N
N

N

HAL

open science

MASPEGHI 2004 Mechanisms for Speialization,
Generalization and Inheritance

Philippe Lahire, Gabriela Arévalo, Hernan Astudillo, Andrew P. Black, Erik

Ernst, Marianne Huchard, Markku Sakkinen, Petko Valtchev

» To cite this version:

Philippe Lahire, Gabriela Arévalo, Herndn Astudillo, Andrew P. Black, Erik Ernst, et al.. MASPEGHI
2004 Mechanisms for Speialization, Generalization and Inheritance. Object-Oriented Technology.
ECOOP 2004 Workshop Reader, pp.101-117, 2005, ECOOP 2004 Workshops, Oslo, Norway, June
14-18, 2004, Final Reports, 978-3-540-23988-8. 10.1007/978-3-540-30554-5_11 . lirmm-00109148

HAL Id: lirmm-00109148
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109148
Submitted on 24 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109148
https://hal.archives-ouvertes.fr

7 Y CENTRE NATIONAL
Universite DE LA RECHERCHE
N SCIENTIFIQUE

il'(" SOPHIA ANTIPGLIE
k

LABORATOIRE

13s

INFORMATIQUE, SIGNAUX ET SYSTEMES
DE SOPHIA ANTIPOLIS
UMR 6070

PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP
ON MECHANISMS FOR SPECIALIZATION,
GENERALIZATION AND INHERITANCE

MASPEGHI’'04
Oslo, Norway, 15 June 2004

At ECOOP 2004, 14 - 18 June 2004

Ph. Lahire, G. Arévalo, H. Astudillo, A.P. Black, E. Ern:

M. Huchard, M. Sakkinen, P. Valtchev (eds.)

LABORATOIRE 13S: Les Algorithmes / Euclide B — 2000 route des Lucioles — B.P. 121 —
06903 Sophia-Antipolis Cedex, France — Tél. (33) 492 942 701 — Télécopie : (33) 492 942 898
http://ww.i3s.unice.fr

lahire
At ECOOP 2004, 14 - 18 June 2004

lahire
Oslo, Norway, 15 June 2004

lahire

lahire
Ph. Lahire, G. Arévalo, H. Astudillo, A.P. Black, E. Ernst,

lahire
M. Huchard, M. Sakkinen, P. Valtchev (eds.)

Organization and Program Committee

Philippe Lahire (primary contact)

Laboratoire d’Informatique Signaux et Systémes de Sophia Antipolis (I3S),
Batiment Euclide, Les Algorithmes, 2000 route des Lucioles, BP 121,
06903 Sophia Antipolis Cedex, France.

E-mail: Philippe.Lahire@unice.fr

Url : http.//www.i3s.unice.fr/~lahire

Gabriela Arévalo

Software Composition Group

Institut fiir Informatikund angewandte Mathematik, Neubriickstrasse 10,
3012 Bern, Switzerland

E-mail: arevalo@iam.unibe.ch

Url: http://www.iam.unibe.ch/~arevalo/

Hernan Astudillo

Departamento de Informatica, Universidad Técnica Federico Santa Maria
Valparaiso, Chile.

E-mail: hernan@acm.org

Url : http.//www.ime.usp.br/~ha/

Andrew P. Black

Department of Computer Science & Engineering,

OGTI School of Science & Engineering, Oregon Health & Science University
20000 NW Walker Road, Beaverton,

OR 97229, USA.

Email: black@cse.ogi.edu

Utl: http://www.cse.ogi.edu/~black/

Erik Ernst

Department of Computer Science, University of Aarhus,
Abogade 34, DK-8200 Arhus N, Denmark.

E-mail: eernst@daimi.au.dk

Url : http.//www.daimi.au.dk/~eernst/

Marianne Huchard

Laboratoire d’Informatique, de Robotique et Microelectronique de Montpellier (LIRMM),
161, rue Ada, 34392 Montpellier cedex 5, France.

E-mail: huchard@lirmm.fr

Url : http.//www.lirmm.fr/~huchard/

Markku Sakkinen

Department of Computer Science and Information Systems,
P.O.Box 35 (Agora), FIN-40014, University of Jyvéskyld, Finland.
E-mail: sakkinen@cs.jyu.fi

Urtl : http://www.cs.jyu.fi/~sakkinen/

Petko Valtchev

Département d’Informatique et recherche opérationnelle (DIRO),
Université de Montréal, CP 6128, Succ. Centre-Ville,

Montréal, Québec, Canada, H3C 3J7.

E-mail: petko.valtchev@umontreal.ca

Urtl : http://www.iro.umontreal.ca/~valtchev/

il

iii

About the Workshop

This workshop may be seen as an heir to the past versions of MASPEGHI (at OOIS 2002 and ASE
2003) and of the Inheritance Workshop (at ECOOP 2002). This is multiple inheritance between
workshops, and so we intend to apply the results of the previous workshops to the organization of this
one, while at the same time making it possible to reuse the results of this workshop in the next one
(MASPEGHI 2005). MASPEGHI 2004 will continue the discussion about mechanisms for managing
specialization and generalization of programming language components: inheritance and reverse
inheritance, specialization and generalization, and other forms of inheritance, multiple, single, mixin
or trait-based. The scope of the workshop reflects two main concerns: (i) the various uses of
inheritance, and (i) the difficulties of implementation and control of inheritance in practical
applications. Different communities, such as the design methods, database, knowledge representation,
data mining, object programming language and modelling communities, address these concerns in
different ways. Thus, one of our goals is to bring together a diverse set of participants to compare and
contrast the use, implementation and control of inheritance as practiced in these communities.

Class MASPEGHI_OOIS_2002
MASPEGH! Workshop At O0IS'02 in Montpellier (France)

Class INHERITANCE_ECOOP_2002
INHERITANCE Workshop At ECOOP'02 i Malaga (Spain)

A

Class MASPEGHI_ASE_2003
MASPEGH)! Workshop At ASE'03 in Montreal (Canada)

MASPEGHI 2004 will continue the discussion about mechanisms for managing and manipulating
specialization and generalization hierarchies: inheritance and reverse inheritance, specialization and
generalization, interface and implementation inheritance, multiple, single, mixin and trait-based
inheritance, etc. We are concerned with both the uses of inheritance, and the difficulties of
implementing and controlling it.

These concerns are reflected differently by disciplines such as databases, knowledge discovery and
representation, modelling and design methods, object programming languages, with emphasis put
either on problem domain modelling or on organizing the computational artefacts that simulate the

v

domain. For example, in knowledge representation, the modelling role of classes prevails: hierarchies
are repositories of validated knowledge, which support the acquisition of new knowledge. In analysis
and design, the purpose of the hierarchy shifts as the design matures from modelling to organizing.
Hence, modern OOA&D methods support the gradual evolution of class hierarchies from one use to
the other.

Despite the wide use of specialization hierarchies, there is no standard methodology for constructing
and maintaining them independently from the domains that they represent and the artefacts that they
organize. We hope that this workshop will provide participants a way to learn from each other and
work together to develop such a methodology.

The Worksop organisers
Gabriela Arévalo,

Hernan Astudillo,
Andrew P. Black,

Erik Ernst,

Marianne Huchard,
Philippe Lahire,

Markku Sakkinen,

Petko Valtchev

Workshop Organization

This workshop is organized in four sessions:

Session 1: Form and Transform, Dealing with evolution

Session 2: Class composition

Session 3: Different kinds of subclassing relationships

Session 4: Contradiction between desired subtyping/specialization relation and language
mechanism

Here are some more details about the topics addressed by these sessions.
Form and Transform, Dealing with evolution

In this topic, we would like to explore the way methodologies, languages and tools can help us or at
the contrary bother when dealing with hierarchy construction and evolution. The papers of the session
more precisely raise two questions: I[s it realistic to imagine that automated procedures will guide or
even replace expertise of human designers? Which type of help can we expect from these automatic
tools? Would the use of automatic tools lead to uniformly-shaped (normalized) hierarchies? Is such a
kind of normalization desirable or not?

Some forms of evolution (like inserting classes in the middle of the hierarchy, or new features to
classes already in use) are really difficult with standard languages without changing other parts in user
programs. Nevertheless they are necessary in many situations because requirements and knowledge of
the domain evolve. Is it a good thing to admit such forms of evolution? Discuss language features
which would admit such forms of evolution.

Class composition

Is class composition worthwhile? Pro: it is powerful. Con: the resulting software is complex and hard
to maintain.

Different kinds of subclassing relationships

In UML it is possible to provide a more accurate definition of the kind of inheritance to use through
the specification of tagged values and/or UML profiles. Should we use this facility when we design an
application? How many kinds of inheritance relationships are needed? If we use several kinds of
relationships is it suitable to get also several kinds of inheritance relationships within programming
languages or systems? How many kinds does your language/system/.. have or should have according
to your point of view?

Contradiction between desired subtyping/specialization relation and language mechanism

What to do when the desired subtyping relation that one would like to exploit in one's program does
not match the particular subclassing mechanism that one has employed to create that program? For
example programming, inheritance is often employed as a reuse mechanism, with no intent to create a
subtype. And subtypes can be built through many mechanisms other than inheritance. What facilities
should languages offer to deal with this distinction, and how can existing languages be used to address
it?

vi

vil

Table of Contents

Object Identity Typing: Bringing Distinction between Object Behavioural
Extension and Specialization 1
Chitra Babu, and D Janakiram

A Reverse Inheritance Relationship Dedicated to Reengineering: The Point of View of
Feature Factorization e 9
Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire

Mathematical Use Cases lead naturally to non-standard Inheritance Relationships -
How to make them accessible in a main stream language 15
Marc Conrad, Tim French, Carsten Maple, and Sandra Pott

Proposals for Multiple to Single Inheritance Transformation 21
Michel Dao, Marianne Huchard, Thérése Libourel, Anne Pons, and Jean Villerd

The Expression Problem, Scandinavian Style ..., 27
Erik Ernst

The Logic of Inheritance e 31
DelLesley Hutchins

An anomaly of subtype relations at component refinement and a generative solution
I G 39
Zoltan Porkolab, and Istvan Zolyomi

Java with Traits - Improving Opportunities for Reusein. L. 45
Philip J. Quitslund, and Andrew P. Black

Merging conceptual hierarchies using concept latticesl 51
Mohamed H. Rouane, Petko Valtchev, Houari Sahraoui, and Marianne Huchard

Behaviour consistent Inheritance with UML Statechartsiiiiiiiii ... 59
Markus Stumptner, and Michael Schrefl

Domain Modeling in Self Yields Warped Hierarchies 65
Ellen Van Paesschen, Wolfgang De Meuter, and Theo D’Hondt

Inheritance Decoupled: It's More Than Just Specialization 73
L. Robert Varney, and D. Stott Parker

viil

Object Identity Typing: Bringing Distinction between Object
Behavioural Extension and Specialization

Chitra Babu and D Janakiram
Distributed Object Systems Lab, Dept. of Computer Science & Engg.,
Indian Institute of Technology Madras,
Chennai - 600 036, India.
Email: chitra@cs.iitm.ernet.in, djram@lotus.iitm.ernet.in
URL: http://lotus.iitm.ac.in

ABSTRACT

Object Oriented Programming Languages(OOPLs) primarily allow modeling object behaviors using either class-
based inheritance or prototype-based delegation. Such an approach does not make a clear distinction between
the two cases of an extension to the behavior of an object versus specialization of an object behavior by another
object. If an object is considered to have its own state, behavior and identity, Behavioral eXtension(BeX) of an
object can be seen to retain object identity, while extending the behavior and the state. On the other hand,
Behavioral Specialization(BeS) always creates a new object by specializing existing behavior. Current OOPL
either model class as a type or interface as a type. Hence, these languages lack the expressiveness required to
distinguish between object behavioral extension and behavioural specialization. This paper proposes modeling
object identity as a type, which clearly captures this distinction. Furthermore, the proposed model ensures
type-safety when various objects are composed together to achieve behavioral extension.

Keywords: Object Identity, Behavioural extension, Behavioural specialization, Denotational Semantics.

1. INTRODUCTION

Object Behavioral eXtension(BeX) and Behavioural Specialization(BeS) are two different facets of modeling
object behaviors. Behavioral extension of an object is an operation that preserves the identity, whereas special-
ization creates an object with a new identity. Generally, in current OOPLs, inheritance is the sole mechanism
available to model both BeX and BeS. While class-based OOPLs clearly capture BeS through inheritance, they
lack the ability to model dynamic behavioral evolution of a single object. This is due to the fact that the behavior
of an object is frozen at the time of its instantiation. Prototype-based languages capture behavioral extension
through a combination of dynamic inheritance and the delegation mechanism,! albeit at the cost of compro-
mising encapsulation and the safety normally provided by static typing. A clear separation in modeling object
behavioral extension from behavioural specialization requires building new programming language constructs.
These constructs need to address the issues of modeling object identity and type safety with respect to abstrac-
tion and encapsulation. Further, the language constructs should be built on a sound theoretical foundation
keeping in mind the issues related to typing object behaviors.

Method Driven Model (MDM)? is an effort towards providing distinction between BeX and BeS by focusing
on the issues related to object identity. The key idea behind MDM is viewing an object itself as being composed
from the various encapsulated parts of a basic abstraction. MDM shares the underlying philosophy of Glue
object model® which is the relaxation of tight coupling between abstraction and encapsulation in a systematic
manner. However, it distinctly differs from Glue model in that methods are explicitly modeled as connectors.
Consequently, it is possible to capture rules for breaking encapsulation and associated self rebinding.

MDM is based on the notion that an object exhibits immutable and mutable behavior. TypeMarker(TM) is an
interface consisting of a set of method declarations, whose definitions are deferred. An object’s mutable behaviour
is captured through the TypeMarkers. The method definitions, self rebinding based on the communication
styles, and the contracts are specified using aspects. Instead of viewing objects as rigid behavioural entities, the
aspect run-time system weaves appropriate aspects along with the object to achieve BeX. Whenever an object
is composed from multiple aspects, there is a possibility of the composed object’s state, behavior or both being

lahire
1

Vehicle Usage

AN

Private Public

Car Bus Van

Figure 1. Transportation Problem

spread across the constituent aspects. This paper proposes a novel way of modeling the object identity as a type
that captures the characteristic of identity retention by BeX.

The paper is organized as follows. Section 2 gives an example which illustrates the difficulty in modeling
BeX with the current mainstream OOPLs. The various perspectives on object identity are discussed in Section
3. Section 4 analyzes some mathematical formalisms in relation to BeX and BeS. Section 5 provides an overview
of MDM and explains how object identity is modeled as a type. Section 6 concludes and provides directions for
future work.

2. MOTIVATION

Figure 1 illustrates a transportation domain model. In this domain, there are three specializations of the vehicle
concept and two different contexts in which these specializations could be used. These contexts depict the
various possible extensions to the behavior of the vehicle object. Since car, bus and taxi specialize the behaviour
provided by the vehicle abstraction, that hierarchy depicts BeS. On the other hand, objects belonging to any of
these categories that already have come into existence through instantiation can extend their behaviour by the
introduction of public or private context. This corresponds to BeX.

One way to model this in the current class based OOPLs is to form an inheritance hierarchy as shown in Figure
2. This obviously results in unnecessary class explosion. When there are m specializations and n extensions in
a given problem domain, it would be efficient to model them with m+n classes instead of the mn classes that
the current solution mandates. Further, the code addressing the same functionality needs to be replicated in
multiple places for the various specializations. Any need to introduce additional contexts requires modification
in several places. Instead, employing multiple inheritance or mixins,* avoids unnecessary replication of the same
functionality in several classes. However, the most compelling drawback with all of these modeling approaches
is that there is no way to convert a public bus or public car dynamically to a private one and vice versa.

Alternately we could model the problem by keeping two separate hierarchies as in Figure 1, and a reference
to the usage class can be kept within the vehicle class. When such aggregation is used for modeling, private
variables of the wehicle class are not accessible to the usage class. Further, care must be taken to bind the
self reference properly to the object receiving the original message. This adds an additional burden on the
programmers. Improper handling of the self rebinding can result in broken delegation problem. The complexity
associated with message delivery semantics increases when messages have to be delegated across multiple levels.
Such complexities can be attributed to lack of expressiveness of class based OOPLs to capture BeX properly.

3. OBJECT IDENTITY

The concept of Object Identity(OID) plays a key role in bringing distinction between the two notions BeX and
BeS. This section briefly discusses the traditional view of OID. OID has been defined as that property of an object
which uniquely distinguishes it from other objects.> OID has been studied both in the context of programming
languages and databases. However, OID is different from variable names in programming languages and keys in
databases. Implementation concepts such as surrogates represent system generated globally unique identifiers

lahire
2

Vehicle

Private Car PublicCar | | Private Bus PublicBus| | Private Van | | Public Van

Figure 2. Inheritance Hierarchy

for objects. In all these contexts, the main focus is on physically locating the objects without any ambiguity.
From this perspective, Wegner® argues that OID should not be tied down with the object’s attributes, name,
behavior or the address at which the object resides. This is because, two objects can have identical attributes,
or identical behavior. Further, an object may have aliases and an object can even migrate. Bearing all these in
mind, Wieringa’ came up with “Singular reference” and “Singular naming” requirements for the OID naming
scheme. These requirements mandate that at every possible state, each name refers to exactly one object and
each object is referred to by exactly one name. In addition to this, “Rigid referencing” and “Rigid naming”
requirements® were also imposed to avoid any reuse of OIDs and to exclude renaming of objects. Mendelzon®
contends that OID should remain the same irrespective of any change in the object’s behavior, (i.e) even when
an object changes its class.

Nevertheless, the inherent essence of identity cannot be captured, when unique identifiers are assigned at the
time of object creation. The identity of an object can change dynamically during program execution. In order to
capture the key perspectives of object identity, in the present work, various mathematical formalisms have been
examined in detail. The next section briefly discusses the identity and typing related issues as seen by these
formalisms.

4. MATHEMATICAL FORMALISMS
4.1. \ Calculus

A Calculus is a mathematical system that has been widely used in the specification of programming language
features, and in the study of type systems. Typed A calculus augmented with quantification operators helps in
capturing certain OO language notions. From the work of Cardelli et al.,'%!! it is evident that parametric and
inclusion polymorphisms can be modeled by universal and bounded universal quantification respectively. Further,
it also shows that data abstraction and information hiding can be represented by existential quantification. This
work does not distinguish between conceptual sub-typing and the inheritance mechanism. However, under
practical situations, inheritance is used both as a conceptual specialization mechanism and as a vehicle for code
reuse. The latter use of inheritance cannot be explained by A calculus. Further, the notion of self also cannot be
captured in this formalism. In order to address this need, Cardelli et al.'* proposed (calculus for objects. This
approach integrates the self semantics based on the fixed point theory into calculus. In both A\ and ¢ calculi,
BeS alone is captured and there are no easy means to explain BeX.

4.2. Algebra

The term algebra denotes abstract behavior of a class of objects. An algebra consists of sets of data together with
some functions that operate on them. The traditional algebra has been generalized to many sorted algebra'? to

lahire
3

model abstract data types whose interface may include procedures which take arguments from more than one
domain. The interface and corresponding implementation are captured by signature and its associated algebra.

Francesco et al.'3 proposed a formal model of class using algebraic specification. Using this model, a clear

distinction has been made between the conceptual inheritance based on “is-a” link, and the implementation
inheritance.

