id: lirmm-00108954
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108954

Submitted on 21 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coordination and Conversation Protocols in Open
Multi-Agent Systems

Abdelkader Gouaich

To cite this version:
Abdelkader Gouaich. Coordination and Conversation Protocols in Open Multi-Agent Systems.
ESAW: Engineering Societies in the Agents World, Oct 2004, Toulouse, France. pp.182-199,
�10.1007/978-3-540-25946-6_12�. �lirmm-00108954�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108954
https://hal.archives-ouvertes.fr

Coordination and conversation protocols in open
multi-agent systems

Abdelkader GOUAICH

Laboratoire, Informatique, Robotique et Micro ´electronique
Montpellier, France,

gouaich@lirmm.fr

Abstract. This paper presents an approach to formally link a simple dependency-
based coordination model to its related conversation protocol. Hence, by ob-
serving conversation among coordinating entities, an external observer is able
to recognise valid conversations that do not break the established norms on coor-
dination. This may help in building reliable autonomous agent based systems in
open and untrustred environments.

1 Introduction

Technological evolutions achieved in several computing fields such as hardware, net-
working and software engineering have enlarged the potential use of software-based
services. Hence, current and future software systems are expected to be communicative
and collaborative systems defined everywhere and offering their services at anytime to
help users in their daily activities. Still, both changes on expectations and technological
evolutions have also implied changes on software systems properties and hypothesis
previously formulated on them. Hence, current and future software systems exhibit the
following properties [27] :

– Situatedness: Having local communication and local interaction properties, a soft-
ware system’s global functionality depends on the local context of its elementary
components.

– Openness: The software system has no longer a defined clear barrier and static
structure. It is permanently evolving by merging or rejecting sub-components.

– Locality in interaction: Interaction among components can be conducted locally
without requiring a centralised communication infrastructure. This raises the dy-
namics of the software system and allows emergence of new observable function-
alities defined by elementary components.

– Heterogeneity: Obviously in a large connected world several actors with different
goals build software components. Hence, several heterogeneous entities have to
collaborate or coordinate their actions when placed together in a certain context in
order to achieve their local goals.

– Autonomy of the components: Autonomy of a software component is an important
feature that should be remembered when designing large open distributed software
systems. Hence, software components have to be considered as black boxes, and
lack of knowledge on their internal structure make them behaving autonomously
since their reaction to an external stimulus is not fully predictable [1].

In this context, agent-based software engineering offers an interesting approach for de-
signing and building this class of software systems. In fact, most of the presented fea-
tures have already been considered as axioms in the theoretical foundation and defini-
tion of the agency [26, 11]. This paper focuses on coordination and conversation aspects
of multi-agent systems and tries to make a formal link between coordination protocols
and their related conversation protocols.

2 Autonomy and Responsibility of software agents

An autonomous software agent is defined as a self-governed entity that decide what
action to do according to its local goals and rules [5]. Starting from this autonomy in-
terpretation and by considering communication and interaction as another fundamental
feature of software agents, [1] has established the need of an automatic entity that does
not modify its internal rules to achieve actual interactions among autonomous agents.
In fact, the integrity of the software structure encoding the agent’s computational be-
haviours was found as a sine qua none condition in order to implement autonomous
agents without having any assumption on their internal architecture. So, to interact
an agent is not allowed to modify other agents’ software structure and delegate this
risky action to a trusted automatic entity, namely thedeployment environment. On the
other hand, in order to meet requirements of autonomous agents and guarantee virtual
agent society norms on coordination and conversation, it was found useful to consider
the multi-agent system as a composition of two orthogonal components: autonomous
agents and the deployment environment [1]. Autonomous agents are considered as un-
known software components that interact in order to achieve their private goals. The
term unknown refers to software components that hide completely the software struc-
ture implementing their behaviours. As seen above, this feature has to be considered
as an axiom in large distributed systems. Besides, the deployment environment may
encode the agent virtual society laws and norms independently from agents that popu-
late it and thus establishes a referential to establish agents responsibility. For instance,
interaction and conversation policies may be implemented by this entity. Since, the de-
ployment environment is an automatic entity its internal laws are static and identifiable.
Due to this property, the responsibility of the deployed unknown autonomous agents is
established when their actions challenge the norms of the agent virtual society [1]. As
an example of such deployment environment an algebraic model named MIC* has been
introduced in [13].

2.1 {Movement, Interaction, Computation}* (MIC*):

MIC* is an algebraic structure where autonomous, mobile and interacting entities are
deployed. Within this framework, all interactions are conducted by explicitly exchang-
ing interaction objects through interaction spaces. Hence, agents do not alter directly
the deployment environment or the perceptions of other agents, but send their attempts
as interaction objects. Interaction objects are structured: in fact, a formal addition law
can compose them commutatively+ to represent simultaneous interactions. Further-
more, abstract empty interaction object0 can be defined to represent no interaction.