The hidden sorted Order Sorted Algebra(OSA)* extends the classical treatment of abstract data types to
the notion of state. The possible internal states of an object are the elements of a “hidden” sort. Encapsulation
can be captured using these hidden sorts.

The notion of an OSA, introduced initially by Goguen et al.'® models subtypes and inheritance. An order-

sorted signature is a many-sorted signature with an ordering relation < on its sorts. Thus, the traditional concept
of individual algebras has been extended to systems of related algebras. This enhancement permits BeS to be
modeled, but not BeX.

4.3. Denotational Semantics

Denotational Semantics(DS)!6 is a technique for describing the meaning of programs in terms of mathematical
functions on programs and program components. Cook and Palsberg!” proposed that, objects are modeled as
record values with their fields representing methods. Records can be viewed as functions from a domain of labels
to a heterogeneous domain of values. A generator function defines a class. The Least Fixed Point(LFP) of the
“generator” formally explains an object, since an object itself is self-referential. The modification component
that differentiates the derived class from the base class is expressed as a wrapper function of two arguments,
one representing self and the other representing super. Wrapper application mechanism is used to change the
self-reference in inherited methods. A wrapper is applied to a gemerator to produce a new generator by first
distributing self to both the wrapper and the original generator. Thus, DS captures BeS.

An explanation of DS for prototype-based dynamic inheritance has been provided by Steyeart et al..'® In this
case, objects need a changing version of themselves rather than the fixed versions. Hence, objects are modeled as
generators instead of as fixed points to generators. Further, message passing requires that the message receiver
be properly wrapped every time so that self reference would be set appropriately. This can be regarded as an
explanation for BeX in the context of prototype based languages. However, it does not explain BeX as a notion
that retains the underlying object’s identity in the context of class-based OOPLs.

5. METHODOLOGY AND FORMALISM
5.1. Overview of MDM

The essential concept underlying MDM is viewing objects as composition of various encapsulated parts of a basic
abstraction. The philosophy behind modeling methods as connectors between objects is to facilitate specification
of rules for systematic infringement of encapsulation, and related self rebinding semantics. These factors are
specified using aspects. In this context, the “aspect” should not be viewed in the traditional way of modeling a
cross-cutting concern. In MDM, different factors related to a given class are separately captured using aspects.
The state of the object at any point in its life-cycle dictates the set of aspects that should be weaved with the
class. The fundamental entity in this model is a partial class, which comprises of:

e Composable-Aspects: The set of aspects that can be weaved with the partial class,

Aspect-View: Visibility of the private attributes to other aspects,

Private, Protected and Public attributes,

Methods describing the fixed behavior,

TypeMarker(TM): Declaration of methods describing the variable behavior.

lahire
4

™

S A Y
T™M3 |+

TTeo Weave

ingantiate

Object
™ TypeMarker

Figure 3. Class Design in MDM

The class is called as “partial” because it becomes complete only after the proper TM method definitions are
weaved based on the state of the object.

Various considerations such as encapsulation, communication styles, contractual obligations, identity seman-
tics and others are captured using the construct aspect. This consists of the following units:

e Unit-Type: This unit specifies the category of the TypeMarker which can be one of “Part-of”, “using”,
“in” or “out”, and communication styles such as “delegation” or “consultation”.

e Unit-Encap: This unit defines the TM methods of the partial class. Inside this unit, replace keyword
signifies the definition of TM methods of category “Part-of” or “Using”. The keywords before and after
are used for specifying additional actions associated with TM methods that fall under “in” category.

e Unit-Identity: The rebinding of self can be specified by the programmer according to the specific problem
needs.

e Unit-Contract: This unit specifies:

the pre-conditions, which must be satisfied for this aspect to be weaved with an object
— the post-conditions that must hold before the aspect gets unweaved
— interdependencies among the TMs specified as an invariant

— the preconditions that need to be checked before a particular method execution

the post-conditions that a given method must ensure at the end of its execution

e Unit-Style: This unit specifies the styles in which the objects should be composed, such as Pipe and
filter, event etc.

Figure 3 illustrates the construction of a class in its entirety through weaving of suitable aspects along with
the partial class at the control points specified by the TypeMarkers.

Aspects are also instantiable analogous to classes. Based on the state of the object during its life-cycle,
the aspect run-time system dynamically weaves the appropriate sets of aspects along with it. Further details
regarding the model can be found in Babu et al..?

lahire
5

5.2. Typing Object Identity

Types, in general, help to enforce correctness of programs by imposing appropriate constraints. The fundamental
objective of a well-defined type-system is to minimize the possibility of run-time errors during program execution.
Initially, procedural languages modeled data alone as type. Later, in the context of object-orientation, some
programming languages treat the concepts of class and type as being identical. Class serves as a template for
defining both structure and behavior. Any object instantiated from a given class conforms to the structure and
behavior dictated by that class. Languages such as Java'® model behavior alone as type. This section discusses
a novel approach of modeling the object identity as a type so that the distinction between the two notions of
BeX and BeS can be formally explained.

Traditionally, whenever an object is created, it is assigned a unique identity by which it can be referred. An
instance created from a single class or a statically defined class composition structure will map to a single unique
identity. On the other hand, if an object is dynamically composed out of multiple aspects, as in MDM, the
composed object’s identity is an “AND” of identities of the object and all the constituent aspects. However, the
phenomenon of behavioral extension of an object needs to retain the underlying object’s identity all the time.
This has been achieved in the present work by modeling OID as a type. This approach involves two levels of
abstraction: one level for defining the type and another for defining the actual identity of the object.

At the first level, OID is captured as a type (i.e) a set containing the name of the partial class and composition
of names for each possible partial class-aspect combination. This set is known as OID_Type. At the second
level, objects instantiated from this OID_Type are assigned object identities each of which comprises a set of
elements. This set is called OID_Instance. The elements of this set are the identity of the partial object and
tuples corresponding to identities of partial object and appropriate aspect instances. In this context, the identity
of the partial object is the “self” which is defined through denotational semantics by finding the fixed point of
the generator function corresponding to the partial class.

Applying this approach to the example discussed in section 2, car, bus and taxi are modeled as partial
classes with a TM for public/private functionality. Two different aspects capture the behaviour corresponding
to public and private vehicles respectively. MDM makes it viable to model the same physical vehicle as public or
private through weaving appropriate behaviour based on the conditions captured in the “Unit-Contract” section
of aspects. Identity-Type for car is as shown below:

OID_Type Car = {PC_Car,< PC_Car, PublicAspect >, < PC_Car, PrivateAspect >}

where PC_Clar is the name of the partial class associated with car, and PublicAspect and PrivateAspect are
the names of the corresponding aspects. The identity of a particular car object is defined as:

OID_Instance myCar = {Self_myCar,< Self_myCar,Self_PublicAspin >,
< Self_myCar, Sel f_Private Aspin >}

in which Self_myCar, Sel f_PublicAspin, and Sel f_ PrivateAspin are selfs of the myCar object, PublicAs-
pect and PrivateAspect instances respectively. Whenever myCar object acquires public or private behaviour, its
identity is governed by the appropriate identity tuple in the set. Nevertheless, these tuples belong to the same
set and hence the preservation of identity is explained at the set level. Since the set OID_Type is built from
TM information, and only those aspects which conform to TM interface are taken into account in constructing
the tuples, type safety is guaranteed.

Modeling OID as a type uniformly captures both BeX and BeS. Whenever BeS occurs, the sets OID_Type
and OID_ Instance themselves will change for the specialized object. On the other hand, when the behavior of
an object is extended, the sets OID_Type and OID_Instance will remain the same for the extended object.
However, the value of the identity type will switch among the elements of the set, based on the current class-aspect
structure that dictates the extended object’s state and behavior. Further, the object identity is also governed
by the specific tuple of self of object instantiated from the partial class and selfs of the aspect instances.

6

lahire
6

6. RELATED WORK

Predicate classes?? proposed by Chambers et al. are similar to regular classes except that they have an additional
predicate expression associated with them. This allows the appropriate dispatch of the multi-method?' when
the state of the object is changed which is captured by the predicate expression. Even though predicate classes
support dynamic reclassification of objects, based on the run-time state of the objects, it cannot respond to
changes in external environments in which the objects function. The reclassification is also lazily done, whenever
the particular multi- method is invoked. On the other hand, in MDM, the state change is implicitly monitored
and the appropriate aspect is weaved with the object instantiated from partial class, thus changing the class
structure that dictates the object’s current behaviour. Since predicate classes dynamically change the inheritance
hierarchy, it leads to ambiguity. In contrast, MDM strives for orthogonality through usage of inheritance only for
BeS. Further, MDM allows the specification of postconditions too in the contract-section, which enables catching
possible exception conditions and taking appropriate actions.

Fickle®® is a language developed by Drossopoulou et al., with the objective of dynamically re-classifying
an object, while preserving its identity. The language uses two types of classes known as state classes that
represent object’s possible states and root classes that define the commonalities among these state classes. State
classes targeted for reclassification are depicted as subclasses of root classes. Thus, Fickle also uses inheritance
to capture BeX, which is precisely what MDM intends to avoid. Further, the re-classification should be done
in Fickle through explicit language constructs inside the method body, while the change in class structure is
transparent in MDM.

Balloon types?? enforce strong encapsulation by ensuring that no state reachable either directly or transitively
by a balloon object is referenced by any external object. Even though partial class and its associated aspects
together enforce strong encapsulation at the level of the composed object, the objective of MDM is completely
different from that of Balloon types. While balloon types address the problem that arise from aliasing through
specifying the ability to share state as a first class type, MDM aims to distinguish BeX and BeS clearly through
typing object identity.

Rondo object model®* introduces an additional abstraction known as classcombiner in between classes and
objects. This model also uses denotational semantics for explaining the essence of the model in a formal way. In
Rondo, an object is a fixed point of a generator function corresponding to the classcombiner, which is obtained
by combining the generator functions representative of the individual classes that are part of the classcombiner.
Hence, the identity of the object is not preserved while it extends its behaviour which blurs the differences
between BeS and BeX. In contrast, since MDM models an object as a set of tuples, where each tuple corresponds
to the selfs of object instantiated from the partial class and the current active aspects that are applicable, the
identity preservation after BeX is properly captured.

7. CONCLUSIONS

The need to distinguish between object behavioral extension and specialization, from the viewpoint of object
identity has been identified. Various mathematical formalisms currently in use have been examined and shown
to be inadequate to capture the notion of BeX. Modeling object identity as a type, as proposed in this paper
allows both BeX and BeS to be captured equally well. The key idea is to view an object as an instance of the
OID_Type, rather than as an instance of a single class. This approach clearly brings out the fact that BeX
is an identity preserving operation while BeS is an identity altering one. Object identity typing has enormous
potential in distributed object frameworks for generating OIDs that reflect the inherent essence of objects as
opposed to identifiers which bear no semantic connection to objects.

REFERENCES

1. H. Lieberman, “Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,”
in Proceedings of the First ACM Conference on Object-Oriented Programming Systems, Languages and
Applications(OOPSLA), pp. 214-223, Sept. 1986.

lahire
7

10.

11.
12.

13.

14.
15.

16.

17.

18.
19.
20.
21.

22.

23.

24.

. C. Babu and D. Janakiram, “Method Driven Model: A Unified Model for an Object Composition Lan-
guage,” Tech. Rep. IITM-CSE-DOS-04-05, Indian Institute of Technology, Madras, India, 2004. Aceepted
for publication in ACM SIGPLAN Notices.

D. J. Ram and O. Ramakrishna, “The Glue Model for Reuse by Customization in Object-Oriented Systems,”
Tech. Rep. IITM-CSE-D0OS-98-02, Indian Institute of Technology, Madras, India, 1998.

G. Bracha and W. Cook, “Mixin-Based Inheritance,” in Proceedings of the Fourth ACM Conference on
Object-Oriented Programming Systems, Languages and Applications(OOPSLA), Oct. 1989.

S. N. Khoshafian and G. P. Copeland, “Object Identity,” in Proceedings of the First ACM Conference on
Object-Oriented Programming Systems, Languages and Applications(OOPSLA), pp. 406-416, Sept. 1986.
P. Wegner, “Concepts and Paradigms of Object-Oriented Programming,” ACM OOPS Messenger , pp. 7-87,
June 1990.

R. Wieringa and W. D. Jonge, “The Identification of Objects and Roles - Object Identifiers Revisited,”
Tech. Rep. IR-267, Vrije Universiteit, Amsterdam, 1992.

R. Wieringa and W. De Jonge, “Object Identifiers, Keys, Surrogates - Object Identifiers Revisited,” Theory
and Practice of Object Systems 1(2), pp. 101-114, 1995.

A. O. Mendelzon and T. Milo and E. Waller, “Object Migration,” in Proceedings of the 13th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems(PODS) Conference, pp. 232-242, 1994.
L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction and Polymorphism,” ACM Com-
puting Surveys 17, pp. 471-522, Dec. 1985.

M. Abadi and L. Cardelli, A Theory of Objects, Springer-Verlag, 1996.

P. Wegner, “The Object-Oriented Classification Paradigm,” in Research Directions in Object-Oriented pro-
gramming, B. Shriver and P. Wegner, eds., The MIT Press, Cambridge, Massachusetts, 1987.

F. Parisi-Presicce and A. Pierantonio, “An Algebraic Theory of Class Specification,” ACM Transactions on
Software Engineering and Methodology 3, pp. 166-199, Apr. 1994.

J. Goguen and D. Malcolm, “A Hidden Agenda,” Theoretical Computer Science 245(1), pp. 55-101, 2000.
J. Goguen and R. Diaconescu, “An Oxford Survey of Order Sorted Algebra,” Mathematical structures in
computer science , 1994.

R. Tennent, “The Denotational Semantics of Programming Languages,” Communications of the ACM 19,
pp. 437-453, Aug. 1976.

W. Cook and J. Palsberg, “A Denotational Semantics of Inheritance and its Correctness,” in Proceed-
ings of the Fourth ACM Conference on Object-Oriented Programming Systems, Languages and Applica-
tions(OOPSLA), pp. 433-443, Oct. 1989.

P. Steyaert and W. De Meuter, “A Marriage of Class- and Object-Based Inheritance Without Unwanted
Children,” in Proceedings of the ECOOP 1995 Conference, pp. 127-145, 1995.

K. Arnold and J. Gosling, The Java programming Language, Addison-Wesley, 2000.

C. Chambers, “ Predicate Classes,” in Proceedings of ECOOP 93, pp. 268-297, 1993.

C. Chambers, “Object-Oriented Multi-Methods in Cecil,” in Proceedings of the FEuropean Conference on
Object-Oriented Programming, July 1992.

S. DrossoPoulou and F. Damiani and M. Dezani-Ciancaglini and P. Giannini, “More Dynamic Object Re-
Classification: Fickle II,” ACM Transactions on rogramming Languages and Systems 24(2), pp. 153-191,
2002.

P. G. Almeida, “Balloon Types: Controlling Sharing of State in Data Types,” in Proceedings of ECOOP
97, pp. 32-59, 1997.

M. Mezini, “Dynamic Object Evolution Without Name Collision,” in Proceedings of the Furopean Conference
on Object Oriented Programming, pp. 191-217, 1997.

lahire
8

A Reverse Inheritance Relationship for Improving
Reusability and Evolution:
The Point of View of Feature Factorization

Ciprian-Bogdan Chirila”, Pierre Crescenzo™ ", and Philippe Lahire™”

* University Politehnica of Timisoara, Romania,
chirila@cs.utt.ro
** University of Nice-Sophia Antipolis, France
Pierre.Crescenzo@unice.fr, Philippe.Lahire@Qunice.fr

ABSTRACT

Inheritance is one important and controversial issue of object-oriented programming, because of it’s different
implementations and domain uses: design methods, database, knowledge representation, data mining, object
programming languages, modelling . ..

Most of the object-oriented programming languages have a direct implementation of specialization, thus we
promote the idea that a relationship between classes based on generalization can help in the process of reuse,
adaptation, limited evolution of class hierarchies. We name it reverse inheritance.

Our goal is to show that reverse inheritance class relationship and it’s supporting mechanisms can be used
to accomplish the objectives mentioned earlier. Another goal is to prove the feasibility of the approach. On the
other hand we analyze some use cases on how the objectives are reached.

Keywords: reverse inheritance, factoring, reuse, adaptation, limited evolution

1. INTRODUCTION

Inheritance is the mechanism used in object-oriented languages to specialize and to adapt the behaviour of a
class. It is the backbone of any object-oriented system. As many implementations for inheritance exist, as many
object-oriented programming paradigms® may be considered.

Inheritance notably offers a way to share (to factor) common features (attributes and methods) between
classes, leading to hierarchies without multiple declarations of the same feature.?

In our approach we propose to use reverse inheritance relationship between classes to improve software
reusability (to adapt it according to the context) and to address small evolution or refactoring. Reverse inher-
itance can be particularly useful when we want to reuse class hierarchies that are developed independently in
different contexts. Following this idea, we would like to use reverse inheritance in order to implement a limited
way to perform separation of concerns. It is important to note that we address in this paper reverse inheritance
in the framework of a language which supports only single inheritance like Java. Impact of multiple inheritance
and assertions will be studied but they are out of the scope of this paper.

One of our previous reports! proposes a set of features which should be associated to reverse inheritance in
order to address the objectives mentioned above. These features are dealing with the insertion of new methods
or attributes, their factorization, renaming or redefinition and the access to the code of the descendant. Each
of these features must be studied into details and this paper is a first attempt for the description of the main
issues related to factorization and renaming. This report addresses also the main uses of reverse inheritance such
as inserting a class into a hierarchy, to link two hierarchies, etc. Moreover it describes another use of reverse
inheritance which is mainly related to the specification of class hierarchy refactoring. This implied that the
use of reverse inheritance is volatile and that the only relationships that persists are inheritance relationships.
Objectives of this paper show that it is not the type of uses that we address from now.

The paper is organized in the following way: The second section presents some of the main aspects of the
factoring mechanisms according to the state of the art. In the third section we propose a possible syntax and

9

lahire
9

implementation directions are provided for the factoring mechanism. The fourth section addresses more especially
the handling of signature matching and adaptation (syntax and feasibility). Section five draws the conclusions
of our study and states the future works.

2. TOWARDS THE DEFINITION OF THE FACTORING MECHANISM

As it has been said in the introduction, we focus on the factoring mechanism which works along with other
supporting mechanisms like: feature adding, descendant access or renaming.! The factoring mechanism in the
context of reverse inheritance class relationship relies on the relocation of methods and attributes from classes
to their superclasses.

There are many reasons for factoring a class hierarchy: i) multiple occurrences of a method along the inher-
itance tree means an overhead to the calling mechanism because of the name resolution conflict?; ii) multiple
declared fields along the inheritance path induce multiple redundant modifications of its occurrences?; iii) it is
more natural to define concrete subclasses and then to extract commonalities into superclasses.®

Sakkinen 7 discusses Pedersen’s approach of factorization, which involves the factorization of features from
one selected, principal subclass. He proposes that the programmer should specify for each method from which
subclass it should be factored.

Moreover 4 defines the features which are common to a set of classes: these features must have the same
name in each class or are subject to be renamed. With this approach it is possible to define a signature to which
corresponding signatures in each class must conform. This signature may also contain precondition (respectively
postcondition) that must not be weaker (respectively stronger) than the ones associated to the methods to be
factored. For the common features also, it should be possible to define a precondition other than False which is
not weaker than the precondition for the feature in each class *.

In 2 the authors analyze algorithms, based on Galois sub-hierarchies. They are applied to hierarchies in order
to find an ideal factorization from the point of view of minimizing the number of feature declarations. They use
metrics to count the number of occurrences of redundant features and propose algorithms for restructuring in
order to build an optimal hierarchy.

In the approach of ® which deal with refactoring, they propose a factorization methodology which modifies
the code but preserves it’s original behaviour. The methodology consists in isolating common features and code,
and creating abstract superclasses, based on the following steps: i) to add function signatures to superclasses,
ii) to make function bodies compatible, iii) to move variables and to migrate common behaviour to the abstract
superclass.

In our approach the reverse inheritance relationship is used as a mean to increase reusability, so that it is
close from Pedersen and Sakkinen approaches that integrates it as a basic language mechanism. We consider
that features have to be factored in the following manner: common attributes have to be moved from subclasses
into superclasses and common signatures of methods have to be copied into superclasses, creating new abstract
methods T. Our approach compared with 2 is not automatic. We explore also the possibility to adapt (when
it is meaningful) the signature of non-matching features when they have the same semantics (see section 4).
In figure 1 the two classes contain a common attribute (attributel) and a common method (method1()) which
are factored. For the reverse inheritance class relationship we proposed the use of a new keyword infers in the
definition of the new superclass. Situations like the one presented in our example, with factored features having
the same signatures, are quite rare and context dependant. Real situations dealing with method having slightly
different signatures but that should be factored must be analyzed and solved. In our approach, the problems
related to factorization which are discussed in the next sections are the following: i) how to identify the feature
that should be factored - signature matching and, ii) how to adapt these features in order to match the signature
specified within the superclass - signature adaptation.

*This approach is related to Eiffel.
TThe impact of access modifiers like public, protected or private is not discussed in this paper but it is taken into
account by the approach.

10

lahire
10

ClassC

+ccfactored>> attributel AN

+<<factored>> nethodl() class O assA {
H int attributel;

I N int attributeA

| voi d nethod1(){}
reverse void methodA() {}}

7 inheritance

class ClassB {

int attributel;
int attributeB;
voi d et hod1() (}

v v voi d et hod8() {}}

ClassA ClassB class QlassCinfers QassC, QassB {
factored int attributel;
factored void methodi();}

+attributel +attributel
saticibute sattributeB
+net hod1() +net hod1()
4Rt hodA() 4Rt hodB()

Figure 1. Reverse inheritance factoring mechanism

3. SYNTAX AND IMPLEMENTATION OF FACTORING MECHANISM

In this section we discuss the language syntax and the implementation of the factoring mechanism. In order to
show the feasibility of the factoring mechanism we decided to use code transformations to eliminate the reverse
inheritance class relationship and to build equivalent hierarchies using just inheritance relationship. We will
generate internally equivalent pure Java code and this code does not intend to be shown to the programmer.
We propose to analyze examples of the two main situations where reverse inheritance may be involved (single
and multiple reverse inheritance). Hierarchy 1 of figure 2 shows an example of single reverse inheritance. The

AN
ext ends

hierachyl hierachy11 hierarchy12

Figure 2. Implementation 1

equivalent hierarchyll class diagram can be used when we want to add, to abstract, to redefine, to rename
methods in class B. The hierarchy12 from figure 2 can be used when we need to affect in the same way features
from class B and inherited features from class C.

Proposed Java Syntax We propose the following language extension constructions that illustrate single
reverse inheritance and fit the context corresponding to the structure of the hierarchyl class diagram:

class C {}
class B extends C {

void feature() {/* implementation */}

void future_factored_feature() {/* implementation */}

void future_renamed_feature() {/* implementation */}}
class A infers B {

int new_attribute;

void new_method (){}

factored void future_factored_feature();

void renamed_feature()={void B.future_renamed_feature()};}

11

lahire
11

For the abstraction of features the capability to be used is the factoring mechanism. Abstracted features are
declared using the factored keyword.

Another situation, a more complex one, is presented in hierarchy 2 of figure 3; it deals with multiple reverse
inheritance.

AN
ext ends

AN
infers

hierachy2 hierachy21 hierarchy22

Figure 3. Implementation 2

Like it has been made for single reverse inheritance, we propose two possible implementations depending on
the features to be factored. The first implementation solution hierarchy21 will be used to affect classes B and
B2. Tt has two intermediate classes A1 and A2 between CI and BI, respectively C2 and B2. On the other hand
an interface A is added, which is implemented by the new inserted classes A1 and A2 *. Interface A will be used to
record any possible abstracted features from it’s implementing classes A1 and A2. The second implementation
solution proposed in hierarchy22 may be used when we want to affect classes C1 and C2. It has only one
superclass A that will include all the factored features and all the new added features. This implementation may
be used when we need to factor also inherited features from classes C1 and C2.

4. SIGNATURE MATCHING AND ADAPTATION

In this section we present aspects dealing with signature matching and adaptation in the framework of method
factorization. It is necessary to set the rules which define the methods (to be factored) from subclasses that may
match the method signature within the superclass and to adapt their signature when it is needed. This may
lead to type conversion and to some method renaming. To adapt the signature of methods of subclasses when
they are factored enables to make them conform to the signature of the superclass method. This is quite useful
because it extends the expressiveness of the factorization mechanism in order to apply it to more methods.

All the entities that contribute to the definition of a signature, are involved in the feature lookup: return type,
method name, number of parameter, name, type, position and default value (when available) of each parameter,
assertions such as preconditions and postconditions (available in Eiffel).

The work described in ® involves only signature matching which is based strictly on type analysis. Several
cases of possible signature matches are mentioned: exact match, partial relaxed match, transformation relaxed
match, combined relaxed match, generic match. Cases of relaxed match, where types are substituted with
conforming ones, will be used in our study to reach the goals mentioned earlier.

Potential solutions for name matching, which link concrete methods from subclasses with the correspondent
abstract ones in the superclass, are: the use of annotations (a set of meta-information written by the programmer
in the source code), information that can be extracted from comments, manual setting of the factored features.

In our approach we address the latter solution and we extend the syntax of Java in order to improve the
expressiveness of reverse inheritance class relationship. A sample written in the Java language extension has the
following flavour:

According to the integration of an adding mechanism with reverse inheritance relationship, classes A1 and A2 could
be used for storing the new added features.
§ Assertion handling is out of the scope of the paper.

12

lahire
12

01 class Parallelogram {

02 void paint(Canvas c, int x, int y) {/* parallelogram implementation */}}

03 class Ellipse {

04 void update(double x, double y, Canvas canvas) {/* ellipse implementation */}}
05 class Shape infers Parallelogram, Ellipse {

06 factored void paint(Canvas c, int x, int y)= {

07 Parallelogram.paint(Canvas c, int x, int y),

08 Ellipse.update(double x -> x, double y -> y, Canvas canvas -> c)};}

Line 05 introduces a new keyword infers for expressing the reverse inheritance between class Shape and classes
Parallelogram and Ellipse. Between lines 06 and 08, the common painting method is factored void paint(Canvas
¢,int x, int y), which corresponds to method paint(...) from class Parallelogram and update(...) from class
Ellipse. The factored keyword is used for marking the factored features in superclass. Also special syntax is used
for method and parameter unification: one subclass method has the same name as the factored method paint,
but the other has a different name update; parameter Canvas canvas is unified with Canvas ¢, which is not at
the same position in class Ellipse.

Discussion About the Implementation of Signature Adaptation The set of transformations that deals
with signature adaptation, corresponds to these atomic features: i) method/parameter renaming; ii) parameter
addition/removal /reordering; iii) return type of method/parameter type changing.

To decide weather the name chosen for one method of the superclass may be propagated to the name of
one subclass according to the example above is not straightforward. In particular, to rename the method in a
subclass implies to parse all method calls in order to update it according to the new name. Moreover this may
lead to name conflicts with other existing method names.

Furthermore about parameters we may consider renaming, addition and removal. To rename parameters in a
method implies changing all the references to these parameters within the same method. Like for method names,
name conflicts may arise if members and parameters have now the same name.

To add a new unused parameter will not yield any modification of the method code, but it may interfere
with the lookup mechanism and the name of the new parameter could also introduce a conflict with members
or other parameters.

To remove an unused parameter implies the identification of the code parts which depend on it, and to
evaluate the side effects which are caused by the removal of that code. At first glance, it does not seem quite
reasonable.

To reorder parameters within a method is orthogonal according to the code located in the body of that
method. But it is obvious that heir or client classes which use the method, will be affected.

If a return type of a method or the type of a parameter is changed then it must conform to the original
type, but it is not sufficient because the modification may interfere with the lookup and generate conflicts with
existing methodsY. About type conformance, the rules proposed for handling primitive types should be the one
found in the literature (e.g. in Java double can replace float). When the type deals with classes then a subtype
conforms to the its supertype. But there is also another constraint: clients should use only the feature of the
supertype.

Possible Implementation in Java According to the discussion made in previous paragraph, we propose a
possible implementation solution which keeps the interface of the class intact and adds delegated methods with
different names:

TMoreover in Java the redefinition is non-variant and it is not possible to have two methods with the same name and
parameters but with different return types.

13

lahire
13

class Ellipse {
void update(double x, double y, Canvas canvas) {/* ellipse implementation */}
void paint(Canvas c, int x, int y) { update(x,y,c); }}

In the implementation solution, class Fllipse keeps it’s update(...) method intact and a new method paint(...)
is added to perform factorization. The new added method paint(...) will be used as a delegated method which
calls the update(...) method using the appropriate order of parameters. Of course it will be necessary to check
that there is no name conflict.

Again, code transformation is used only for an implementation purpose. Those we are using, are a set of
rules which translates a class hierarchy restructured using reverse inheritance class relationship, into a hierarchy
having only normal, direct inheritance. The set of transformations deals with the functionalities discussed in
previous paragraph.

5. CONCLUSIONS AND FUTURE WORK

In this paper we studied a possible semantics of the factorization mechanism in the framework of reverse in-
heritance relationship including signature adaptation and matching. We did not address the impact of reverse
inheritance on some Java constructs. For example, we did not point out the semantics of the factorization
according to the modifiers of methods or attributes.

Moreover we did not describe neither the semantics nor the implementation when reverse inheritance deals
with interfaces or inner classes. Even if the analysis made in this paper is not complete, it suggests that reverse
inheritance may be an interesting approach which may improve the reusability and the evolution capabilities of
hierarchies of classes. In the near future we aim to finish the definition of the semantics and to validate it by an
implementation as a plugin of Eclipse.

Even if it is far to be our first issue, extensions of Java or more generally of any object-oriented language
with reverse inheritance may also be used in the context of the reorganization of hierarchy of classes as it has
been suggested in 1. In this case it will only play the role of a specification language.

REFERENCES

1. Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire. Towards reengineering: An approach based
on reverse inheritance. Application to Java. Research report, Laboratoire Informatique, Signaux et Systemes
de Sophia-Antipolis (UNSA / CNRS), France, July 2003.

2. Michel Dao, Marianne Huchard, Therese Libourel, and Cyril Roume. Evaluating and optimizing factorization
in inheritance hierarchies. In Proceedings of the Inheritance Workshop at ECOOP 2002, Malaga, Spain, June
2002.

3. Peter H. Frohlich. Inheritance decomposed. In Proceedings of the Inheritance Workshop at ECOOP 2002,
Malaga, Spain, June 2002.

4. Ted Lawson, Christine Hollinshead, and Munib Qutaishat. The potential for reverse type inheritance in
Eiffel. In Technology of Object-Oriented Languages and Systems (TOOLS’94), 1994.

5. William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refactoring, 1993.

6. C. H. Pedersen. Extending ordinary inheritance schemes to include generalization. In Conference proceedings
on Object-oriented programming systems, languages and applications, pages 407-417. ACM Press, 1989.

7. Markku Sakkinen. Exheritance - Class Generalization Revived. In Proceedings of the Inheritance Workshop
at ECOOP 2002, Malaga, Spain, June 2002.

8. Amy Moormann Zaremski and Jeannette M. Wing. Signature matching: A tool for using software libraries.
ACM Transactions on Software Engineering and Methodology, 4(2):146-170, 1995.

14

lahire
14

Mathematical Use Cases lead naturally to non-standard
Inheritance Relationships: How to make them accessible in a
mainstream language?

Marc Conrad®, Tim French®, Carsten Maple®, Sandra Pott?

@University of Luton, LU1 3JU, UK
bUniversity of York, YO10 5DD, UK

ABSTRACT

Conceptually there is a strong correspondence between Mathematical Reasoning and Object-Oriented techniques.
We investigate how the ideas of Method Renaming, Dynamic Inheritance and Interclassing can be used to
strengthen this relationship. A discussion is initiated concerning the feasibility of each of these features.

Keywords: Object Oriented Programming, Mathematics, Inheritance, Algebra

1. INTRODUCTION

A strong relationship has already been identified between inheritance relationships and algebraic structuring
of “pure” mathematics.™? This relationship is best explored in a highly dynamic object oriented programming
language. In practice mathematicians in the course of their undergraduate studies might be exposed only (if at
all!) to one of the mainstream languages, such as Java, C++, or perhaps in the near future to C#.

This paper proposes how a mainstream language could be “smoothly” extended to embody new inheritance
relationships so as to make them accessible to a mathematical community. We discuss only Java for simplic-
ity, however the proposed additions are, in principle, valid for any mainstream language that only supports
inheritance in a manner similar to that of Java, such as C++ or C#.

The aim of the paper is to open a discussion about the feasibility of such extensions. We note that there are
basically four possible courses of implementation: 1) Adding the features to Java/C++/C# themselves (that
would imply negotiations with the responsible groups/companies); 2) Providing an “add-on” to the mainstream
language (as a library or pre-processor); 3) Developing a new language that extends the existing mainstream
language; 4) Developing a new language and educating users (universities, mathematics departments and so
forth) so as to use this language for mathematical purposes.

2. OBJECT-ORIENTATION AND MATHEMATICS

In the field of Computer Algebra there are already packages that offer support for the object-oriented paradigm.
For example, Axiom? has type hierarchies ordered in an inheritance-like structure and similarly Mupad? explicitly
enables the defining of child classes of existing classes as groups, fields, etc.

The author’s approach focuses on an object-oriented implementation of mathematical structures in an ax-
iomatic manner.?® The philosophy therein is that postulated properties of a domain are reflected as abstract
methods. For example an algebraic ring has by definition addition and multiplication. Of course, addition and
multiplication are not known algorithmically for an arbitrary (unspecified) ring: they cannot be implemented.
Therefore the mathematical entity “algebraic ring” is implemented as an abstract base class. This design follows
the GoF% mediator pattern : The abstract ring class is an abstract mediator whilst the elements of the ring are
the mediated colleagues.

Email: Marc.Conrad@luton.ac.uk, Tim.French@luton.ac.uk, Carsten.Maple@luton.ac.uk, sp23@york.ac.uk

15

lahire
15

3. NON-STANDARD INHERITANCE

In this section we address Method Renaming, Dynamic Inheritance, and Interclassing. Each of these three
subsections is divided into the presentation of the mathematical Use Cases together with a discussion. For all
three features we provide two example Use Cases: An elementary (rather basic) example to introduce and cement
the ideas and a more advanced example to demonstrate the power of the method.

3.1. Overriding with Renaming
3.1.1. Mathematical Use Cases

A group is a set with an operation and certain properties. In a concrete situation there is often a standard
notation for the group operation. The most familiar are 4+ for addition in an additive group and * or x for
multiplication in a multiplicative group.

Similarly the composition of two endomorphisms in the ring of endomorphisms over a vector space becomes
matrix multiplication in the special case of vector spaces of finite dimension.

3.1.2. Discussion

In these two examples it becomes clear that the renaming of a certain operation after specialization is a familiar
task in mathematics. Especially the second example where composition becomes multiplication shows that
renaming is able to reflect nontrivial mathematical relationships. This is even more evident in a language that
supports operator overloading (as C++): The group operation aob is renamed in a concrete application as either
a-bora+b A well known example can be found in cryptography: A public key/private key algorithm can be
formulated for a certain class of abelian, finite groups. The two kinds of groups that are used in practice are
(Z/nZ)* (a multiplicative group) and elliptic curves (additive groups). A generic approach” dealing with both
kinds of groups needs to be supported by a renaming mechanism.

The renaming of an operation after it has been overridden is hardly a new feature in object-oriented contexts.
In Eiffel renaming is the preferred method of choice to avoid ambiguity in multiple inheritance relationships.®
Renaming also exists as a standard feature in Python.® Adding this concept to Java would be an easy step to
improve the usability of Java within “mathematical context”. For example, C# already provides an overrides
keyword and from here it would be a comparatively small step to extend this syntax by specifying what it is that
is overridden.

3.2. Dynamic Inheritance
3.2.1. Mathematical Use Cases

Assume we start with an inheritance relationship with Field as a child class of Ring. For some rings, for example
Z/nZ, it cannot be decided by a compiler a priori if it is a field or not. (Z/nZ is a ring if and only if n is a
prime number).

In algebraic ring theory we have an even more extended inheritance hierarchy with (for example) Euclidian
Ring, Noetherian Ring, Principal Ideal Ring as classes located between (commutative) Ring and Field. For
instance if we restrict consideration to only the class of quadratic orders Z[v/d] with d € N we find Euclidian
rings and Principal Ideal Rings for various values of d.'9

3.2.2. Discussion

Dynamic Inheritance is hardly a “new” feature. A C++ implementation (or rather a workaround) is already
discussed in.'' Related to this is the concept of predicate classes'? that is implemented in Cecil.'®> In Self,'4
the object itself can decide on its parent objects thereby giving maximum flexibility. Kniesel'!® proposes a Java
extension featuring Dynamic Inheritance. Dynamic Inheritance is also supported in Lava as part of the Darwin
project.6

The most appropriate approach may well be reclassification as introduced in Fickle!”: An object is related
to a Root Class (in the Use Cases the class Ring). Then it can be reclassified to each child class (called State

16

lahire
16

Classes) of this Root class. A special operator // in Fickle reclassifies an object from one State Class to another
when both belong to the same Root Class.'”

The translation of Java into Fickle described in'® may serve as a roadmap for an implementation of reclassi-
fication in Java (although it is not straightforward). For a code example that illustrates the proposed syntax of
Java reclassification see.!®

3.3. Interclassing
3.3.1. Mathematical Use Cases

Assume for the moment that Euclid is a contemporary mathematician who has just discovered Euclidian division
(also known as division with remainder), and that he wants to add Euclidian division into existing mathematical
software that features a ring/field implementation as described in the previous section. The proper place for a
Euclidian Ring — a ring with Euclidian division — is between the ring and field. Not every ring is Euclidian and
every field is trivially a Euclidian ring.2°

A typical, non-fictional, example taken from Functional Analysis is that of Triebel-Lizorkin spaces, which
were introduced in the 1970’s as simultaneous generalizations of a number of well-known classes of function
spaces, such as LP spaces, Hardy spaces, the space of functions of bounded mean oscillation (BMO), Lipschitz
spaces and Sobolev spaces.2! A Triebel-Lizorkin space is a specialization of a Banach function space. A more
recent example is that of so-called real Q-spaces, which are simultaneous generalizations of the space BMO and
certain other Banach function spaces.??

This “interclassing” in Mathematics is often motivated by the desire to create a unifying framework for several
known classes of mathematical objects in a certain context (as in the first of the two examples mentioned above),
or to bring existing mathematical techniques to new applications (the second example).