The less intuitive part of the structure of the interaction objects concerns negative inter-
action objects. Negative interaction objects are constructed formally and may have no
interpretation in the real world. However, they are useful for the internal model defini-
tions and implementation of the deployment environment. For instance, the deployment
environment can cancel any action,x, of the agent simply by performing an algebraic
operation,x + (−x) = 0, that is expressed within the model notations. Finally, interac-
tion objects defines a structure of a commutative group(O,+), whereO represents the
set of interaction objects and+ the composition law. Interaction spaces, represented
by S, are defined as abstract locations where interaction between agents holds. They
are active entities that control their local and specific interaction rules. For instance,
interaction object that are sent inside an interaction space may be altered if they violate
the interaction norm. Agents, represented byA, are autonomous entities that perceive
interaction objects and react to them by sending other interaction objects. As said be-
fore, agents’ actions are always considered as attempts to influence the deployment
environment structure. These attempts are committed only when they are coherent with
the deployment environmental rules of evolution. Having these elementary definitions,
each MIC∗ term is represented by the following matrices:

– Outboxes Matrix: The rows of this matrix represent agentsA i ∈ A and the columns
represent the interaction spacesSj ∈ S. Each element of the matrixo(i,j) ∈ O is
the representation of the agentAi in the interaction spaceSj .

– Inboxes Matrix: The rows of this matrix represent agentsA i ∈ A and the columns
represent the interaction spacesSj ∈ S. Each element of the matrixo(i,j) ∈ O
defines how the agentAi perceives the universe in the interaction spaceSj.

– Memories vector: AgentsAi ∈ A represent the rows of the vector. Each element
mi is an abstraction of the internal memory of the agentA i. Except the existence
of such element that is proved using the Turing machine model, no further assump-
tions are made in MIC∗ about the internal architecture of the agent.

The set of all MIC* terms is represented byT .

Dynamics of MIC*: The dynamics of the deployment environment is described as a
sequence of elementary evolutions:T → T . Three main classes of evolutions were
characterised in MIC*:

– Movementµ: A movement is a transformationµ, of the environment where both
inboxes and memories matrices are unchanged, and where outboxes matrix inter-
action objects are changed but globally invariant. This means that the interaction
objects of an agent can change positions in the outboxes matrix and no interaction
object is created or lost.

– Interactionϕ: The interaction is characterised by a transformationϕ that leaves
both outboxes and memories matrices unchanged and transforms a row of the in-
boxes matrix. Thus, interaction is defined as modifying the perceptions of the enti-
ties in a particular interaction space.

– Computationγ: An observable computation of an entity transforms its represen-
tations in the outboxes matrix and the memories vector. For practical reasons, the

inboxes of the calculating entity are reset to0 after the computation to distinguish
interaction objects that were involved in different computations.

t0 ∈ T f0∈γ∪ϕ∪µ−→ t1 = f0(t0) ∈ T f1∈γ∪ϕ∪µ−→ t2 = f1(t1) ∈ T ❀ tn+1 = fn(tn) ∈ T

Fig. 1. Evolution of a MAS deployment environment starting from an initial termt0 until tn+1

by following elementary transformations of typeµ, ϕ or γ.

The main idea of MIC* approach is that the dynamics of the deployment environment
can be modelled as a composition of evolutions that can be considered as being a move-
ment, interaction or computation. Consequently, as presented in figure 1, any state of
the deployment environment can be reached by following a path of evolutions of type
µ, ϕ or γ. Hence, the deployment environment dynamics is no more an unknown and
chaotic evolution, but a structured sequence of elementary transformation.

3 Background

3.1 Generalised study of coordination:

Malone and Crowson in [19] have noticed that coordination among autonomous en-
tities is common to several independent fields such as computer science, economics,
operational research and organizational theory. Hence, they have tried to study it in a
single framework:the coordination theory. According to their definition, coordination
is viewed as managing dependencies between activities. Hence, entities coordinate their
actions in order to manage dependencies that exist between their activities. So, to un-
derstand what is coordination, one has to understand and study what are the existing
dependency situations among activities.

Dependencies

Shared resource
Producer/Consumer

 Relationship
Simultaneity constraint Task/Subtask

Prequesite
 constraint

Transfer Usability

Fig. 2. Malone and Crowson [19] categorisation of common dependencies among activities.

As shown in figure 2, Malone and Crowson sketch a categorisation of the depen-
dencies among autonomous entities as follows:

Shared resource:When several activities share some limited resource a particularre-
source allocation strategy is needed in order to handle this dependency. Several
independent fields have identified this dependency and proposed some specific re-
source allocation strategies. For instance, computer science field has studied how
available hardware and software resources are shared among computational enti-
ties. Hence, multi-threaded operating systems require allocation strategy and algo-
rithms to share the computation units (processors, input/output devices) on a com-
puter. Another example of limited resource dependency is the optimal sharing of
available network bandwidth using a network protocol.

Producer/Consumer Relationship: This dependency represents situations when an
activity produces something that is used by another activity. This relation implies
the following dependencies:
Prerequisite constraint: This dependency expresses an order that exists between

the producer and the consumer.
Transfer: When the producer activity produces something that has to be used by

the consumer activity, the produced object has to be transferred from the pro-
duction point to the consumer point. Managing this dependency involves defin-
ing how totransport things between the producer and consumer activities. For
instance, in case of software programs where the produced thing is informa-
tion, the transfer dependency is resolved using communication protocols as a
transportation mechanism.

Usability: The other dependency implied by producer/consumer relationship is the
usability. In fact, the consumer should be able to correctly use the producer’s
products.Standardisation is a common way to resolve this dependency. Hence,
both producer and consumer agree on what are the requirements to consider a
product as consumable and try to meet these specifications. Syntax of mes-
sages and the semantics of commands are examples of standardisation when
transferring information between software entities.

Simultaneity Constraint: Some activities are timely constrained, so they have to be
executed at the same time (or cannot occur in the same time). This dependency
expresses these situations.Semaphores are examples of a mechanism used in com-
puter science to handle synchronised activities.

Task/Subtask This relation basically expresses the hierarchical decomposition of an
activity in several sub-activities. So, the main activity depends on its sub-activities
and finishes when they are completed.

3.2 Models and methodologies to specify coordination protocols in software
systems:

To express coordination protocols among software components several models and no-
tations have been introduced. This paragraph gives an overview of these models.

Software engineering methodologies:Usually software engineering methodologies
such as MERISE and UML include in their specification model some graphical

and textual descriptions to specify coordination of activities to be implemented by
software programs.

Statecharts: Statecharts [14] is an extension of state transition diagrams with three
elements dealing with hierarchy, concurrency and communication. This formalism
is used for the specification and design of complex discrete-event systems such as
distributed systems and communication protocols.

Flowchart: A flowchart system shows the overall structure of a software system by
tracing the flow of information, work and by highlighting key processing and de-
cision points. It also includes the physical media on which data are inputted, out-
putted and stored.

Process Algebra: This family of formal models (CSP [16], CCS [21], Pi calculus [25],
Ambient [4], Join calculus [12]) implicitly expresses coordination among processes
by synchronising communication and actions using algebraic operations. So, coor-
dination mechanisms are implicitly defined in the semantics of the operators and
rewriting rules. The observable result is still an ordered execution of the distributed
activities. For instance, a Pi-calculus process stops its activity waiting for an in-
coming message on a named communication channel; when another process sends
a message on this named channel, the blocked process continues its execution. This
synchronisation operation implicitly defines a partial order relationship among ac-
tivities and can also be viewed as a producer/consumer relation between processes
where messages are the exchanged resources.

Language of Temporal Ordering Specifications (LOTOS):LOTOS is a formal de-
scription technique standardised as ISO/IEC8807. It was developed by the Inter-
national Organisation of Standardisation (ISO) to support standardisation of Open
Systems Interconnections (OSI). In fact, formal description technique helps in di-
minishing ambiguities on OSI produced specifications that are distributed world-
wide and used by several software engineering actors. LOTOS formalism is mainly
based on process algebra to express the implicit order and dependencies among the
activities. Besides, LOTOS allows abstract specification of data type using ACT
ONE. This abstract data type specification language can be viewed as a way to
resolve the usability dependency previously presented by Malone and Crowson.

Petri Nets: Petri Nets is a formal and graphical oriented language for design, specifica-
tion, simulation and verification of systems in which communication, synchronisa-
tion and resource sharing are important. Examples of application areas of Petri nets
are communication protocols, distributed systems, workflow analysis. The Petri Net
model is a digraph composed by two classes of nodes: transitions and places rep-
resenting respectively activities and perquisite relations between activities. Hence,
each place contains tokens that are produced by the ancestor activities; a particular
activity may be executed when all its preceding places contain tokens.

Specification and Description Language (SDL):SDL is a specification language stan-
dardised by the International Telecommunication Union (ITU) . SDL coordination
mechanisms are expressed using extended finite state machines. SDL specifications
include also abstract data type specifications described using ACT ONE as in LO-
TOS.

Extended State Transition language (ESTELLE): ESTELLE is a formal description
technique standardised by ISO. It is suitable for the specification of coordination

mechanisms among distributed software systems and was used to describe OSI ser-
vices and protocols. An ESTELLE specification is a hierarchy of communicating
non-deterministic state machines. By specifying the used type of communication,
synchronous or asynchronous, both dependencies and execution order are implic-
itly defined between the state machines in ESTELLE.

Message Sequence Charts (MSCs): Message Sequence Charts (MSCs) [17] are graph-
ical and textual language for the description and specification of the interactions
between different components normalised by the (ITU). They are usally used in
combination with SDL specifications or used as sequence diagram in UML. MSC
denotational semantics is expressed using an adaptation of process algebra formal-
ism. This helps in defining partial order relations between events, such as message
exchange and actions, occurring in the system. Another interpretation of MSC de-
notational semantics is done using graph grammars.

High-Level Message Sequence Charts (HMSC):They are considered as formalism
to compose MSCs automatons using sequence, parallel and alternative operators.
These compositions are given two different semantics within HMSC: strong com-
position, where all events of a scenario must hold before executing the next sce-
nario; and weak composition where events are executed when possible. Since,
MSCs semantics is defined as a partial order between events occurring in a system,
the semantics of HMSC is defined as an extension of these partial order relations
built following the semantics of the composition operators expressing sequential
composition, alternative and iteration. HMSC denotational semantics is expressed
using grammar graph that helps in studying some general properties of the system
using model-checking techniques and to translate the system specification on other
specification languages such as SDL, ESTELLE or Statecharts.