3.3.2. Discussion

Note that the problem of interclassing is substantially different from the problem of run-time reclassification
described earlier in section 3.2. Here, we start with a class hierarchy that may be arranged in a package and
that may not even contain any source code. We want to extend this class hierarchy by adding a class on a well
defined position in an inheritance tree. Even if the source code is available it may not be desirable to change
this code, especially if the class library is well established and the addition of the new class has an experimental
character, or is only relevant for a specialized application area.

Outside of a mathematical context, the idea of interclassing is already discussed by Rapicault and Napoli.?3
Crescenzo and Lahire?* describe an implementation using the OFL model. However, in terms of pragmatic
usage OFL is inadequate as it requires de facto the learning of OFL as an additional language, namely the
understanding of the correct use of hyper-generic parameters. Also, in using hyper-generic parameters, the
developer of a library already unnecessarily restricts possible extensions.

A concept developed in LPC?® called “shadowing” may be a useful technique for the implementation of
interclassing. Essentially a shadow is a proxy-object that can be added at run-time and receives all messages
determined to the shadowed object (hence “shadowing” the “proxied” object). The concept is evaluated in more
detail in two preprints by the authors'® 26 and has been implemented in Java.?”

4. CONCLUSION AND PERSPECTIVE

This paper describes work in progress. However a simple (in terms of usability) incorporation of Method Renam-
ing, Dynamic Inheritance, and Interclassing in a mainstream language would radically simplify the implementa-
tion of mathematical structures in a wide range of use cases, even in areas that are currently merely considered
as practically not accessible by programming (such as Functional Analysis).

The paper was motivated by disappointment with the traditional way of implementing “mathematics” within
mainstream Computer Algebra Systems and experiments using the com.perisic.ring Java package.®? However,
it seems that the question of “implementing” mathematical structures in an object oriented context is strongly
linked to (and may be dominated by) the issue of how best to represent these structures.

17

lahire
17

Moreover, it may be fruitful to discuss the problems of Method Renaming, Dynamic Inheritance and Inter-
classing independently from any implementation language in the context of the UML. Having appreciated the
usefulness of a UML representation of mathematical structures, the use cases provided in this paper may lead
to future examination of suitable extensions to UML, for instance how Reclassification should be modelled in a
Sequence Diagram etc.

REFERENCES

1. M. Conrad, Abstract Classes - pure computer science meets pure mathematics, Seminar talk, York 2003,
http://ring.perisic.com/info/york2003.

2. M. Conrad, T. French, “Exploring the synergies between the Object-Oriented paradigm and Mathematics: a

Java led approach,” to appear in Int. J. Math. Educ. Sci. Technol.

Tim Daly et. al. Aziom Computer Algebra System, http://savannah.nongnu.org/projects/axiom.

The MuPAD Research Group. MuPAD — The Open Computer Algebra System, http://www.mupad.de.

M. Conrad. com.perisic.ring — A Java package for multivariate polynomials, http://ring.perisic.com.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-Wesley, 1995.

C. Maple, M. Conrad, T. French, “A Novel Flexible Approach to Document Encryption Using a MathML Ex-

tension to the W3C XML Digital Certificate Standard,” in Proceedings of the IADIS International Conference

on e-Society (2003)

8. Betrand Meyer, “Overloading vs. Object Methodology,” Journal of Object-Oriented Programming, Octo-
ber/November 2001.

9. Jeremy Hylton, Introduction to Object-Oriented Programming in Python (Outline),
http://www.python.org/jeremy /tutorial /outline.html, Januar 2000.

10. Kenneth Ireland, Michael Rosen, A Classical Introduction to Modern Number Theory, 2nd ed. Springer-
Verlag, New York, 1995

11. James Coplien, Advanced C++ programming styles and idioms, Addison-Wesley 1992.

12. C. Chambers, “Predicate classes,” in: Proceedings of the ECOOP’93, volume 707 of Lecture Notes in Com-
puter Science, pages 268-296, Kaiserslautern, Germany, July 1993.

N o

13. C. Chambers, The Cecil Language: Specification € Rationale, avialable at:
http://www.cs.washington.edu/research/projects/cecil/www /pubs/cecil-spec.html.

14. The Self Group, Self, http://research.sun.com/research/self

15. Gilinter Kniesel, Darwin & Lava - Object-based Dynamic Inheritance ... in Java, Poster presentation at
ECOOP 2002.

16. The Darwin Project, http://javalab.iai.uni-bonn.de/research/darwin.

17. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini and P. Giannini, “Fickle: Dynamic object re-
classification,” in: FCOOP’01, LNCS 2072 (2001), pp. 130-149.

18. D. Acnona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca, “A type preserving trans-
lation of Fickle into Java,” in: FElectronic Notes in Theoretical Computer Science 62 (2001). Available at:
http://www.elsevier.nl/locate/entcs/volume62.html

19. M. Conrad, T. French, C. Maple, S. Pott, Approaching Inheritance from a “Natural” Mathemat-
ical Perspective and from a Java driven viewpoint: a Comparative Review, Preprint available from:
http://ring.perisic.com.

20. Serge Lang, Algebra, third ed., Addison-Wesley, 1993.

21. H. Triebel, “Theory of Function Spaces,” Monographs in Mathematics, vol 78, Birkh&user Verlag Basel, 1983

22. M. Essén, S Janson, L. Peng and J. Xiao, “Q-spaces of several real variables,” Indiana University Mathematics
Journal, vol 49, no 2(2000), 575 — 615

23. P. Rapicault, A. Napoli, “Evolution d’une hirarchie de classes par interclassement,” in: LMO’2001, Hermes
Sc. Pub. ”L’objet”, vol. 7 - no. 1-2/2001

24. Pierre Crescenzo, Philippe Lahire, “Using Both Specialisation and Generalisation in a Programming Lan-
guage: Why and How?” In: Advances in Object-Oriented Information Sytems, OOIS 2002 Workshops,
Montpellier, pages 64-73, September 2002.

18

lahire
18

25. Ronny Wikh, LPC, available at: http://genesis.cs.chalmers.se/coding/lpedoc/Ipe.html (last update 2003)
26. M. Conrad, T. French, C. Maple, “Object Shadowing - a Key Concept for a Modern Programming Language,”
Submission to the 2nd Workshop on Object-Oriented Language Engineering for the Post-Java Era: Back to

Dynamicity (Workshop 5 of ECOOP 2004).
27. M. Conrad. The com.perisic.shadow package, http://perisic.com/shadow.

19

lahire
19

20

lahire
20

Proposals for Multiple to Single Inheritance Transformation

Michel Dao®, Marianne Huchard?, Thérese Libourel®, Anne Pons®, Jean Villerd®

“France Télécom R&D DTL/TAL
38-40 rue du général Leclerc, 92794 Issy Moulineaux Cedex 9, France
"LIRMM - CNRS et Université Montpellier IT — UM 5506
161 rue Ada, 34392 Montpellier Cedex 5, France
“Dept Informatique — Université du Québec a Montréal
C.P. 8888 — Succursale centre ville, Montréal Québec H3C 3P8, Canada

ABSTRACT

We present here some thoughts and ongoing work regarding transformations of multiple inheritance hierarchies
into single inheritance hierarchies. We follow an approach that tries to categorize multiple inheritance situ-
ations according to a semantic point of view. Different situations should be captured through diagrammatic
UML annotations that would allow to detect a given situation and hence apply the appropriate transformation,
automatically if possible.

Keywords: multiple inheritance, UML, model transformation

1. INTRODUCTION

Multiple inheritance (MI) vs. single inheritance (SI) was the subject of numerous passionate discussions during
the era of the emergence of object-oriented programming languages. Those discussions have more or less come
to an end and we are left with: not so badly implemented MI languages (e.g. Eiffel and CLOS) that are scarcely
used, widespread not so well implemented MI languages (e.g. C++) or the flagship language Java (but for how
long?) with SI (and MI for interfaces).

Lately, a shift in software development process has given an increased importance to modelling, specially
through the widespread use of UML.! Of course UML proposes MI: as opposed to programming languages,
there are no conflicts to be resolved at compile time when using MI in UML and those who believe, as we do,
that MI can be a good means of modelling existing entities can use it without caution. Furthermore, UML
proposes annotations allowing inheritance links to convey special meanings.

More recently, Model Driven Architecture (MDA)? has proposed a framework in order to formalize the
extensive use of models during the software development process. MDA fosters the use of different models
throughout the process, the models of one phase of development being derived from the models of a previous
phase. More specifically, a Platform Independent Model (PIM) may be used to generate a Platform Specific
Model (PSM). For instance, a UML design level static model may be used to generate source code in a given
programming language. Our proposition fits into this precise scheme: how can we automate the transformation
of a MI UML class diagram into a SI class diagram, hence allowing straightforward transformation into SI
programming language?

There exist several works on the subject of MI vs. SI.>® In a previous project in which we participated,
two approaches have been considered that may eventually be combined. The first one may be described as
”combinatorial” and consists in defining a strategy to remove inheritance links so as to minimize the number of
properties (attributes and methods) that it is necessary to duplicate. Such a strategy can be based on a set of
metrics that allow to measure a priori the impact of the deletion of an inheritance link. A first work following
this approach has been realized® that yielded interesting results but needs to be refined and completed in order
to be fully usable.

Another approach, which is the subject of this article, may be described as "semantic”. The idea is to
consider that MI may appear in several typical situations that correspond to different semantics and that for
each situation there may exist several possible transformations into SI. The problem of MI to SI transformation
may therefore be decomposed as follows:

21

lahire
21

e claborate a list of the different situations of MI and of the corresponding possible transformations into SI;
e be able to find occurences of those different situations in a class hierarchys;

e be able to apply the pertinent transformation.

The structure of inheritance is clearly not sufficient to determine a situation of MI. UML standard proposes
some annotations of inheritance and we believe that those annotations may help in spotting specific inheritance
situations but they are limited and do not allow to capture all situations. In a previous article,” we have
proposed some extensions to those annotations in order to enhance the semantic expressiveness of inheritance
links in UML class diagrams. Furthermore, some other informations (size of classes, size of generalization set,
need of symmetry, number of inherited methods, etc.) may help to determine the best transformation to be
applied.

We first present the annotations that may be used to convey semantic inheritance information in UML class
diagrams. This is followed by a proposition of a set of MI to SI transformations that we have gathered in existing
work (and have partly adapted). Then we propose a tentative list of typical MI situations associated with one
or more pertinent transformations. We conclude by discussing our approach and its perspectives.

2. MULTIPLE INHERITANCE ANNOTATIONS

A first type of UML annotation®® is the discriminator that allows one to group subclasses into clusters that
correspond to a semantic category. For instance, in Figure 1*, class Employee is specialized according to two
criteria, :status (related to the salary payment), and :pension (vested vs unvested). Discriminators involve
a partition of the specialization links coming to a parent class: in our example this partition has two elements,
the set of the links labelled with the discriminator :status from one side, the set of the links labelled with the
discriminator :pension from the other side.

Employee

{disjoint, incomplete} Z} Z} {disjoint, complete}

:status :pension
SalariedEmployee HourlyEmployee VestedEmployee UnvestedEmployee
ExemptEmployee \ /
VestedHourlyEmployee

Figure 1. Exemple of annotated multiple inheritance

A second kind of annotation existing in the UML notation appears as constraints about the extension (instance
set) of a class C and of its subclasses. We denote by F the set of the direct subclasses which are gathered by
such an annotation. Four constraints are predefined:

overlapping an instance of C' can simultaneously be instance of several classes of FE;
disjoint an instance of C is instance of at most one class of F;

complete elements of E are origins of links annotated by a same discriminator; any instance of C is instance
of one of the elements of F;

*This example is borrowed from.’

22

lahire
22

incomplete the classes of E are origins of links annotated by a same discriminator; an instance of C' is not
necessarily instance of one of the classes of F.

We have proposed to extend this set of annotations with the following”:

alternative the characteristics of the super classes are used alternatively as in the case of an amphibian vehicle;
concurrent (special case of overlapping for roles and states): father/husband;

successive (special case of disjoint with a temporal scheduling): chrysalis/caterpillar /butterfly, child/teenager/
adult;

exclusive (special case of disjoint for roles and states): empty/full for a stack, married/single for a person;

repeated similar to repeated inheritance in C++: a property may be inherited along several different paths
from the same indirect super class;

combined when a class is directly specialized according to several criteria denoted by discriminators, an instance
may be constrained to belong to at least one class of each discriminator;

disjoint partition conversely, an instance may be constrained to belong to only one discriminator;

implementation in numerous examples of multiple inheritance in the programming area, a class ends up
deriving from superclasses that it specializes for implementation needs.

3. INHERITANCE TRANSFORMATIONS

Figure 2 shows an initial MI situation and five possible transformations into SI.

Transformation 1 — Duplication The first transformation that may be applied is to remove one of the
inheritance links and to duplicate in the subclass all the properties that were inherited through this link. The
advantage of this solution is simplicity but duplication of code is always a bad thing regarding reuse and main-
tenance. The choice of the inheritance link to cut could be based on the number of properties that must be
duplicated: the less, the better.

Transformation 2 — Nested generalizations This transformation consists in cloning one set of classes
corresponding to a discriminator (here :discrCD) into subclasses of each class corresponding to the other dis-
criminator. This transformation may only be useful when there are few classes under the chosen discriminator
and it may be difficult to choose the discriminator to clone. Furthermore, the naming conflicts produced by the
new classes must be resolved but polymorphism is kept.

Transformation 3 — Direct link This transformation can be seen as a double duplication: both inheritance
links are cut and the properties from both superclasses (B and C) are duplicated into class E. This transformation
involves more duplication than the duplication involved in transformation 1 but allows to preserve the symmetry
of the class hierarchy if this is relevant.

Transformation 4 — Role aggregation Another solution is to transform one of the inheritance links into
an aggregation’ link. Polymorphism is replaced by a delegation mechanism at the expense of the creation of a
new class A/CD and of code rewriting. In our example each method or accessor of class C should be replaced by
one with the same name in class A performing a call to the right method or accessor in class C. The choice of the
inheritance link to be replaced by delegation could be based on the amount of properties to be redefined or one
could choose the class belonging to a discriminator that is complete because such a replacement would be done
once and for all.

In fact, that might be a composition link.

23

lahire
23

ClassA
ClassA
ClassA = a:red
p— a:red
a:r 0 m()
m() /\)
ﬂ / \ :discrCD fj wdiscrCD
ClassB ClassC ClassD ClassB
ClassB ClassC ClassD b: string c:char d : boolean b string
b : string c:char d: boolean m() m() m() m0
m() m() m() % A\
R /4 ClassE-C ClassE-D
ClassE
ClassE - c: char d : boolean
e: integer e: integer e: integer
N c: char
e:integer mo m() m()
m() mcQ mC() mD()
Initial inheritance situation 1 - Duplication 2 —Nested generalizations
Class A
a:red
m) ClassA Class AICD ClassA

ﬁ A_’ﬂ‘ ared | 1 a:red
m()

ClassB ClassC ClassD :discrCD b: string
b stri “ch d: bool 4 ¢: char
: string c:char : ean d- boolean
m() m() m() ClassB ClassC ClassD e integer
b : string c: char d : boolean typeOfA : Types
ClassE m0) mo mo m()
e:integer mA()
b: string mB()
c:char
0 ClassE mC()
my
mB() e: integer mD()
mc(m() mE()
3 —Direct link 4 — Role aggregation 5—Class merge

Figure 2. Propositions of inheritance transformations

Transformation 5 — Class merge This transformation merges A and all its subclasses into one unique class.
Conflicting properties must be renamed and a dispatch mechanism must be implemented that uses a typing
attribute indicating the type of instances of this unique class.

Transformation — Interfaces Another transformation not depicted in the figure consists in defining a MI
interface hierarchy corresponding to the MI class hierarchy and to establish implementation links between the
class hierarchy and the implementation hierarchy.

Our ongoing work is to define a mapping between a given MI situation and one (or several) pertinent
transformations. Table 1 lists a first attempt of such a mapping. This is clearly an incomplete and debatable
table that needs completion, refinement and discussion. Let us discuss a couple of our proposals.

First, the complete annotation implies that no other classes should be added to the cluster of classes gathered
under this annotation, typically a discriminator. Therefore, in the case where there are only few classes involved,
one multiple inheritance cluster could be transformed using the nested generalization transformation. In this

24

lahire
24

case, this would not lead to a too complex diagram with a great number of classes that are not all useful. Another
case is when there is only one inheritance link that originates from a complete annotation, one could use the role
aggregation transformation with this inheritance link being replaced by the aggregation link.

The combined annotation stipulates that a subclass inherits from at least one class from each discriminator.
In the case of the alternative sub case, this argues in favor of the direct link transformation where all superclasses
are treated equally.

The implementation annotation can be viewed as a conceptual model of the interfaces of Java (*able: clone-
able, serializable, etc.) and therefore the most natural transformation consists in using interfaces to represent
multiple inheritance in that case.

Situation Semantic Transformation Comment
subsituation
overlapping
concurrent role aggregation
disjoint
successive role aggregation
exclusive
complete nested generalization | few classes under the chosen discriminator
and at most two discriminators
role aggregation complete = will not evolve
combined role aggregation few classes under the chosen discriminator
nested generalizations
alternative direct link
repeated role aggregation
implementation interfaces

Table 1. MI situations and transformations

4. DISCUSSION AND PERSPECTIVES

We have presented here our ongoing work on MI to SI transformation based on semantic annotations of UML class
diagrams. We have so far enriched UML annotations with some new ones and determined a set of transformations.
We are currently studying the mapping between a given situation of inheritance (UML extended annotations
and other criteria) and the possible transformations that may be applied.

It is obvious that such transformations should be applied to a class hierarchy as automatically as possible.
We have realized a limited implementation of two of the transformations listed in Section 3 in UML CASE tool
Objecteering? using its proprietary object-oriented language J. We are wondering if this type of procedural imple-
mentation is best suited for our purposes. As inheritance transformation may be seen as model transformation,
we are considering the use of a model transformation language (such as those for which OMG is requiring for
proposals) to express both the research of MI inheritance situations and their transformations into SI.

We believe that the work we have presented here may be an incentive for the following discussion topics:

e can we reconcile multiple and single inheritance by allowing the latter to be (partially) automatically
obtained from the former?

e does this type of transformations fit into the MDA approach?
e to which extent can we classify multiple inheritance into well defined semantic categories?

e to which extent can we capture those semantic categories in UML annotations?

Yuww. objecteering.com

25

lahire
25

REFERENCES

. U2 Partners, Unified Modeling Language: Superstructure, version 2.0, 3rd Revised submission to OMG RFP
ad/00-09-02, hitp://www.omg.org/cgi-bin/doc?ad/20 03-04-01, april 2003.

. Object Management Group, MDA-Guide, V1.0.1, omg/03-06-01, june 2003.

. K. Thirunarayan, G. Kniesel, and H. Hampapuram, “Simulating Multiple Inheritance and Generics in Java,”
Computer Languages 25(4), pp. 189-210, 1999.

. M. Malak, “Simulating Multiple Inheritance,” Journal of Object-Oriented Programming , pp. 3—5, april 2001.
. Y. Crespo, J.-M. Marques, and J. Rodriguez, “On the Translation of Multiple Inheritance Hierarchies into
Single Inheritance Hierarchies,” in Proceedings of the Inheritance Workshop at ECOOP 2002, Black, Ernst,
Grogono, and Sakkinen, eds., pp. 30-37, 2002.