3.3 Software architectures to implement coordination in software systems:

Coordination (software) community has also defined some coordination architecture
implementing generic coordination mechanisms such as synchronisation and producer
/ consumer relationships. Entities of a coordination architecture are the following: coor-
dinables, representing entities to be coordinated; coordination media, representing the
media used to coordinate the entities; and finally coordination laws that define how the
coordination media reacts in response to coordinables actions. A survey of coordination
architectures can be found in [24]. It categorises coordination architectures in two main
categories:

Data driven In data-driven coordination models, the coordination media is represented
by an addressable storage space shared between the coordinables. Thus coordinables
interact by storing and retrieving data structures from the shared data space. Be-
sides, the coordination laws define how these data structures are represented, stored
and consumed by the coordinables.

Control driven In control-driven coordination models, the coordination media is rep-
resented by a set of input/output communication ports linking coordinables and
enabling their interactions. In order to achieve these interactions, the coordination
media considers coordinables as black boxes and check their state changes and

events occurring on their communication ports. These events are then propagated
to other coordinables following some specific coordination rules with no concern
for their internal data and representation

3.4 Conversational aspects of coordination:

When coordinables are distributed, coordination is necessarily achieved through com-
munication and interaction. Hence, entities communicate by exchanging messages in
order to meet the requirements of their coordination protocol. When observing these
exchanged messages among coordinating entities, an external observer remarks that the
structure of the conversation, defined as an ordered sequence of messages, is guided
by the underlying coordination protocol. Specifying this dialogue structure is known as
establishing aconversation protocol. Among formalisms that are used to specify con-
versation protocols one can find the following: finite state machines (FSM), as in works
of [2, 3, 20]; state transition diagrams (STD), as in works of [18]; coloured petri nets
(CPN), as in works of [6, 10].

3.5 Discussion

As presented above, several works have studied the coordination problem in computer
science. These works can be classified in the following categories:

Activity centric: Works of this category focuse on the activity part of coordination.
Hence, their main goal is to know what activity to execute and when to execute
it. This category is represented by the models for the specification of coordination
protocols presented in§3.2.

Conversation centric: Works of this category focus their interest on the conversational
aspect of coordination. Hence, their main goal is to know what message to send
and when to send it in order to coordinate distributed activities. Works of 3.4 are
examples of this category.

Implementation centric: This category of works propose generic software architec-
tures and middlewares abstracting coordination mechanisms to easily design, im-
plement and deploy software systems where concurrent activities have to be coor-
dinated.

Generalisation efforts: Works of this category sketch a general framework trying to
include all aspects of coordination and linking several research fields sharing same
concepts and interests. Malone and Crowson’s works are an example of such gen-
eralisation effort.

By observing the literature it seems that activity centric work, conversational centric
works and architecture centric constitute blocks with some synergy among them. Still,
there is no established formal link between them. Malone and Crowson coordination
theory is a first step to link all these works in a single framework. Hence, this pa-
per starts from their works in order to refine a simple dependency based-coordination
model expressing dependencies among activities using a directed graph as mathemat-
ical model. Having this refined coordination model some concepts such asrole, and

role-cut are introduced. Conversation protocols are then defined formally as a sequence
of messages recognised by a rewriting grammar. This grammar is defined by the struc-
ture of the coordination model.

4 Simple dependency-based coordination model

Figure 2 presented common dependencies shared by several research fields. This cat-
egorisation is very helpful to understand why autonomous entities coordinate their ac-
tions. However, since Malone and Crowson seek for generality, they make no precise
assumptions on the properties of the addressed system. Besides, some of the presented
dependencies are redundant and could be expressed with other dependencies. So, by
having more assumptions on the entities to be coordinated, would it be possible to
define a more refined model of coordination where all dependencies are canonically
expressed? To answer this question, let us first set some hypothesis on the considered
systems to be coordinated:

– The considered system is a software system composed of either software or hard-
ware autonomous and interacting components;

– The autonomy axiom implies that the internal structure of the entities is never ac-
cessible and modified by another entity. Consequently, communication and actions
of the entities are asynchronous and explicitly represented as attempts of actions[1].
The autonomy axiom prevents also from knowing how entities actually behave and
achieve their goals. Only observable aspects of their computation are studied.

– Communication among components is represented as an explicit exchange of data,
or messages, through a communication medium and the communication process is
not assumed to be synchronous.

Under these assumptions, all dependencies presented in figure 2 can be expressed canon-
ically as producer/consumer relationships. For instance, the shared resource depen-
dency is modelled by introducing a resource manager entity that gives authorisation
to consumer to access the resource according to a particular resource management
strategy. The consumers of the resource and the resource manger are obviously in a
producer/consumer dependency. Similarly, simultaneity dependency is expressed as a
consumer/producer dependency between a monitor and the concurrent components. Fi-
nally, task/sub-tasks dependency is also expressed as a set of producer/consumer depen-
dency between the global task and its sub-activities. Consequently, the refined model of
coordination has to express only the consumer/producer dependency with the following
elements:

Activities: As said previously, coordination is defined between activities; thus, they
have to be explicitly represented in the coordination model.

Transferable: According to results presented above, all common dependencies among
activities can be considered as producer/consumerdependencies. A producer/consumer
dependency induces both a transfer and prerequisite dependency. Notice that pre-
requisite dependency is also a consumer/producer dependency where the notifica-
tion is considered as the thing to be transported.

Usability dependency: According to Malone and Crowson’s, each producer/consumer
dependency induces a usability dependency. The usability dependency guarantees
that the transferable is usable by the consumer after being produced by the pro-
ducer. Consequently, for each transferable a conformity-checking function should
be provided to model the usability dependency. Using Malone and Crowson’s terms
this function represents the standard resolving the usability dependency between
activities.

Roles: Functionalities of agents in their artificial society are usually abstracted asroles.
Roles are considered in the refined coordination model in order to situate where the
activities are executed during the coordination process.

Given these elements, the coordination model can be represented as a directional graph
described as follows:

– Two types of vertices are identified representing activities, graphically symbolised
as boxes, and transferables graphically symbolised as circles;

– For each transferable node a usability-checking function is associated to check the
conformity of the transferable according to the usability convention that was estab-
lished by the producer and the consumer;

– An oriented edge links an activity to a transferable to represent a production of a
transferable by that activity and a transferable to an activity to represent a consump-
tion of a transferable by that activity. A dependency relation is then completely
defined by having the producer vertex, the transferable and the consumer vertex;

– As previously mentioned, a prerequisite dependency among activities is expressed
as a producer/consumer dependency with a special notification transferable noted
ε.

– The coordination graph can be split in several connected components that are linked
by transferable vertexes to represent activities associated with each role.

The above elements are captured more formally by the following definition:

Definition 1. Let O be a set of interaction objects (or messages), a dependency-based
coordination model is defined as a digraph G =< A,N, T, F, V ↑, V ↓ >. A represents
the set of activity nodes. N and T are disjoint sets where elements of εi ∈ N are
considered as notification nodes and elements t ∈ T are transfer nodes. Arrows of the
graph are defined by V ↑ and V ↓, such as V ↑ : A × (N ∪ T) and V ↓ : (N ∪ T) × A
represent respectively production and consumption arrows. F = {f t∈T : O → O} is
a set of functions that check for each transfer node t ∈ T the conformity of the actual
exchanged transferable considered as an interaction object.

When a transfer node is consumed by several activities, this is interpreted as an exclu-
sive choice. Thus, only one activity may be executed after production of the transfer-
able. On the other hand, when an activity produces several transferables, this is inter-
preted as simultaneous production of resources. Roles decomposition in a dependency-
based coordination digraph is viewed as a particular partitioning of the activities in the
digraph. Roles have to be independent and should not share activities. In fact, without
this property, actual agents implementing these roles may be in conflict on activities
and consequently lose their autonomy property.

Definition 2. Having a coordination graph G =< A,N, T, F, V ↑, V ↓ >, a role de-
composition d is a subset of P(A) where:

∀x, y ∈ d, x ∩ y = ∅

Roles decomposition divides the global coordination graph in several sub-graphs. Hence,
for each roler in a role decompositiond ⊂ P(A), the associated role sub-graphs are
built by including all activities ofr and inserting all production and consumption arrows
that are insider. This is more formally defined as follows:

Definition 3. A role sub-graph gr =< Ar, Nr, Tr, Fr, V
↑
r , V ↓

r > of a role r found
in a decomposition d ⊂ P(A) of a dependency-based coordination digraph G =<
A,N, T, F, V ↑, V ↓ > is defined as follows:

Ar = r
Nr = {ε ∈ N : ∃ a, b ∈ Ar, (a, ε) ∈ V ↑ ∧ (ε, b) ∈ V ↓}
Tr = {t ∈ T : ∃ a, b ∈ Ar, (a, t) ∈ V ↑ ∧ (t, b) ∈ V ↓}
Fr = {ft ∈ F : t ∈ Tr}
V ↑

r = {(a, t) ∈ V ↑ : (a ∈ Ar) ∧ (t ∈ Tr)}
V ↓

r = {(t, a) ∈ V ↓ : (a ∈ Ar) ∧ (t ∈ Tr)}

Role sub-graphs of a complete decomposition are linked by transferables defining
dependencies among these roles. This part of the graph is named arole-cut and repre-
sents the glue that makes roles interdependent. Still, notification objects,ε ∈ N , are
considered as a special transferable with a special semantics. For instance, they do not
induce a usability dependency between activities and can be implemented inside the
same software entity without exchanging an explicit interaction object. So, notification
nodes that do not always induce an explicit exchange of messages have not to be present
in the role-cut. More formally, a roles-cut is specified as follows:

Definition 4. Roles-cut of a dependency-based coordination graph G =< A,N, T, F, V ↑, V ↓ >,
is defined as the minimal set of transferable c ⊂ T that if all its elements x ∈ c were
removed along with there related production and consumption vertexes this would pro-
duce a digraph with more connected components than the original digraph.