. C. Roume, “Going from Multiple to Single Inheritance with Metrics,” in Proceedings of the sizth ECOOP
workshop on Quantitative Approaches in Object Oriented Software Engineering (QAOOSE 2002), F. Brito e
Abreu, M. Piattini, G. Poels, and H. Sahraoui, eds., pp. 30-37, 2002.

. M. Dao, M. Huchard, T. Libourel, and A. Pons, “Extending the Notation for Specialization/Generalization,”
in Proceedings of MASPEGHI’03, ISBN 2-89522-035-2, pp. 61-67, (CRIM, Université de Montréal), 2003.

. Rational Software Corporation, UML v 1.3, Notation Guide, version 1.3 ed., june 1999.

. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object Oriented Modeling and Design,
Prentice Hall Inc. Englewood Cliffs, 1991. pages 15-84.

26

lahire
26

The expression problem, Scandinavian style

Erik Ernst

Dept. of Computer Science, University of Aarhus, Denmark
eernst@daimi.au.dk

ABSTRACT

This paper explains how higher-order hierarchies can be used to handle the expression problem. The expression
problem is concerned with extending both the set of data structures and the set of operations of a given abstract
data type. A typical object-oriented design supports extending the set of data structures, and a typical functional
design supports extending the set of operations, but it is hard to support both in a smooth manner. Higher-
order hierarchies is a feature of the highly unified, mixin-based, extension-oriented kind of inheritance which is
available in the language gbeta, which is itself a language that was created by generalizing the language BETA.

Keywords: Expression problem, class composition, gbeta

1. INTRODUCTION

The expression problem has been defined as follows by Torgersen': “Can your application be structured in such
a way that both the data model and the set of virtual operations over it can be extended without the need to
modify existing code, without the need for code repetition and without runtime type errors.”

This paper presents a new approach to the expression problem, based on the support for higher-order hi-
erarchies which is a feature of the inheritance mechanism in the language gbeta. It is very straightforward
for programmers to express the desired extensions in this style, and moreover different extensions are highly
composable.

The expression problem is about two-dimensional extensions: if an abstract datatype is modeled in an object-
oriented style by means of classes whose methods are the operations on the datatype, then it is easy to extend
the set of variants by writing another class. If the abstract datatype is modeled in the style of an SML datatype
with a set of pattern matching functions as the operations, then it is easy to extend the set of operations by
writing yet another pattern matching function. In both cases it is much harder to perform the other extension,
i.e., to add a new operation in the object-oriented style or to add a new data structure in the functional style,
in both cases because it is necessary to make changes in many existing entities rather than just writing one new
entity. Space constraints imply that the traditional forms of the expression problem cannot be presented by
detailed code examples here, but this has been done several times before.>? Instead, we will proceed to describe
and discuss the new solution.

Section 2 presents the running example in terms of which our solution to the expression problem is exposed,
and gives the code for the initial design. This design is extended in Sect. 3 with a new operation, and in Sect. 4
with a new kind of data. Next, Sect. 5 shows how the two extensions may be composed and glued together.
Finally, Sect. 6 briefly discusses related work and Sect. 7 concludes.

2. THE EXAMPLE PROBLEM

Following the tradition in relation to the expression problem, we will focus on a compiler-oriented problem,
namely that of representing abstract syntax trees for a tiny language. The desired extensions will then correspond
to adding a new operation on the abstract syntax trees, and adding a new kind of nodes in the trees. Here is
the source code for the initial design:

27

lahire

lahire
27

class Lang {
virtual class Exp {
String toString() {}
}
virtual class Lit extends Exp {
int value;
Lit(int value) { this.value=value; }
String toString() { return value; }
}
virtual class Add extends Exp {
Exp left,right;
Add(Exp left, Exp right) {
this.left=left; this.right=right;
}
String toString() {
return left.toString()+"+"+right.toString();
}

We use a syntactic style which is close to the Java programming language,? but which is in fact just a modified
surface syntax for the language gbeta. In particular, class attributes may be virtual, which means that they
may be redefined (more precisely: further constrained) in subclasses of the enclosing class, and this is what
we will exploit in order to create the desired extensions later. Note that gbeta supports inheritance between
virtual classes; in BETA such an inheritance relation is not supported, but gbeta supports it as a result of a deep
generalization of the underlying concepts and mechanisms. This is the basis for higher-order hierarchies, which
is described in detail elsewhere.*

The class Lang contains three classes Exp, Lit, and Add, the latter two being subclasses of the first one. The
class Exp represents abstract syntax trees for expressions in the tiny language we are dealing with, and the two
other classes are the only possible forms of expressions, namely integer literals, Lit, and addition expressions,
Add. The only operation available in this basic version is toString.

3. ADDING A NEW OPERATION

We can extend the class family with a new operation in the following way (note that we need not edit the base
family):

class LangEval extends Lang {
refine class Exp {
int eval() {}
}
refine class Lit {
int eval { return value; }
}
refine class Add {
int eval { return left.eval()+right.eval(); }
}

The effect of this is that we create a derived class family (a new version of Exp, Lit, and Add), each of them
created by extending the version in Lang with the new eval method. The keyword refine is used to specialize
an inherited virtual class attribute, and the semantics is that the virtual class attribute is constrained to be a
subclass of the new declaration. In other words, no matter what class Exp denotes in Lang, it will denote that
same class extended with the eval method in LangEval. Note that Add was declared to be a subclass of Exp in
Lang; such a subclass relation is maintained even when virtual classes are refined, and this means that Add in

28

lahire
28

LangEval is a subclass of the current value of Exp, which is then extended with a particular implementation of
the eval method.

Note that all we had to do in order to extend the entire family with a new operation was to declare which
classes should be extended with the new method (refine..), and then declare the method. If Lit and Add could
have used an implementation of eval written in Exp then we could have written just that single new method in a
refinement of Exp, and all subclasses (in this case: Lit and Add) would have inherited the new method without
any need to mention them explicitly. This is again because the declared inheritance relations are automatically
maintained.

4. ADDING A NEW DATA STRUCTURE

Extending the class family with a new member is also easy:

class LangNeg extends Lang {
virtual class Neg extends Exp {
Neg(Exp exp) { this.exp=exp; }
String toString() { return "-(" + exp.toString() + ")"; }
Exp exp;

}
} Ex.

3

Here we create a new class family whose members have the same structure as in Lang (because there are no
refine declarations), but a new family member is added, namely Neg which represents the unary negation
operator. As before, there is no need to edit Lang in order to create this extension of it, and the new extended
version of Lang is created simply by describing the delta—in this case the class to add to the family. Note,
however, that the new family member is declared to be a subclass of Exp. This means that extensions to Exp
will also added to Neg, as we shall see in the next section.

5. COMPOSING BOTH EXTENSIONS

It is possible to use the two extensions together, by composing the two class families created in Sect. 3 and 4. In
gbeta, class composition is supported by means of the ‘&’ operator, but since this character is already used for
other purposes in Java syntax we will use the (non-ASCII) symbol & to play this role. The class families may
then be combined in the following manner:

class LangNegEval extends LangEval ¢ LangNeg {
refine class Neg {
int eval() { return -exp.eval() }

}
} Ex.

4

It is trivial to compose the two class families, producing a new family which contains the base material from
Lang as well as the added Neg class from LangNeg and the added eval method from LangEval. To do this, we
can just use LangEval® LangNeg. However, we need to add a little bit of glue code to this combination, because
LangEval does not know about the class Neg and LangNeg does not know about the method eval, and the result
is that the implementation of eval for the class Neg is non-existent. This might be fine since Neg does in fact
inherit eval from Exp in context of the combined family, but the implementation in eval in Exp is not suitable
for Neg, so we have to add an implementation of eval specifically for Neg. This extension is achieved by the
body of class LangNegEval above.

Note that it is not a problem with the expressive power of the language that forces us to write this glue
code, it is a problem which is inherent in the combination of independent extensions. We could never expect the
independently added method and the independently added class to match up in such a way that the combina-
tion of the extensions would know how to implement the new method for the new class—this is inherently an
application domain dependent problem, which must be solved by a programmer who writes the missing method.

29

lahire
29

6. RELATED WORK

Krishnamurthi et al.? describe an extension of the visitor pattern with factory methods is used to ensure new
datatypes can be added while maintaining consistency. Adding new operations is easy when using the visitor
pattern, so this establishes a two-dimensional extensibility. However, it leads to significantly more complex
programs than what we have shown in this paper, it does not support smooth composition of independent
extensions, it is not well-integrated in the type system (it uses explicit type casts), and it does not support
type-safe polymorphic usage of complete families of classes, also known as family polymorphism.

Torgersen' describes a number of visitor based approaches, with a similar level of complexity as in the previous
approach and also without family polymorphism or extension composition, but it removes the need for dynamic
casts. Moreover, in this case there is a feature which is not available in the approach we have shown: it is, under
certain circumstances, possible to mix objects belonging to different families. E.g., an expression may contain
nodes from the basic family (without negation), and this expression could then be used as the subtree of a Neg
node.

Zenger and Odersky® describe how SCALA is used to express two different families of solutions to the expression
problem which are capable of combining independently added extensions. Two extensions adding datastructures
are combined, and two extensions adding operations are combined—and it is not clear whether two extensions
can be combined (and glued) if one of them adds a datastructure and the other one adds an operation. SCALA
uses some constructs similar to virtual types (it supports abstract type members in objects), and it is more
theoretically well-analyzed but a little less expressive than gbeta. In particular, the example programs are more
complex than the ones we have shown here, because SCALA does not support propagating combination and
consequently the combination of nested type members must be spelled out manually.

7. CONCLUSION

We have presented an approach to the expression problem based on higher-order hierarchies. Using this approach,
the expression problem becomes a small matter of writing the classes and/or methods which need to be added
to a given class family, and it is even possible to combine independent extensions and add the missing glue. We
believe that this is the smoothest known type-safe approach to the expression problem.

REFERENCES

1. M. Torgersen, “The expression problem revisited — four new solutions using generics,” in Proceedings
ECOOP’04, M. Odersky, ed., LNCS ¢, pp. 7?7, Springer-Verlag, (Oslo, Norway), 2004. To appear.

2. S. Krishnamurthi, M. Felleisen, and D. P. Friedman, “Synthesizing ojbect-oriented and functional design to
promote re-use,” in Proceedings ECOOP’98, E. Jul, ed., LNCS 1445, pp. 91-113, Springer-Verlag, (Brussels,
Belgium), July 1998.

3. B. Joy, G. Steele, J. Gosling, and G. Bracha, Java(TM) Language Specification (2nd Edition), Addison-Wesley
Publishing Company, 2000.

4. E. Ernst, “Higher-order hierarchies,” in Proceedings ECOOP 2003, L. Cardelli, ed., LNCS 2743, pp. 303-329,
Springer-Verlag, (Heidelberg, Germany), July 2003.

5. M. Zenger and M. Odersky, “Independently extensible solutions to the expression problem,” Tech. Rep.
I1C/2004/33, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2004.

30

lahire
30

The Logic of Inheritance

DeLesley Hutchins
CISA, Department of Informatics,
University of Edinburgh
d.s.hutchins@sms.ed.ac.uk

ABSTRACT

Although inheritance is the characteristic feature of object-oriented programming, it has proved difficult to
formally define. There is still a great deal of debate over the benefits of single versus multiple inheritance,
subtyping versus subclassing, and inheritance of interface versus implementation. I argue that inheritance is
fundamentally concerned with the categorization of objects, and that OO languages should thus be founded upon
a formalism that supports categorical reasoning. Description logics, which were developed by the Al community
for knowledge representation, provide just such a formalism. I provide a brief introduction to description logics,
and then describe how they can be extended to create a formal object calculus. The resulting calculus seems to
resolve many of the problems that plague other models of inheritance.

Keywords: description logics, feature composition, mixins, mixin layers, multiple inheritance, prototypes, type
intersection

1. INTRODUCTION

The object-oriented paradigm suffers from a critical ailment. Inheritance is the main feature that distinguishes
OOP from other programming paradigms, and yet there are as many variations of “inheritance” as there are OO
programming languages. The greatest strength of inheritance is also its greatest weakness; it is intuitive and
easy to understand in principle, but our natural intuitions have proved difficult to satisfactorily define in any
formal way.

Part of the problem is that most discussions of inheritance have focused on mechanism, rather than meaning.
Inheritance in mainstream languages is closely tied to implementation concerns, specifically the use of virtual
method tables. In both C++ and Java, only methods can be overridden during inheritance, because only method
pointers can be stored in a lookup table. Although Beta introduced virtual types and classes over a decade ago,
they are still not supported by mainstream languages, and that means that inheritance in such languages is
fundamentally limited.! It is not possible in Java, for instance, to create generic classes, specialize groups of
mutually recursive classes, or encapsulate cross-cutting concerns using single inheritance alone. A number of
proposals for additional constructs — such as generics,? aspects,® mixins,* and feature composition® — have
been proposed and implemented in recent years in part as a way of getting around the limitations of single-class
method-based inheritance.

This paper is a step toward a more expressive and logical model of inheritance. I will start by defining the
meaning of inheritance as a subset of first-order logic, and move from there to defining an appropriate mechanism
for inheritance as a calculus of classes and objects. I conclude by briefly comparing this mechanism with other
languages and techniques.

2. DESCRIPTION LOGICS

Description logics (DLs) are fragments of first-order logic that have been developed by the Al community for
use in knowledge representation systems.® They evolved out of earlier work on semantic networks and frame-
based systems, and are currently one of the main logics used to build ontologies for the semantic web. DLs are
particularly well-suited to reasoning about categories, which makes them applicable to OO languages.

A description logic models the world in terms of concepts and roles. A concept is a unary predicate (e.g.
p(X)) which specifies a property that a given object X may have. A role is a binary predicate (e.g. p(X,Y))
which specifies a relationship that may hold between a pair of objects. In a description logic, these predicates

31

lahire
31

are usually interpreted as sets. We start off with a non-empty set Al which is the domain of interpretation — the
set of all possible objects. Given a concept C, we can then define C, the subset of A’ which contains only those
objects that have the properties defined by C. A concept thus acts essentially like a type or a class. Similarly, a
role R has an interpretation R’, which is a mathematical relation between objects in AT.

The syntax of DLs may seem somewhat strange to the uninitiated, because predicate variables are not explicit
in the syntax. That is, instead of writing ¢(X) — d(X) A e(X), we write C = DM E. The use of the “1” symbol
rather than “A” reflects the fact that it is easiest to think of concepts as types or sets rather than predicates.

One of the big advantages of DLs is that they comprise a family of logics rather than a single logic, so they
can be tailored to meet the needs of a particular system. The language I present here is based on the logic
uF L~ (C, o), which is described by the following grammar.® The semantics of the logic are given in set notation.

C,D == Concepts

T AT (set of all objects)

1 0 (empty set)

A Atomic concept

X concept self-label

cnb CT N D! (concept intersection)

uX.C fixpoint operator

VR. C {a € AT | Vb. (a,b) € R implies b € CT}

3R {a € AT | 3b. (a,b) € R}

RCS {a € AT | Vb. (a,b) € R! implies (a,b) € ST}
R,S x= Roles/Relations

P Atomic role

RoS {(a,c) € AT x AT | Fb.(a,b) € RT A (b,c) € ST}

A knowledge base built using description logics starts out by defining several atomic concepts and roles which
act as built-in types. More complex concepts are then constructed by describing their relations to simpler ones.
For example, if Human and Female are atomic concepts, we can write:

Parent = Human M dchild M Vchild.Human A parent is a human with at least one human child.
Mother = Parent M Female A mother is a female parent.
Spinster = Human M Female M Vchild. L A spinster is a woman with no children.

Description logics make heavy use of the “I” type-intersection operator. Each part of a concept is essentially
a very simple class. The concept Ichild, for instance, is the class of objects which have at least one child-link to
another object. The concept Vchild.Human is the class of objects whose child-links, should they exist, all point
to humans. The intersection operator then glues a number of such mini-classes together into a more complex
class.

Here’s another example, this time describing data structures:

Tree = uX.Ybranch.X The branches of a tree have the same type as the root.
IntNode = ditem M Vitem.Integer An integer node has at least one integer item.
IntTree = Tree M IntNode A tree whose nodes are are all integer nodes.

The fixpoint operator 4 X allows a concept to refer to itself, and is equivalent to the This or MyType construct
found in advanced type systems.”-® By using the variable X to range over the type of nodes in the tree, we ensure
that all of the nodes in an IntTree have an item, not just the root node. In other words, the intersection of Tree
with IntNode binds X to Tree M IntNode. This binding action is the key to extending DLs so that they can
handle OO programming.

The C operator is used for defining role-value maps, which declare relationships between different attributes
of the same object. For example, the concept “humans who love their neighbors” can be written as Human 1
neighbors C loves.

32

lahire
32

In addition to concept constructors, there is also one role constructor: the role chain. The “grandchild”
relation can be defined as child o child, while “friends of my children” can be written as child o friend.

2.1. Comparison with OO programming

Although the syntax is quite different, description logics bear a remarkable similarity to the constructs in object-
oriented programming languages. As I mentioned before, concepts in a DL are essentially the same as classes in
an OO language. Roles, in turn, are similar to fields or slots. A concept is basically a data structure with links
that point to other concepts.

There are two main difference between DLs and OO languages. The first difference is that roles in a DL are
not necessarily functional relations. The definition of Tree above does not say that trees only have one branch.
Trees may have many branches or none at all; the definition of Tree merely places a type bound on any branches
that exist.

The second major difference is the fact that “inheritance” in a DL is implemented in terms of concept
intersection. There is no such thing as “single inheritance”, because it makes no sense to take the intersection
of just one concept. “Multiple inheritance” is required merely to create a class with multiple slots. Description
logics break classes down into very simple pieces which can be easily recombined, and therein lies their utility.

3. THE SYM CALCULUS

As originally formulated, description logics are really just type systems, because concepts are types. DLs provide
a calculus for constructing types, and algorithms exist for determining subsumption (subtyping), satisfiability
(type validity), and finding out whether a given object is an instance of a particular type. However, description
logics do not provide a mechanism for constructing or performing calculations with objects.

The SyM calculus extends description logics into a full-featured programming language which is capable
of dealing with both types and objects. The ideas in SYM first appeared as part of the Ohmu programming
language,® but have now been refined into a formal object calculus.

There is one important operator which description logics lack, and that is a means to directly read the value
of a slot. For instance, if we know that Mary is an instance of Mother, then we might like to find Mary’s child,
which I will write as Maryechild. In a normal DL ontology, these sorts of operations can be emulated by using the
“o” operator in conjunction with the “C” operator. For example, “parents who only spoil their grandchildren”
can be written as Parent 1M spoils C childochild. This mechanism is reasonably flexible, but it is not convenient for
our purposes, primarily because it makes it hard to define normal forms. (See below for more details). Instead
of expressing such a constraint as an equation involving “o” and “C”, we need to express it as a slot that uses
“e” — e.g. Parent M puX.Vspoils.X e child e child.

The “o” operator is a bit unusual because roles are not functional relations. Mary may have many children,
so Mary e child refers to a set of objects rather than a single object. Since concepts denote sets, though, we can
wrap that set up as another concept without running into any problems. The same principle can be applied to
an abstract concept like Mother; Mother e child returns Human.