4.1 Defining conversation protocol grammar from coordination protocol

Notations: Interaction among autonomous agents has to be explicitly represented. For
instance, within the MIC* model, a formal deployment environment of autonomous
agents [13], interaction is conducted through explicit interaction objects represented in
the setO. This set owns at least, for the purpose of this paper, a structure of a com-
mutative group. Hence, interaction objects found inO can be summed commutatively
with the+ law. This operation has not to be misinterpreted with the non-commutative
concatenation law. (dot) that will be used in order to generate ordered sequences of
messages represented byO∗. When there is no ambiguityx.y is simply represented by
xy. In this sectionO∗ represents the free monoid generated by the interaction object
setO with the non-commutative dot law. Intuitively this represents words where the

alphabet is interaction object set.̄O represents a marked set of interaction object de-
fined as follows:Ō = {x̄ : x ∈ O}. O′ is defined as union set ofO and Ō. |α| is a
simple function defined onO ′∗ → O∗ that retrieves marks from all marked interaction
object found in a wordα. The functionπd : O∗ → O∗, whered ⊂ O is a projection
of a word on a subset alphabet. In other words, this operation simply retrieves elements
found in the word that are not in the subset alphabetd. For an activity nodea ∈ A
in the dependency-based coordination graph,a+ anda− respectively represent the set

of production arrows and the consumption arrows ofa.
R
❀ represents a path or a finite

composition of a relation
R→.

Having these notations, the grammar of the conversation protocol is defined as a

rewriting system where the rewriting relation,
R→: O′∗ ×O′∗, is defined as follows:

U0a1U1a2U2...anUn
R→ U0ā1U1ā2U2...āiUiUi+1...Un

⇒ ((
∑i

x=1 |ax|,
∑n

x=i+1 |ax|) ∈ R) ∧ (∀j ∈ [1..i], aj /∈ Ō)

(ai)i∈[1..n] ∈ O′ are alphabet elements;(Uj)j∈[0..n] ∈ O′∗ are sequences belonging to
the monoid.

Interpretation: R : O ×O represents the set of reduction or simplification rules. The
interpretation of these rules is as follows:(

∑
x,

∑
y) ∈ R means that

∑
y messages

appearnecessarily after
∑

x messages. So, this defines a partial order relationship be-
tween messages. After a reduction, messages that have been used in the left part of a
reduction relation are marked to avoid confusions and ambiguities: in fact, this mecha-
nism ensures that the left part of a reduction relation is used once.

What is missing in the previous definition is the relationR : O×O of simplification
rules. This set is constructed from the coordination graphG =< A,N, T, F, V ↑, V ↓ >
as follows:

∀a ∈ A, (
∑

(x,a)∈a−
x,

∑
(a,x)∈a+

x) ∈ RG (1)

Having these definitions, a conversation protocol is defined as the set of message
sequences recognised by the grammar defined above. This is expressed more formally
as:

Definition 5. Let O be the interaction objects set; a conversation protocol P (x0,G) for
a dependency-based coordination graph and the axiom x 0 ∈ O∗ is defined as follows:

U ∈ P(x0,G) ⇐⇒ ∃U ′ ∈ O′∗ : U ′ R
❀ x0 ∧ |U ′| = U

The problem with the given definition is that it includes all interaction objects that
are exchanged among activities. However, as said before only interaction objects ex-
changed through a role-cut are observable and interesting to study. So, when defining
a conversation protocol for a particular roles-cut the previous definition is expressed as
follows:

Definition 6. Let O be the interaction objects set; A conversation protocol P (x0,G,d)

defined on a role-cut d found in a dependency-based coordination graph G for the
axiom x0 ∈ O∗ is defined as follows:

U ∈ P(x0,G,d) ⇐⇒ ∃ U ′ ∈ O′∗ : U ′ R
❀ x0 ∧ |πd(U ′)| = U

Thus, the projection operation ensures that only interaction objects observable on the
role-cut are included in the definition of the conversation protocol.

4.2 Simple example

Role Client

Role Broker

Role Service Provider

e0

Send a Service Request

e1

Client Request

Wait a service offer

e2

Refuse the offer Accept the offer

Offer refused Offer accepted

Select a service

Forwarded Client Request

Receive Client Request

Service Offer

Offer refused Offer accepted

e3

Send an offer

e4

Fig. 3. Simple Coordination protocol among three roles: Client, Broker and Service Provider,
expressed using the dependency-based coordination graph. Activities nodes as represented as
boxes and Transfer nodes as circles.

Figure 3 presents a simple coordination protocol among three roles: the client, the
service broker and the service provider. This coordination pattern in commonly used in
both multi-agent systems and distributed systems, where the broker links clients to ap-
propriate service providers. When connected to a client, the service provider recursively
proposes offers to the client until the later accepts a good offer.

Figure 4 represents an abstracted view of the coordination protocol described in
figure 3 where the roles, resources and activities are represented by abstract symbols.
The roles-cut in this graph iscG = {x, y, z, v, w}. By applying definition of equation
1, the simplification relations set,RG, is calculated and equals to:

RG = {(e0, x + e1), (x, y), (e1 + z, e2), (e3, z + e4),
(e2, e1 + v), (v + e4, e3), (e2, w), (y, e3)}

Role B

Role A

Role C

Role cut

b1

Y

e0

a0

e1

X

a1

e2

a2 a3

V W

c1

e3

c2

e4 Z

c3 c4

Fig. 4. Abstract view of the coordination protocol presented in figure 3

Having these elements, and by applying definition 6, the conversation protocol observ-
able at the role-cut,cG, among thethree roles is fully defined.e0 is considered as the
axiom the conversation protocol. Notice that the definition of the conversation protocol
depends only on the role-cut, no matter how many roles are linked by this roles-cut.
Let u = xyzvzvzw ∈ O∗ be an observable conversation between A, B and C at the
role-cut. This conversation is a valid conversation. In fact, by consideringα 0α1α1α2,
whereα0 = e0e1xy, α1 = e3e4ze2ve1 andα2 = e3e4ze2w, this sequence can be
reduced to the axiome0 as follows:

α0α1α1α3
RG→ α0α1α1e3e4zē2

RG→ α0α1e3e4ze2vē1e3e4z̄
RG→ α0α1e3e4ze2vē1ē3

RG→ α0α1e3ē4ze2v̄ē1
RG→ α0α1e3ē4zē2

RG→ α0e3e4ze2vē1e3ē4z̄
RG→ α0e3e4ze2vē1ē3

RG→ α0e3ē4ze2v̄ē1
RG→ α0e3ē4zē2

RG→ e0ē1xye3ē4z̄
RG→ e0ē1xyē3

RG→ e0ē1xȳ
RG→ e0ē1x̄

RG→ ē0

andπcG(α0α1α1α2) = u. The interpretation of this conversation is quite simple, after
being connected with the service by the broker; the client has refused two offers and
accepted the third one. By contrast, when no path is found to reduce a conversation
into the axiom, this means that the partial order of messages has been violated and
consequently the coordination protocol is not respected. For instance,yxz is an invalid
conversation that will not be recognised by the grammar.

5 Discussion

The presented approach aims to check conformity of agents’ conversation according to
coordination protocols at the runtime. Hence, the conversation protocols (or interaction
protocols) are not represented explicitly like in [9] but derived from the coordination
protocol. The presented model of coordination is based on producer/consumer depen-
dency relationship. The resource dependency model among roles/agents is becoming
used even in agent design methodologies likeTropos [15] and can be assumed to be
rich enough to express complex situations founds in multi-agent systems.

Like [9] we assume that the coordination protocols and consequently the conversa-
tion protocols should be public and represents a part of the multi-agent system social
norms. However, each agent has a specific internal strategy that steers its behaviour and
responses to external stimulus. This assumption constrains us to check conformity of
coordination protocol by an external observer: the deployment environment or the co-
ordination media for instance.

Themediated interaction [22, 7] offers the opportunity to observe all actions com-
ing from the autonomous agents and to check their conformity according to the estab-
lished norms. In our approach, theinteraction mediator will be responsible of checking
the conformity of an ongoing conversation by applying results of the definition 6. For
instance, the next paragraph presents an example of how conversation protocols are
checked within the MIC* framework.

5.1 Conforming interactions in MIC*:

Functionally, the conversation protocol checker can be considered as a Boolean func-
tion f : O∗ → {�,⊥} taking as argument a sequence of interaction objectso ∈ O ∗ (or
a conversation) and returning a valuev ∈ {�,⊥}. ⊥ expresses the invalidity of a con-
versation while� expresses its validity. The set of conformity testing functions is noted
CF . Using the approach presented in this paper, the conversation protocol checker has
to reduce the conversation to the axiom by using the simplification rules obtained from
the coordination protocol by applying the definition of equation 1. When the conversa-
tion can be reduced to the axiom, the conversation is considered as valid (�) and invalid
otherwise (⊥).

Interactions in MIC* (see§2.1) are defined as special evolutions of the deployment
environment that modify the perceptions of agents, according to emissions of other
agents in an interaction space. The goal here is to build interaction operations insuring
the conformity of interactions. Hence, a conform interactionϕ f is built by the following
application:

ϕ× CF → ϕ

(f, g) �→ fg

where,fg is defined as following:

∀x ∈ O∗ : fg =
{

f if g(x) = �
Id if g(x) = ⊥

Id expresses the identity application that does not modify the deployment environment.
So, given a standard interaction operation defined on MIC* and a conversation proto-
col checker, a conform interaction operation is defined on MIC*. This new interaction
operation does not modify the deployment environment, when the conservation is in-
valid, and behaves as the standard interaction operationϕ otherwise. Consequently, the
deployment environment is never modified by invalid interactions and thesebogus at-
tempts are transparently rejected and never reach agents’ perceptions.

The next step of our work is to offer to the deployment environment concrete solu-
tions and tools to check if a conversation belongs or not to a certain protocol.