In other words, instead of treating roles as non-functional relations between objects, we can treat them as
functional relations from concepts to concepts. This model does not distinguish between types and objects; an
object is just a singleton type (i.e. a type with only one element). Instead of stating that a given object is an
instance of a particlar type, subsumption is used to state that the object is a subtype of that type. I will refer
to types in SYM as “prototypes” from now on, to distinguish them from traditional notions of types.

3.1. Grammar

The basic grammar for SYM is defined below. I have tried to use notation that more closely resembles mainstream
0O languages, rather than the somewhat arcane syntax of DLs.

33

lahire
33

Syntax Description DL equivalent
T,Y,2 = Self label
l,m,n == Slot label Roles
tu,v = Term Concept
T, L,A top, bottom, atomic types, and self labels T, 1, A, X
{z|d} structure definition concept in normal form
t.l selection CeR
t& u type intersection cnbD
¢ dye = Slot
l:t; upper bound VR.C 1 3R
Il =t; final binding
l: t=>u; field

A programming language reduces terms to values, where a value is a term in normal form — a term which
cannot be reduced any further.!® In a description logic, such terms take the form C;... M ...C,, where each C;
is either A, VR.D, 3R, or uX.VR.D. Duplicate Rs are not allowed, so VR.C M VR.D reduces to VR.(C M D).

In the SyMm calculus, the term {z | d;..d,} defines a structure, which is a concept in normal form. (The
notation d is shorthand for d;..d,). A structure consists of a number of slots, and each slot is both existentially
and universally quantified. Combining the VR.C and 3R constructs is a notational convenience that is appropriate
for a programming language. The reason is that | stands for the empty type — a type with no valid instances.
An expression which reduces to L thus indicates an error which should be caught by the static type system.

All slots in a structure share the same self-label x, which acts like the this keyword in C++ or Java. The
fixpoint semantics in Sy™m differs somewhat from traditional DLs; in a description logic the label X refers to
self-type of the class; in SYM the label z is the self-prototype, which can be either an abstract type or a singleton
object.

The last two slot forms are extensions that flesh out the calculus as a programming language. A slot
declaration of the form [= t is called a final binding, and it has the following meaning in terms of sets:
{a € AT | Vb. b e ¢! iff (a,b) € I'}. In other words, a final binding not only places an upper bound on a role, it
completely defines the role. This capability is required in order to properly define concrete objects.

A slot of the form [: t = u declares a field /instance variable, which has essentially the same meaning as in
Java. The term t is the type or range of the variable, while u is the value, which is constrained to be a subtype
of the range. The range of a field is invariant, but the value can be overridden.

Fields are important because they allow the interface of a class to be separated from its implementation.
When two structures are examined for type equivalence, only the ranges of fields matter; the values are ignored.
This means that field values are effectively invisible when performing static type checking and logical reasoning;
they only come into play when code is actually executed at run time.

Reduction: Atomic concepts and structures are already in normal form, so they can’t be reduced further.
Selection is implemented through standard fixpoint-style beta-reduction, where the variable z is bound to the
structure declaration that it appears in. A formal definition is given by the E-PROJBETA rules in the appendix.

The only other term that needs to be reduced is type intersection. The intersection of two structures v; and
ve contains all the slots in vy, and all the slots in vy. (Each slot represents a constraint on the type, so the
intersection of two types can be calculated by taking the union of all their constraints.) Duplicate slot names are
not allowed, so if both v; and v, have a slot with the same label, then the two slots are recursively combined:
eg {l:} & {l:uw;} — {l:t&u;}.

The intersection of an upper bound [: ¢, and a final bound [= u, is valid only if u is a subtype of t. The
intersection of two final bounds [= ¢t and [= u is only valid if ¢ = u, for obvious reasons.

When two fields are combined, the value on the right overrides the value on the left: e.g. {l :u = ti;} &
{l:u=1t} — {l:u= t2}. The ranges of the two fields must be equivalent. This mechanism mimics
standard overriding semantics, and thus allows implementation inheritance. Overriding does have an important
consequence, though, which is that concept intersection is no longer entirely commutative; ¢ & wu is not necessarily

34

lahire
34

equal to u & t. However, concept intersection is still commutative with respect to type equivalence (i.e t & u =
u & t), because the ranges of fields are ignored when comparing structures for equivalency.

Functions: Much like other object calculi,!**12 functions can be emulated as structures that contain an
argument and a result. The function Aarg : t.u can be written as {z | arg : t;result = u; } Calling the function
involves two steps — first create an activation record by using type intersection to bind the argument, and then
select the result. The function application (f v) can be written (f & {arg = v; }).result. If v is a subtype of ¢,
then the intersection (f & {arg = v;}) will reduce to the value {x | arg = v;result = ¢; }. If v is not a subtype,
then the intersection will reduce to L, thus triggering a type error.

Here is a more concrete example. For clarity, the following assumes an extended calculus that defines atomic
concepts for Int and the integer literals, and provides appropriate definitions of the arithmetic operators.

foo = { f | arg: Int; result =2«f.arg; }; // Xarg: Int. 2xarg

bar = (foo & { arg = 5; }).result; // bar = (foo 5)

This syntax for declaring and calling functions is obviously a bit unwieldy, but SYM is a formal calculus, not
a real programming language. Its objective is to provide as much power as possible within a minimal framework.
A real language would obviously provide syntactic sugar for declaring and calling functions in a more reasonable
way; please refer to the Ohmu programming language for a concrete example.”

Virtual Methods: Virtual methods are defined much like ordinary functions, except that both the argument
and the result must be declared as fields.

MyClass = {
foo : { f | arg: Int = 0; result: Int = 2«xf.arg; }; // Aarg: Int. 2xarg
bar = (foo & { arg: Int = 5; }).result; // bar = (foo 5)

}

Because foo.result is declared as a field, it can be overridden by derived classes.

The argument arg must also be a field for reasons related to static type safety. If the argument was declared
using an upper bound then the function would be covariant, which is known to be unsafe.”>!'2 But since the range
of a field is invariant, the type of the foo.arg is also invariant, and type safety is preserved. Note that although
the range of a field is invariant, the range may refer to virtual types elsewhere in the class, so it is still possible
to express covariant concepts. I give an example a little bit later.

Classes and Inheritance: Classes are declared as one might expect. Here’s how a simple Point class would
be declared and instantiated:

Point = { x: Int; y: Int; };

origin = Point & { x = 0; y = 0; };

Both inheritance and instantiation are implemented via type intersection, so inheritance looks exactly the
same:

Color = { red: Int; green: Int; blue: Int; };

ColorPoint = Point & { color: Color; };

The prototype model also makes it possible to partially instantiate classes:
XPoint = Point & { y = 0; }; // points on the X axis
YPoint = Point & { x = 0; }; // points on the Y axis
origin = XPoint & YPoint; // intersection of the two axes

Here XPoint and YPoint specialize Point by binding only one of the two variables. As one might hope, the
origin can be defined as the intersection of the points on the z axis, and the points on the y axis. The origin is
a single point (a singleton type) because all of its slots are final bound.

Generics Since classes and methods are both implemented with structures, it’s easy to see that if Sym
supports virtual methods, then it must also support virtual classes, which are also called virtual types. Virtual
types, in turn, are one way to implement generics.'4:15:16:1 For example, here’s a simple polymorphic list class:

List = { Ist | item: T; ThisClass: List; next: Ist.ThisClass = 1; };

IntList = List & { Ist | item: Int; ThisClass: IntList; };

35

lahire
35

This example shows how a parameterized list class can be declared in a somewhat different way than in
mainstream OO languages. The type of item itself does not need to be parameterized; it can simply be specialized
using type intersection. However, we want to make sure that all nodes in the list have an equivalent type, and
we do that by making the range of next equal to Ist. ThisClass, where ThisClass is a virtual type that is specialized
appropriately.

4. DISCUSSION

The model of inheritance presented here is substantially different from that provided by mainstream OO lan-
guages. Inheritance in SYM is implemented entirely by means of type intersection, which is inherently a multiple
inheritance model. Classes in SYM are thus like traits or mixins.*>!” Moreover, the intersection operator is
recursive; it will will structurally weave two classes together by recursively descending into the tree of nested
sub-structures. This mechanism can handle both virtual methods and Beta-style virtual classes.

Interestingly enough, this recursive weaving is essentially identical to Dr. Batory’s feature composition
operator, which has been used quite successfully to automatically build and reconfigure extremely large programs
in Java.’ It is also remarkably similar to the notion of aspect-weaving in aspect-oriented programming, although
it lacks the quantifiers provided by AOP.?> Both features and aspects are mechanisms for encapsulating cross-
cutting-concerns, which are parts of the design that become tangled throughout multiple classes. The recursive
nature of type intersection makes it to easy to encapsulate changes to multiple classes, which means that cross-
cutting concerns are not nearly so big a problem.

It has been argued in the literature that there is a conflict between interface inheritance, which is also known
as “subtyping”, and implementation inheritance, which is sometimes called “subclassing”.® The SYM calculus
demonstrates that this conflict can be resolved quite simply. The interface of a class is defined using description
logics, and inheritance preserves interfaces. The implementation of a class is defined by field values, which are
hidden from the underlying logic, but which can still be overridden by the intersection operator. Interface and
implementation inheritance need not and should not be separated.

Method overriding can create conflicts with multiple inheritance when two base classes try to override the
same method, i.e. the infamous “diamond problem”. Such overriding is predictable in SYM because the type
intersection operator preserves the order in which classes are composed. A series of intersections thus creates a
stack of mixin layers,'® which are another way to implement features.

SyM is also unique because the language of types is identical to the language of objects. Both classes and
objects are modeled as concepts, so any operation on one can be applied to the other. The compile-time type
system has exactly the same capabilities as the run-time interpreter. This model stands in sharp contrast to
traditional approaches, which provide a much more limited set of operations on types.'°

4.1. Open Questions

The most important theoretical question about this model is decidability. Type safety in a description logic boils
down to the question of satisfiability; we wish to know whether a particular concept composition is non-empty.
Satisfiability is known to be undecidable for uF L™ (C, o). This is hardly unexpected. Since the type system and
the run-time language are the same, decidability would mean that the language was not Turing complete.

There are three ways out of this dilemma. The first is to reduce the expressiveness of the type system, for
instance by requiring that recursive calls be placed only in field values, where the type checker cannot see them.
It is unclear at this point whether decidability can be achieved in this way without breaking the calculus.

The second option is to use incomplete reasoning. With incomplete reasoning, a “yes” answer to the satis-
fiability question means that a construct is type-safe, but a “no” does not necessarily mean that it isn’t. This
strategy has been used successfully in other expressive knowledge representations systems, such as LOOM.'°

The third option is to supply a debugger that steps through the compilation process just as it steps through
a running program. This is a viable option because the run-time and compile-time languages are the same.

36

lahire
36

—

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES

. E. Ernst, “Family polymorphism,” Proceedings of ECOOP, 2001.

. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler, “Making the future safe for the past, adding genericity
to the java programming language,” Proceedings of OOPSLA, 1998.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An overview of aspectj,”
Proceedings of ECOOP.

. M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and mixins,” ACM Symposium on Principles of
Programming Languages, 1998.

D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement,” Proceedings of ICSE, 2003.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. P.-S. editors, The Description Logic Handbook,
Theory, Implementation, and Applications, Cambridge University Press, 2003.

K. B. Bruce, M. Odersky, and P. Wadler, “A statically safe alternative to virtual types,” Proceedings of
ECOOP, 1998.

K. Bruce, A. Fiech, and L. Petersen, “Subtyping is not a good “match” for object-oriented languages,”
Proceedings of ECOOP, 1997.

D. Hutchins, “The power of symmetry: Unifying inheritance and generative programming,” OOPSLA Com-
panion, DDD Track, 2003.

B. Pierce, Types and Programming Languages, MIT Press, 2002.

M. Abadi and L. Cardelli, A Theory of Objects, Springer, 1992.

M. Odersky, V. Cremet, C. Roeckl, and M. Zenger, “A nominal theory of objects with dependent types,”
Proceedings of ECOOP, 2003.

M. Torgersen, “Virtual types are statically safe.,” 5th Workshop on Foundations of Object-Oriented Lan-
guages, 1998.

O. Madsen and B. Mgller-Pedersen, “Virtual classes: A powerful mechanism in object-oriented program-
ming,” Proceedings of OOPSLA, 1989.

O. Madsen, B. Mgller-Pedersen, and K. Nygaard, Object-Oriented Programming in the BETA Programming
Language, Addison-Wesley, 1993.

K. K. Thorup and M. Torgersen, “Unifying genericity — combining the benefits of virtual types and pa-
rameterized classes,” Proceedings of ECOOP, 1999.

N. Schérli, S. Ducasse, O. Nierstrasz, and A. Black, “Traits: Composable units of behavior,” Proceedings of
ECOOP, 2002.

Y. Smaragdakis and D. Batory, “Implementing layered designs with mixin layers,” Proceedings of ECOOP,
1998.

“Loom website,” http://www.isi.edu/isd/LOOM/LOOM-HOME.html.

37

lahire
37

5. APPENDIX - OPERATIONAL SEMANTICS FOR SYM

The small-step evaluation semantics for SYm are given below. There are two kinds of reduction. A type reduction,

written —Ls , is used at compile-time to calculate the types of terms. Value reduction, written RN , is used
at run-time to perform the actual computations. Value and type reduction are identical for all rules except
E-PrOJBETA, which differ in their handling of fields. The variable « is used to range over both 7 and V.

Notation:
label(d) refers to the slot-label ! associated with the slot d.
dom(d) refers to the set of all labels for d.
d 5 e means that e is one of the slots in d.
d& emeansd & e;... & ...e,.
The judgement t <: u refers to subtyping axioms that are true by definition, such as ¢t <: T, or 5 <: Int.

t ==t
~ E-ProJ
tl =t ()
3 l:t; 3 l:t;
d > oneof { I=t d > oneof I=t
l:u=t l:t=u;

- v - - 7 - (E-PrROJBETAV/T)
{z|d}l — [z—={z]|d}]t {z|d}l — [z {z|d}]t

t<:u u<:t
t&u =t t&u = u

(E-ISECTAXIOM1/2)

t =t u = o

E-ISEcT1/2
t&u = t'&u v&u = v & (/2

€=z~ 2]c & [y~ 2]d =z chosen fresh
{zlct & {yld} = {z]e}

(E-ISECTREQ)

label(e) ¢ dom(d) label(d;) = label(e)

d&e = de dii1,diydig1.n & € =
di.ii,(di & €),diy1.n

(E-MERGE1/2)

l:t; & 1:u =l t & (E-ISLoT1)
I=t; & l=t 2 =t (E-ISLOT2)
lit=>u & 1t =2u; = 1:t=>d; ift'=t (E-ISLOT3)
l:t; & 1=uw =5 = ifu<:t (E-ISLoT4)
l=u; & 1:t N ifu<:t (E-ISLOT5)
I:t; & l:u=s; - l:u=s ifu<:t (BE-ISLOT6)
lru=s & 1:t; % l:u=s; ifu<:t (BE-ISLOTY)

The operational semantics given here describe both the reduction of terms, and the typing of terms. Type

safety is easy to prove because the type judgement ¢ T, w and the reduction rules t — ' differ in only one
rule. The semantics for judging satisfiability and subsumption require a bit more explanation, and so are not
included here.

38

lahire
38

An anomaly of subtype relations at component refinement,
and a generative solution in C++4

Zoltan Porkolab® and Istvan Zoélyomi®

%Department of Programming Languages and Compilers, E6tvos Lorand University
Pazmény Péter sétany 1/C H-1117 Budapest, Hungary

ABSTRACT

Separation of concerns and collaboration based design is a good design choice: it results an easily maintainable
and readable code. After separating orthogonal functionalities we assemble the required concerns as needed.
However in real life, components could be used only after appropriate refinement steps, thus orthogonal concerns
form independent specialization hierarchies. Such hierarchies provide individual subtype relations. The specific
solution for a particular task can be finally produced by composing a set of classes from these refinements.
However, a subtype anomaly occurs between collaborating groups having different number of participating classes
from different refinement stages. In this article we walk around this anomaly we called chevron-shape inheritance
and present a framework to handle collaborating groups of classes using template metaprogramming based on
standard C++ features.

Keywords: Multiple inheritance, structural subtyping

1. INTRODUCTION

The creation of large scale software systems is still a critical challange of software engineering. Several design
principles exist to keep the complexity of large systems manageable. Different methodologies are used to divide
the problem into smaller orthogonal parts that can be planned, implemented and tested separately with moderate
complexity. In a fortunate case such parts are already exist in some foundation library, otherwise they can be
produced by reasonable efforts. This separation of concerns is widely discussed in'? and.?? In object-oriented
systems these concerns are mostly implemented in separate classes.

Having premanufactured components we have several methodologies to assemble a full system from the
required code parts. This so-called collaboration based design is supported by aspect oriented programming,'®
composition filters,!! subject oriented programming!®?! and HyperJ.!® Besides, the assembly can be naturally
expressed using multiple inheritance by deriving from all required components in languages supporting this
feature such as C++. This mizin-based technique is highly attractive for implementing collaboration-based
design.® Whichever approach we choose, the basic idea is to create a union of the interfaces of the collaborating
classes. These classes represent orthogonal concepts thus the result is a disjunction of their functionalities.

However, in real life it is hard to find a component that represents the required concept ezactly. In most
cases we have to customize the components to fit the needs of the current task. Specializations for every separate
concern are made independently which leads to separated specialization hierarchies, each representing refinement
steps of an individual concept. The specific solution for a particular task can be finally produced by assembling
specialized concepts from appropriate levels of different hierarchies. In object-oriented languages we mostly
represent our concepts as classes. Specializations are regurarly expressed using inheritance, hence we gain a
subtype relationship between the refined and the original component.

The problem appears when we try to refer to a subset of supertypes of the collaborating classes. It is a
desired feature because a client code should be separated from the knowledge of the exact type of the (refined)
components. But the collaboration of original components are not a base class of the collaboration of refined
components. Because automatic conversion is out of order, objects of the collaboration of original components

Further author information: (Send correspondence to Zoltan Porkolab)
Zoltan Porkolab: gsd@elte.hu, Istvan Zoélyomi: scamel@elte.hu

39

lahire
39

cannot be used in place of objects of collaboration of refined components which is against the Liskov Substitution
Principle.?? Similarly, clients are unable to utilize dynamic binding calling functions of derived objects in a type
safe way.

2. IMPORTANCE OF THE PROBLEM

Programmers may argue that such side effects may ever appear in practice. In this section we intend to convince
the reader showing real-life examples.

We start with one from the C++ Standard Library of C++: in figure 1 you can see the stream class hierarchy
of the standard library*.

ostream
A
iostream
VAN

ifstream ofstream

Figure 1. I/0 library according to the C++ standard

Classes istream and ostream are representing input and output streams as orthogonal concerns. (There is
a common base class ios for both classes holding some general stream functionality.) Class iostream is created
using multiple inheritance unifies input and output functionalities representing streams that can be both read
and written!. The library contains two refinements of both input and output stream concepts. Streams opened
over certain physical devices belong to classes ifstream or ofstream as refinements of istream and ostream
respectively?. These specializations are implemented using inheritance. Class fstream (and stringstream also)
inherits from iostream and represents file streams for both input and output operations.