6 Conclusion

This paper has presented an approach in order to link conversation protocols to their
corresponding coordination protocols. Hence, the conversation protocol is seen as struc-
tured sequences of messages of interaction objects recognised by the rewriting system.
This rewriting system is considered as a conversation policy that can be integrated in
a coordination architecture such as MIC* in order to validate conversations in a multi-
agent system. Consequently, future works have to explore how to automatically and it-
eratively recognise valid conservations by observing messages among the coordinating
entities. This will help in implementing reliable multi-agent systems where conversa-
tion laws and consequently coordination protocols are guaranteed by a trusted observer,
namely the deployment environment, which established a referential for agents respon-
sibility in large open and untrusted software systems.

References

1. GOUAICH Abdelkader. Requirements for achieving software agents autonomy and defining
their responsibility. InAutonomy Workshop at AAMAS 2003, Melbourne, Australia, 2003.

2. Mihai Barbuceanu and Mark S. Fox. COOL: A language for describing coordination in
multi-agent systems. In Victor Lesser, editor,First International Conference on Multi-Agent
Systems, pages 17–24, San Francisco, California, 1995. AAAI Press/The MIT Press.

3. Mihai Barbuceanu and Wai-Kau Lo. Conversation oriented programming for agent interac-
tion. In Dignum and Greaves [8], pages 220–234.

4. Luca Cardelli. Abstractions for mobile computation.Secure Internet Programming, pages
51–94, 1999.

5. C. Castelfranchi. Guarantees for autonomy in cognitive agent architecture.Intelligent
Agents: Theories, Architectures, and Languages, 890:56–70, 1995.

6. R. Scott Cost, Ye Chen, Timothy W. Finin, Yannis Labrou, and Yun Peng. Using colored
petri nets for conversation modeling. In Dignum and Greaves [8], pages 178–192.

7. Enrico Dente, Ricci Alessandro, and Rossella Rubino. Integrating and orchestrating services
upon an agent coordination infrastructure. In Omicini et al. [23].

8. Frank Dignum and Mark Greaves, editors.Issues in Agent Communication, volume 1916 of
Lecture Notes in Computer Science. Springer, Lecture Notes in Computer Science, 2000.

9. Ulle Endriss, Lu Wenjin, Maudet Nicolas, and Stathis Kostas. Competent agents and cus-
tomising protocols. In Omicini et al. [23].

10. Amal El Fallah-Seghrouchni, Serge Haddad, and Hamza Mazouzi. Protocol engineering
for multi-agent interaction. In Francisco J. Garijo and Magnus Boman, editors,MAAMAW,
volume 1647 ofLecture Notes in Computer Science, pages 89–101. Springer, 1999.

11. Jaques Ferber.Les Systemes Multi-Agents. InterEditions, 1995.
12. Cedric Fournet.Le Join-Calcul: Un Calcul Pour la Programmation Repartie et Mobile. PhD

thesis, Ecole Polytechnique, 1998.
13. Abdelkader GOUAICH, Yves GUIRAUD, and Fabien MICHEL. Mic∗: An agent formal

environment. 7th World Multiconference on Systemics, Cybernetics and Informatics (SCI
2003), 7 2003. Orlando, USA.

14. David Harel. Statecharts: A visual formalism for complex systems.Science of Computer
Programming, 8(3):231–271, June 1987.

15. Brian Henderson-Sellers, Giorgini Paolo, and Bresciani Paolo. Enhancing agent open with
concepts used in the tropos methodology. In Omicini et al. [23].

16. C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall International, 1985.
17. ITU. Recommendation z.120: Message sequence chart (MSC). Technical Report Z.120,

International Telecommunication Union, 1993.
18. Ralf König. State-based modeling method for multiagent conversation protocols and de-

cision activities. In Ryszard Kowalczyk, J¨org P. Müller, Huaglory Tianfield, and Rainer
Unland, editors,Agent Technologies, Infrastructures, Tools, and Applications for E-Services,
volume 2592 ofLecture Notes in Computer Science, pages 151–166. Springer, 2003.

19. Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coordination.ACM
Computing Surveys (CSUR), 26(1):87–119, 1994.

20. F. Von Martial.Coordinating Plans of Autonomous Agents, volume 610 ofLecture Notes in
AI. Springer, Berlin, 1992.

21. Robin Milner.Communication and Concurrency. Prentice-Hall, 1989.
22. Andrea Omicini and Ricci Alessandro. Integrating organisation within a mas coordination

infrastructure. In Omicini et al. [23].
23. Andrea Omicini, Paolo Petta, and Jeremy Pitt, editors.Engineering Societies in the Agents

World III, volume 2577 ofLNAI, 2003.
24. G.A. Papadopoulos. Models and technologies for the coordination of internet agents: A

survey. In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf,
editors,Coordination of Internet Agents: Models, Technologies, and Applications, chapter 2,
pages 25–56. Springer-Verlag, 2000.

25. Milner Robin, Parrow Joachim, and Walker David. A calculus for mobile processes, parts 1
and 2.Information and Computation, 100(1), 1992.

26. Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: theory and practice.The
Knowledge Engineering Review, 10(2):115–152, 1995.

27. Franco Zambonelli and H. Van Dyke Parunak. Signs of a revolution in computer science and
software engineering. InAgent Oriented Software Engineering Workshop at AAMAS 2002,
Bologna, 2002.