Surprisingly, this construction causes some unexpected results. fstreamis clearly a subtype of both ifstream
and ofstream. The inheritance hieararchy described above does not express this, hence there is no conversion
from fstream to neither istream nor ostream. Clients handling input files are not able to use objects from
fstream as an instance of ifstream, they are enforced to use istream as a more general interface losing file
specific information. After taking a look at classes iostream and istream this fact may be an astonishing fact.

The other example is from the programming language Eiffel.!° The kernel library of Eiffel contains several
abstract classes like NUMERIC for arithmetics, COMPARABLE for sorting, HASHABLE for associative containers, etc.
These classes are practical to have because in Eiffel we can require a template parameter to be a subclass of
such an "interface". These classes can be combined as needed using multiple inheritance, hence we can derive a
NUMERIC_COMPARABLE_HASHABLE or a NUMERIC_COMPARABLE interface directly from the bases. Again, the problem
appears when we try to use an object of the first class with a generic algorithm requiring the latter type: no
subtype relation is realized, we have to resolve it by hand creating funtions for conversion.

3. THE CHEVRON-SHAPE ANOMALY

In this section we formulate the problem showing a general description and suggest a name for the anomaly.
It appears in strongly typed object-oriented languages which base their subtype relation on inheritance; conse-

*We omit the fact that all the followng classes are templates by the standard, because this does not affect our problem.

This results in a known anomaly called diamond-shape inheritance. In this case it is resolved using virtual inheritance
in classes istream and ostream.

iSimilar specializations exist for streams stored in a memory buffer (e.g. istringstream and ostringstream).

40

lahire
40

quently it appears in all widely used object-oriented languages, such as Java, C++, C#, Eiffel, Object Pascal,
etc. The problem is closely related to class refinement using multiple inheritance$.

Assume we have a set of independent base classes implementing orthogonal concerns. These classes are
to be refined stepwise, thus each concept forms a separate inheritance hierarchy. The solution for a specific
user requirement can be constructed as a group of refined concerns. In the same case, we should be able to
use any subset of classes from these hierarchies as interfaces to the previously constructed group. Therefore
subtype relation should stand between any of these groups irrespectively of the number and refinement level of
participant concern classes. The subtype relation should be closed under union (disjunction), but this is not
fulfilled in object-oriented languages. Thus we have to decide: if we derive the refined collaboration from the
original collaboration class we lose the subtype relationship with the refined bases; otherwise (deriving from
the refined bases) we lose the subtype relationship with the original collaboration. In most design cases the
latter situation is preferred. In figure 2 the general structure of the anomaly can be seen according to the two
mentioned cases respectively. In the picture missing subtype relations are marked with dashed lines.

Conceptl Concept2 Conceptl Concept2

Collaboration Collaboration
r- A
1
1
1
1

Refinementl Refinement2 Refinementl I Refinement2
1
<. -V I
Ss o -

R -7 1
~ - .

RefinedCollaboration RefinedCollaboration

Figure 2. Chevron-shape inheritance

We gave the name chevron-shape inheritance to this anomalyY. It is easy to understand our choice taking a
look at figure 2.

In addition, having several concept hierarchies we should be able to express subtype relationship between
collaborating groups having different number of classes of different refinement stages.

4. CSET

Besides its object-oriented tools the C++ language also has a rich feature set for supporting generative pro-
gramming with templates. Theoretically template metaprogramming in C++ is a Turing complete language
itself, therefore any algorithm can be expressed as a metaprogram!l (see”). This "language" is "executed" in
compilation time: the result is a C++ program which is still about to be checked by the language strong type
system.

Template metaprogramming features discussed above make us able to solve the chevron-shape anomaly. To
achieve this goal we have to simulate a subtype relationship between adequate sets of collaborating classes: based
on the possibilities of template metaprogramming we implement conversions between the sets**. Presenting the
technical implementation details is out of the scope of this paper. The main issue in CSet is to build the needed
class hierarchy, templated conversion operators and smart pointers automatically in compilation time.

$Note that some languages (e.g. Java) do not support multiple inheritance directly, but are able to simulate it (e.g.
using interfaces). The problem exists in these cases, too.
TWith this name we also intended to refer to diamond-shape inheritance.

IPractically compilers have limitations in resources (e.g. a maximal depth of recursion during template instantiation).
**We call these sets CSets where C can be pronounced as any of class, concern, collaboration, chevron, etc as conceptually
needed.

41

lahire
41

5. SUMMARY AND RELATED WORKS

The subtyping mechanism of current object oriented languages is not flexible enough to express required sub-
type relationships arising at implementation of collaboration based designs. We described an anomaly called
chevron-shape inheritance which arises assembling sets of collaborating concerns created in stepwise refinement
of concepts. We introduced a framework called CSet based on C++ template metaprogramming to extend the
possibilities of subtyping mechanism between sets of collaborations. CSets make the subtype relation disjunc-
tive with respect to multiple inheritance. It supports coercion polymorphism between appropriate collaborating
groups or inclusion polymorphism allowing dynamic binding of methods with smart pointers. The framework is
strictly based on standard C++ features, therefore neither language extensions nor additional tools are required.

Another candidate for solution can be the signature facility of C++ from Gerald Baumgartner.* Signatures
provide a facility similar to interfaces in Java, but in a non-intrusive way: if a class intends to implement a
signature, it does not have to define it explicitly to do so. Signatures are non-standard language extensions and
are implemented only in g+-+ compilers, thus their usability is strictly limited.

As an alternative solution Structural subtyping'® provides an excellent possibility for solution: languages
supporting this feature do not suffer from our anomaly. Unfortunately no widely used object-oriented language
provides structural subtyping.

REFERENCES

1. Istvan Zolyomi, Zoltdn Porkoldb, Tamas Kozsik: An extension to the subtype relationship in C++. GPCE
2003, LNCS 2830, pp- 209 - 227, 2003 (Springer-Verlag Berlin Heidelberg)

2. Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-
Wesley (2001)

3. David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The Complete Guide. Addison-Wesley (2003)

4. Gerald Baumgartner, Vincent F. Russo: Implementing Signatures for C++ ACM Transactions on Program-
ming Languages and Systems (TOPLAS) Vol. 19 Issue 1. 1997. pp. 153-187.

5. Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4, May 1995, pp. 36-43.

6. Yannis Smaragdakis, Don Batory: Mixin-Based Programming in C++. In proceedings of Net.Object Days
2000 pp. 464-478

7. Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods, Tools and Applications.
Addison-Wesley (2000)

8. Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-Wesley (2000)

9. Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley (1994)

10. Bertrand Meyer: Eiffel: The Language. Prentice Hall (1991)

11. Lodewijk Bergmans, Mehmet Aksit: Composing Crosscutting Concerns Using Composition Filters. Com-
munications of the ACM, Vol. 44, No. 10, pp. 51-57, October 2001.

12. Kim B. Bruce: Foundations of Object-Oriented Languages. The MIT Press, Cambridge, Massachusetts
(2002)

13. Luca Cardelli: Structural Subtyping and the Notion of Power Type. Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, San Diego, California, January 1988.
pp- 70-79.

14. Erik Ernst: Family Polymorphism. in Proceedings ECOOP 2001, Budapest, Hungary, Springer-Verlag LNCS
2072, 2001 pp. 303326,

15. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, John Irwin: Aspect-Oriented Programming. Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland. Springer-Verlag LNCS 1241, June 1997.

16. Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki: A Solution to the Constructor-Problem of
Mixin-Based Programming in C++. Presented at the GCSE2000 Workshop on C++ Template Program-
ming.

42

lahire
42

17.

18.

19.

20.

21.

22.
23.

Harold Ossher, Peri Tarr: Multi-Dimensional Separation of Concerns and The Hyperspace
Approach. IBM Research Report 21452, April, 1999. IBM T.J. Watson Research Center.
http://www.research.ibm.com /hyperspace/Papers/tr21452.ps

Harold Ossher, Peri Tarr: Hiper/J. Multidemensional Separation of Concerns for Java. International Con-
ference on Software Engineering. ACM pp. 734-737. 2001

William Harrison, Harold Ossher: Subject-oriented programming: a critique of pure objects Proceedings of
8th OOPSLA 1993, Washington D.C., USA. pp. 411-428. 1993

Don Bathory, Jia Liu, Jacob Neal Sarvela: Refinements and multi-dimensional separation of concerns Pro-
ceedings of the 9th European software engineering conference held jointly with 10th ACM SIGSOFT inter-
national symposium on Foundations of software engineering. helsinki, Finland, 2003.

Subject Oriented Programming. http://www.research.ibm.com/sop

Barbara Liskov: Data Abstraction and Hierarchy SIGPLAN Notices. 23(5), May 1988

Jonathan E. Shopiro: An Example of Multiple Inheritance in C++: a Model of the Iostream Library. ACM
SIGPLAN Notices, December, 1989

43

lahire
43

44

lahire
44

Java with Traits —
Improving Opportunities for Reuse

Philip J. Quitslund and Andrew P. Black

OGI School of Science & Engineering
Oregon Health and Science University
Portland, Oregon USA

ABSTRACT

The Java language includes features that present significant barriers to reuse; in practice, programmers have no
choice but to copy and paste code that is not accessible via inheritance. Traits improve code-sharing in Smalltalk
by providing a means to reuse such behavior, and we claim that a similar mechanism for Java would overcome
not just the lack of multiple inheritance but Java’s other barriers to reuse as well, including the use of private,
final and synchronized qualifiers. In support of our claim we present the initial findings of a case study of Java
Swing, a large production-quality library, showing how we isolated pieces of duplicated code that could not be
eliminated by conventional means and how traits could be used to eliminate them.

Keywords: Reuse, Traits, Java, Code Duplication, Java Swing

1. JAVA’S BARRIERS TO REUSE

Four features of Java are responsible for significant code duplication in the Java Foundation Classes (JFC).

1. Lack of Multiple Inheritance of Implementation. With Java interfaces we can group classes in
different hierarchies by the protocols they support, effectively enabling multiple inheritance of type. This
allows clients to treat objects with a shared protocol uniformly, irrespective of their representation. While
this promotes flexibility and a generic style of programming, it does nothing to address reuse: in many
cases, classes that share protocols would also like to share aspects of their implementations. As a concrete
example, take the PrintStream and Printwriter classes from the java.io package. Both support a uniform
printing protocol (print(boolean), print(int), print(long), and so on) and identical implementations for twelve
methods. While the shared protocol can be reflected by an interface, Java has no feature to abstract out
and share the implementation because PrintStream and Printwriter both subclass classes in which printing is
not appropriate (FilterOutputStream and Writer, respectively).

2. Inaccessible Private Inner Classes. Inner classes are a useful mechanism for grouping related classes
and for codifying “friend” relationships between classes. Their use is especially common in GUI applications
where they provide a convenient means for implementing call-backs and adapters. Unfortunately, inner
classes are also very difficult to reuse because the conventional wisdom is to make them private to negate
the security risk that they introduce*. An example of this phenomenon can be seen in the java.util.concurrent
package where the FutureTask and ScheduledExecutor classes define identical, but non-reusable, private inner
Listlterator classes.

Send correspondence to: philipq@cse.ogi.edu (Philip Quitslund) or black@cse.ogi.edu (Andrew Black).

*The JVM does not support inner classes directly. Instead they are compiled into separate classes that gain access to
their containing class’s fields and methods via compiler-generated accessor methods. Effectively this promotes methods
and fields to public that might otherwise be private. Although the accessors are “hidden” behind mangled names, a
malicious programmer could craft bytecode that violates their intended encapsulation policies.

45

lahire
45

3. Non-Extensible Final Classes. Making a class final ensures that it cannot be subtyped (it might
also improve performance). Because Java equates subtyping and subclassing, final restrictions also block
opportunities for reuse. A canonical example is Java’s representation of strings in java.lang. To ensure the
proper functioning of the interpreter and compiler, which depend on its concrete implementation, the class
String is declared final to prevent programmers from substituting subtypes that break its semantic contract.
To reuse String’s implementation one is forced to copy and paste (as in java.lang.AbstractStringBuilder, where
parts of String’s indexing behavior are duplicated).

4. Synchronized Variations. In some cases, a basic concurrent version of a class can be obtained by adding
the synchronized modifier to the critical methods. Such is the case with Vector (synchronized) and ArrayList
(unsynchronized) in java.util which could share, with a little refactoring, at least fourteen method bodies if
we could selectively introduce synchronization.

2. WHAT ARE TRAITS?

Traits! are a mechanism for code reuse that complements single inheritance. Traits, like classes, are containers for
methods. But, unlike classes, traits have no fields. Traits, like abstract classes, cannot be instantiated directly;
instead, they are composed into classes (which are instantiable). A class ColorPoint might be composed of traits
TColor and TPoint and other bits (like state, for example), which means that ColorPoint will have the methods
defined in TColor and TPoint. Because method names might conflict, composition can be selective, allowing for
the removal and renaming of composed methods. Thus, if TColor and TPoint both define an equal method, we
can exclude either implementation or alias one or both with another name. If the conflict is left unresolved, the
composition includes neither trait method but instead includes a special stub method indicating an unresolved
conflict. To use this trait, the programmer must explicitly disambiguate the conflict by exclusion or by defining
an overriding method in the client class.

Commonly, traits refer to methods that they do not themselves define. Traits that do not define all the
methods they call are said to require these methods. A comparable trait, for example, might define comparison
methods (<=, >=, ~=, min, max, and so on) in terms of the < and = operations that it requires (see Figure 1).
In order for a class to use this trait it must provide < and = methods. If it does not, it is considered incomplete
(ostensibly abstract).

TComparable

<=
>=
min: - _

max: "7~ ~-| min:anObject ©
between:and: self < anObject
ifTrue: [/ self]
ifFalse: [A anObject]

PrYPOOYY

Figure 1. Trait TComparable provides ~=, <, >, and so on (the methods on the left) and requires < and = (on the
right). Provided methods can be implemented in terms of required ones as in the definition of min: (®).

2.1. Extending Traits for Java

In seeking to adapt the ideas behind traits to the Java language, we must consider several issues that do not
arise with Smalltalk. Most obviously, Java methods and constructors frequently refer to their enclosing class by
name, so it is necessary to provide a mechanism (e.g., a thisclass keyword) that trait methods can use to abstract
away from any specific named class. Beyond this, the need to declare types for local variables and parameters

46

lahire
46

in methods may make methods from traits less reusable than they would be if they could be typed generically.
In addition, we must consider features like nested classes, visibility modifiers (public, private, protected) and other
modifiers such as final, synchronized, and native. Which of these features merit first-class treatment?

We believe that a simple extension of the trait composition clause, not unlike the the aliasing mechanism
of Smalltalk traits, will be sufficient to resolve the code duplication problems found in the JFC. In Smalltalk
traits, an alias expression such as TEnumerable @(map—-collect) denotes a trait like TEnumerable except that it also
contains an additional method callen map whose implementation is the same as that defined for collect. A similar
mechanism can be used to adjust the modifiers on trait methods when they are incorporated into another trait
or class. Unlike the alias mechanism, which simply adds a new name for an existing method, a modification
mechanism would need to hide the old version of the method, and introduce a new one with the modified
property (see Figure 2 for a possible syntax). If clients could add declaration modifiers when using methods
defined in traits, the difficulties introduced by final classes and synchronization modifiers could be sidestepped.
Such a mechanism would allow the same methods to be reused in final and non-final and synchronized and
un-synchronized settings. Inner classes, though a bit more complex, could be made shareable in a similar way.

class MySynchronizedVector uses TVector@{x as synchronized;} { // ... }

Figure 2. A synchronized Vector variation declared using a pattern-matching scheme like that employed in Aspect]’s
pointcut language.? The @ operator indicates an alias operation and the wildcard matches all of TVector’s methods.

3. A CASE STUDY: CODE DUPLICATION IN JAVA SWING

The Java Foundation Class (JFC) libraries are flush with examples of code duplication that cannot be eliminated
by single inheritance. To provide more than anecdotal support for the value of traits we sought to quantify just
how much duplication there can be in production systems. To evaluate how traits might improve code-sharing
in the wild, we looked at Java Swing, a library of cross-platform GUI components provided with the Java
distribution. We focused on duplication that seems to result from the restricted power of single inheritance. We
chose Swing because it is production quality and quite large—in the JDK 1.5.0,> Swing consists of 605 top-level
classes/interfaces and over 290 thousand lines of (commented) code. We obtained a conservative estimate of
code duplication in Swing by using the freely available CPD (“Copy Paste Detector”) tool,5 which employs
the fast (but naive) Karp-Rabin string-matching algorithm.5 CPD detected over 15 thousand duplicated lines
across 231 classes, accounting for 5 percent of the source and 38 percent of Swing’s classes.

Surprisingly, some of this duplication might be eliminated using standard features of Java, without the need
for traits. That is, if classes C; and Cs contain duplicated methods and also share a direct superclass, then the
duplicated methods could possibly be raised to the shared superclass or put in an intermediate shared abstract
superclass. Similarly, if code is multiply defined in a class and its superclass, then the copy in the subclass can
be eliminated.

Candidates for traits are those cases where the classes sharing the behavior do not share an immediate
superclass. Here the feasibility of removing the duplication with inheritance depends on how far the classes
containing the duplication are below their lowest shared superclass—a metric we will call inheritance depth.
We define the inheritance depth to be the sum of the distances between two compared classes and their shared
superclass. Figure 3 shows three scenarios: if code is duplicated in a class and its superclass, then we say the
depth is one (case a), if it is in classes that share an immediate superclass, then we say the depth is two (case
b), and if one of two sibling classes is separated from the shared superclass by another class, then we say the
depth is three (case ¢). The smaller the inheritance depth, the easier it is to remove the duplicated method.
The duplicated paint method is trivial to remove in (a), straightforward in (b) but tricky in (¢). The danger in
putting paint in D3 is that it may not be appropriate there or in Cs which inherits it — here code is shared at
the expense of understandability. This phenomenon has been described as putting behavior “too high” 7 and is
a prime candidate for refactoring to use traits.

a7

lahire
47

D, D, D;
fpaint !
7777777777777777 1 1 1
T
G C, Cs C, Cs
R I 2
paint paint ipaint paint
$ Depthe 1 o™ Depth « 1+1=2 .
1 1.1 (‘2Depthe1+2=3
1.2 fpaint i
(a) (b) (©)

Figure 3. Duplicated methods and relative inheritance depths. Notice that depths can be represented as pairs that
describe the shape of of the hierarchy. This helps differentiate between different hierarchies that share the same depth.
For instance, the two distinct hierarchies that have depth 3 can represented by the pairs (3-0) and (2-1) (or its equivalent,

(1-2).

3.1. Results

To get a sense for how much of Swing’s duplication is too deep to eliminate by single inheritance, we measured
inheritance depths for 127 shared fragments accounting for over two thirds of the duplicated code. Of these cases
we were surprised to find 58 where the code was duplicated within the same class or in an immediate superclass
(case a) and 32 in sibling classes with a shared superclass (case b). Clearly duplication in Swing could be much
reduced by traditional refactoring! The remaining 37 instances (or 29 percent) are prime candidates for traits.
Figure 4 summarizes the distribution of inheritance depths for these candidates.

151 3.2
21 Duplication in Swing
j} lines: 290,704
a1 duplicates: 15,199 (5%)
4.1
9r 22 41 classes: 605
22 44 w/duplication: 231 (38%)
occurrences 22 41
;f j’: lines analyzed: 11,541
4F 91 31 41 candidates for traits: 29%
2.1 3.1 4.1 33 4.3
21 31 41 33 43 44 54
21 31 41 42 61 44 54

depth
3 4

{.ﬁéé789
s’*{*{vﬁﬂﬁ

Figure 4. Distribution of inheritance depths in candidates for refactoring in Swing. For brevity, enclosing brackets are
excluded from the depth pairs in the histogram. Thus, 2 - 1 in the first column should be interpreted as the pair (2 - 1).

48

lahire
48

4. CONCLUSION

Smalltalk traits greatly reduce the need to copy and paste by providing a means to reuse behavior that is
entirely separate from inheritance. In addition to lacking multiple inheritance, Java has other features that limit
code-sharing. We believe that a well-designed mechanism for traits in Java could help us to overcome several of
these obstacles. A naive analysis of Swing detected 5 percent code duplication, of which at least 29 percent can
be eliminated with traits but not by single inheritance. However, this is just the beginning. The CPD string-
matching approach to finding duplication is extremely conservative and a more sophisticated algorithm would
doubtless find more duplication. Moreover, code duplication says nothing of logic duplication. Our informal
study of the JFC indicates that there is a great deal of logic duplication that is not detectable by such methods.
Finally, it is worth noting that we only sought the most obvious opportunities to refactor to traits in looking
for code that cannot be shared because single inheritance is insufficiently expressive. We believe that Java’s
other barriers to reuse (listed in Section 1) are responsible for a good deal more duplication, which traits could
eliminate.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the National Science Foundation of the United States
(awards CCR-0098323 and CCR-031340), by Object Technology International, and by the State of Oregon’s
Engineering and Technology Industry Council. Many thanks to Loren Barr and Mark Jones for their comments
and to the anonymous reviewers for their valuable feedback.

REFERENCES

. N. Scharli, S. Ducasse, O. Nierstrasz, and A. P. Black, “Traits: Composable units of behavior,” in Proceedings
of ECOOP 2003 - European Conference on Object-Oriented Programming, Lecture Notes in Computer Science
2743, Springer, 2003.

2. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and W. G. Griswold, “An overview of AspectJ,”
in Proceedings European Conference on Object-Oriented Programming, Lecture Notes in Computer Science
2072, pp. 327-353, Springer-Verlag, (Berlin, Heidelberg, and New York), 2001.

3. Sun Microsystems, “Download Java 2 Platform, Standard Edition 1.5.0 Beta 1.”
http://java.sun.com/j2se/1.5.0/download.jsp. (April, 2004).

4. T. Copeland, “Detecting duplicate code with PMD’s CPD,” On Java , Mar. 2003.
http://www.onjava.com/pub/a/onjava/2003/03/12/pmd_cpd.html.

5. PMD, “PMD Project.” http://pmd.sourceforge.net/. (April, 2004).

6. R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,” IBM Journal of Research
and Development 32, pp. 249-260, 1987.

7. A. P. Black, N. Scharli, and S. Ducasse, “Applying traits to the smalltalk collection classes,” in Proceed-

ings of the 18th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pp. 47-64, ACM Press, 2003.

—_

49

lahire
49

50

lahire
50

Merging conceptual hierarchies using concept lattices

Mohamed H. Rouane® and Petko Valtchev?® and Houari Sahraoui® and Marianne Huchard?

¢ DIRO, Université de Montréal, C.P. 6128, Succ. “Centre-Ville”, Montréal, Canada, H3C 3J7;
b LIRMM, UMR 5506, 161 rue Ada, 34392 Montpellier cedex 5, France

ABSTRACT

In many situations, one faces the need for integrating a set of conceptual hierarchies that represent parts of the
same domain. The target structure of the integration is a unique conceptual hierarchy that embeds at least the
total of the knowledge encoded in the initial ones. The key issues to address here are the discovery of higher-level
abstractions on top of the existing concepts and the resolution of naming conflicts among these. Formal concepts
analysis (FCA) is a mathematical approach toward abstracting from attribute-based object descriptions which
has been recently extended to fit relational descriptions thus giving rise to the relational concept analysis (RCA)
framework. Building up on RCA, our integration approach amounts to encoding the initial hierarchies into set
of binary tables, one for each component category, e.g., classes, associations, etc., and subsequently constructing,
querying and reorganizing the corresponding abstraction hierarchies until a unique satisfactory hierarchy is
obtained. This paper puts the emphasis on the mechanisms of discovering new abstractions and exporting them
between the abstraction hierarchies of related component categories. The impact of naming conflicts within the
RCA process is discussed as well. The paper uses UML as description language for conceptual hierarchies.

Keywords: Hierarchy integration, formal concept analysis, abstraction, naming conflict resolution.

1. MOTIVATION

Specialization hierarchies embody the knowledge about a particular domain expressed by means of concepts,
concept features and inter-concept relationships (general kind relationships, composition, aggregation, etc.).
The design of such hierarchies is known to be a hard-to-automate problem, even in the cases where the ground
set of objects/classes is given and the goal is simply to organize them into a meaningful structure. Consequently,
most methods that support the hierarchy design task apply some inductive techniques in a semi-automated or
interactive mode.

We focus here on the integration of specialization hierarchies. In fact, the need for merging two or more
existing specialization hierarchies into a unique global one that encodes at least the initial hierarchical knowledge
occurs in many practical situations. Thus, in database design, it is known as schema integration,' in knowledge
engineering as ontology merge,? in software modeling as model integration®(e.g., assembly of subjects or aspect
inter-weaving), etc. Whatever the name given and the domain-specific constraints, the integration of hierarchies
basically consists in assembling a set of potentially incomplete views on the same reality.

Yet the assembly is more than a mere juxtaposition of hierarchies as parts of these may overlap whereas
overlapping between concepts of different hierarchies may remain partial, thus suggesting these are the variants
of a more general concept. To sum up, integration requires the detection of overlapping parts of the initial
hierarchies whereby some of the corresponding elements, i.e., concepts, relationships, properties, etc., stemming
from different hierarchies will be directly recognized as identical whereas, others, although similar, will rather
give rise to abstractions that have not been discovered beforehand.

In this paper, we discuss the automated support for the integration process which remains manual in its
very nature. Indeed, identity recognition for elements of different hierarchies is ultimately up to the designer’s
judgment as concept naming is prone to errors and ambiguity, e.g., the same domain element may be given
different, yet synonymous, names in different hierarchies. Moreover, the choice of the “interesting” abstractions
among the set of all plausible ones is hardly automated. We sketch an approach for hierarchy integration that
relies on abstraction mechanisms from the formal concept analysis (FCA)?* field. FCA turns a binary (individuals

(rouanehm,valtchev,sahraouh)@iro.umontreal.ca, huchard@lirmm.fr

51

lahire
51

x properties) table into a complete lattice made up of pairs of closed sets. To cover more sophisticated concept
descriptions, a version of FCA is used that feeds inter-individual relations into the generalization process. In our
framework, mechanisms detecting regularities in individual /property co-occurrences and in the lattice structure
are relied on to spot potential naming conflicts.

2. INTEGRATION CHALLENGES

In the remainder of the paper, we consider hierarchies described in UML.? Using the underlying terminology,
abstractions represent generic domain concepts and are obtained by factorizing the shared specifications of classes
or associations.

Figure 1 shows two class diagrams pertaining to strict subsets of the banking domain, i.e., the bank account
sub-domain (henceforth identified by BA) and credit card sub-domain (CCA). Please notice that there is a
substantial overlap between both in terms of business classes, associations and class members.

Features

(from BankAccount)
- Features
%mte_redstRate (from CreditAccount)
perio Bprate
&periodicFee ;
&withdrawLimit %Eg::gcdil:ee
&creditOverdraftLimit &insuranceAvailable
1 1
Has e 0.*
o ..
CreditCardAccount
AT Operation (from CreditAccount) Holder
Client (from BankAccount) o y (from CreditAccount) Q;accquntl\{umber (from CreditAccount)
% N peration Supports | &creditLimit Owns
(from BankAccount) accountNumber (from BankAccount) %date %balance %name
Q;name Owns & openedDate Allows &samount & dD N 1 &sphoneNumber
&closedDate Spdate &punit: 0. 1| gopenedbate L. &addr
&address amount A &closedDate ess
» |&balance *
& phoneNumber | 1 1. &branch 1 0. | &location
%authorizeCharge()
%getBalance()

Figure 1. Left:Bank account sub-domain model. Right: Credit card sub-domain model.

When only a sub-domain is focused on, then obviously, the possibilities of identifying the appropriate generic
concepts are limited. In particular, concepts transcending the sub-domain boundaries would be overlooked. For
instance, although both hierarchies in Figure 1 are faithful representations of the underlying sub-domains, none
of them identifies the general concept of account that would factor the specifications of CreditCardAccount and
(check) Account (see class Account in Figure 6). These can only be discovered when the appropriate sub-domain
hierarchies are put side-by-side.

Consequently, a clever integration approach should look for all the ’hidden’ domain abstractions that cross
the local hierarchy boundaries. As we shall show it in the following paragraphs, mathematical tools exist that,
provided an appropriate encoding is performed beforehand, deliver the set of all potentially useful abstractions
over a set of concrete entities.

There is yet another difficulty integration has to face which is due to the overlapping of some hierarchies.
Indeed, restricted views and insufficient synchronization may cause mismatches in the naming of domain elements
that happen to appear in several sub-domains, as the case of the Client/Holder classes suggests. Indeed, both
Client and (card) Holder seem to reflect the same reality, i.e., bank customers whose only differentiation, except
for naming, lays in the sort of banking products they possess. Hence, and despite the diverging class names, these
classes should be merged in the global hierarchy (see Figure 6). In contrast, the pair of Feature classes, although
identically named, rather translate variations of a hypothetic Feature entity. Again, the name (mis)match is due
to the limited view in both local hierarchies: the lack of intra-hierarchy variation prevented the identification of
the generic class Feature whose absence prompted its local variants (subclasses) to be named identically. It is
noteworthy that in both above cases of misleading naming, the specification of the compared entities, i.e,, the
list of attributes, is a strong indicator of whether these are identical or not: while both Feature classes share

52

lahire
52

only a subset of their properties, the description of Client and Holder match perfectly. In fact, integration is
also a reconciliation activity on two inherently incomplete, i.e., partial, views on the same reality.

In the next section we present a domain that studies the construction of conceptual hierarchies from obser-
vation from a mathematical point of view and therefore provides a formal framework for the abstraction activity
that is considered here.

3. FCA-BASED INTEGRATION
3.1. FCA basics

A context K = (O, A,I) is given where O is a finite set of formal objects, A is a finite set of formal attributes
and I C O x A is a binary relation between these sets, saying that the object o € O has the attribute a € A
whenever (0,a) € I holds.

o
-
&
-
=
)
b
- o P
o S 4] b
Q L o Fr) [H g
g b S o o 9] o -
[} g o o | @ I} 2y Q |
= £] > %] £ =] o]] § =
B [} [} «© g | o g 17} o a] o
g o | Q o | a P 2 [} - o o o = =
3 o 5] 5 © [o e I S L 9] o o © w | °©
o ~ 2 =] 7] el el Q =2 (9] © () =] el o =] e} <]
3] ! o | = o o @ 9] e %)) o g o N H 9] b fE)
3] k1 5 o S5 | A H H o] 5] o o, o o < g | A
o 15} Q Q 8 3} o | ° A A ~ =} o % a, a, 3 =
BA-Account X X X X
Client X X X
BA-Features X X X X X
BA-Operation X X X
CCA-Account X X X X X
CCA-Operation X X X
CCA-Features X X X X
Holder X X X

Table 1. Binary context K%, ... Formal objects are UML classes and formal attributes are their variables.

Table 1 represents a context drawn from Figure 1. The image of an object set X € O is defined by:
X' ={ae€A|VYoeO: (o,a) €I} and dually the image of an attribute set Y € A is defined by: Y’ = {o €
O | Va € A: (o,a) € I}. For example within Table 1, {BA-Account, cCA-Account}’ = {valance} and {withprawLimit}’ =
{BA-Features, CCA-Features}. A (formal) concept in K is a pair (X,Y) € P(O) x P(A) for which X =Y and Y = X’
where X is called the extent and Y the intent. The set C of all concepts provided with an order relation based
on extent inclusion, say L, is a complete lattice. The lattice drawn from the context of Table 1 is shown in
Figure 2 on the right. As many practical applications involve non-binary data, many-valued contexts have been
introduced in FCA. In such a context K = (O, A, V, J), an object o is described by a set of attribute value pairs
(a,v), meaning that J is a ternary relation that binds the objects from O, the attributes from A and the values
from V (see table presented on the left-hand side of Figure 2). The construction of a lattice for K requires a
pre-processing step, called conceptual scaling,* that derives a binary context out of .

3.2. FCA-based hierarchy analysis

FCA has been successfully applied to class hierarchy design and maintenance® with contexts drawn from sets
of existing classes by encoding classes and class members as formal objects and attributes, respectively. The
resulting conceptual lattice was interpreted as a surrogate hierarchy where formal concepts represent (abstract)
software classes and order in the lattice as specialization.

Recently, Huchard et al.” proposed an extension of the basic FCA mechanisms, called relational concept
analysis (RCA), that allows links among formal objects to be fed into the lattice construction in order to abstract
from those links higher order inter-concept relations similar to UML associations. RCA uses a compound data

53

lahire
53

out-assoc in-assoc 2 |
¥ I=famourit, data] |
BA-Account {Allows7 BA-Owns, BA—Has} o #E=0 | ¥E=
(1 A e T
BA-Features BA-Has ¥ I=f@ccount Humber, balance, closedDate, openad Date]} | kqél o \ A
_ . ‘E: | =1@dare=s, name, phoneMUmber,
BA-Operation Allows (;} ﬁ 1/ EtClient, Holder)
CCA-Features CCA-Has 8 s | >-\ 5
¥ |=foreditLimit} 5] | ah
CCA-Operation Supports #E[CCAfocount} | #l=fnsurance} | ¥ I=Jocatian}
Client BA-Owns) : :"'?t\. ?.'.5\?:{.99{“..'?9_3.‘9."%?%?. / ¢ E={BA Operation] |
A EE . ¥ I={credit OverdrattLimit, withdrauLimit} | Py
CCA-Account {CCA—Owns, CCA-Has, Supports} MES{BA Ao} :Ej?l;eAFe:tire':} W } iin -)
Holder CCA-Owns W s ;
= Az e
an
¥=0
HEG

Figure 2. Left: Relational variables in Keass. Right: The lattice £2,,,.

format, called relational context family (RCF), including a set of formal contexts and a set of inter-object relations
(translated to relational attributes for computational reasons). Each context, called relational context, describes
a separate sort of domain entities as formal objects, while relations connect entities from (possibly) separate
contexts. An encoding of a UML class diagram maps classes and associations to separate contexts of the RCF
and the class - association relations to dedicated relational attributes in both contexts (e.g., in-association,
target-class, etc.). An innovative feature of RCA is the inference of relational abstractions connecting formal
concepts from links between formal objects, following a tight analogy to the Entity-Relationship data model. In
our UML encoding, this means that the intent of a formal concept over the class context may include a relational
attribute ”pointing at” a formal concept of the associations context, which abstracts from existing links between
the corresponding formal objects of class and association type.

The production of inter-concept relations is integrated into the overall lattice construction step by means
of relational scaling mechanism.® RCA uses an iterative lattice construction mechanism that processes all the
contexts of a family simultaneously. The construction alternates relational scaling and lattice construction tasks.
Thus, each lattice gets more detailed along subsequent iterations (since new concepts are added while the old
ones remain) whereas the global construction halts whenever a particular step yields no new concept.

Figure 2, on the left, presents a relational context extracted from the UML diagrams given in Figure 1 in a
way that will be presented later on. RCA uses an iterative lattice construction method that processes all the
contexts of a family simultaneously by means of relational scaling mechanism which encodes relational attributes
into binary ones. Figure 3 presents the lattice of the context obtained by concatenating Table 1 and table shown
in the left hand-side of Figure 2.

3.3. Naming conflicts resolution

A set of hierarchical elements may overlap either on their names or on their descriptions (including properties and
links to other elements). Both these aspects of an element are to be seen as “proxies” for the denotation behind
the element, i.e., the domain entity it represents, which is not necessarily available for a hypothetical automated
tool. Indeed, although providing some rigor and a lot of structure, plain UML models, as other hierarchy
description languages, are basically natural-language-bound and therefore potentially ambiguous. Obviously,
a strong match in both name and description is a good indication for elements representing the same reality.
Overlap in only one aspect is trickier case as it may be the sign, except for imprecise modeling, of complex
linguistics phenomena intervening such as synonymous (same entity, different names, e.g., Client/Holder) or
polysemous (same name, different entities, e.g., the Feature classes).

These problems have been addressed in the database schema integration field and it is usually suggested
that name conflicts be resolved through name normalization based on linguistic resources such as electronic

54

lahire
54

dictionaries or specialized domain ontologies. Of course, neither is the linguistic-knowledge based approach
universally applicable, nor is it possible to solve all conflicts by an automated tool. Therefore, a more realistic
agenda for an integration tool could be to detect the suspect areas in the global hierarchy where effective/potential
name conflicts reside. FCA offers mechanisms for the detection of typical and exceptional patterns of co-
occurrence of formal objects/attributes called implication rules.” These can be used to detect discrepancies
between descriptions of elements, i.e., mainly classes and associations, having same or close names that may hide
a conflict. Structural properties of the lattice and mutual position of those elements within it could be further
explored to the same end.

More sophisticated tools could even suggest, for a given pair of elements, the impact of a particular action
on them, e.g., merge, creation of a dedicated generalization, split into thinner elements, etc., to the remaining
lattice and hence the final hierarchy. Finally, a more extensive and fully manual approach towards name conflict
resolution could be based on the attribute exploration® mechanism which is basically a knowledge acquisition
method assisted by a automated tool asking questions to the expert designer. The tool guides the hierarchy
designer to the discovery of a minimal set of implications that represent the entire domain while minimizing the
number of questions. It is noteworthy that the above mentioned FCA tools such as implication extraction and
attribute exploration are yet to be extended to the relational data descriptions that are used here.

1 i
¥ I=faccountMumber, balance, clozedDate, openedDate, out-121- cU} :':2“-

¥ED / ¥ I=frei21-c0]
\ ®E=[..

&5 I :
] 7
&I Jeredit Limit, out-121-o4} ¥ =fin-121-c13 : |
$E-[CCA docount] L5 |— §IE={5 . :Iej}mum dote ez} g1 frei21-c4} |
| EED

' {n -121-05, location} | a3

®E={BAOperstion} | ¥1={n21-c10} | !I {” [Elsanitel
- | ¥ E={} = ¥ E={C CA Operation} |
& * — 14} £ AZ B EEND T

¥=]in-121-c2, interest Rate, period, penodlcFee} " ¥ l={address, ind21-c8, name, phoneNumber}i
¥ET “\ SB[

m =[oradit Overdmaft Limit, in121-c12, withdraw Limit} | a7 | 121514, insuranse ’_,. SR
¥ E-{BA Features] =izt 013}/‘ 5l - w 3|

% E={Client} / #$E={CCAFeaures}y | ¥E-{Holder} |

@) o
" %l=franch, out-iz1-c1} | & 1=fndz1o1 |
St ¥EL

=0 |
*ED

Figure 3. Relational lattice £,,,.

3.4. Description of the approach

The global scenario of integration includes three main stages: encoding, abstraction and reverse encoding. During
the encoding stage, the initial hierarchies are transformed into a unique RCF where each context correspond to
a sort of objects in the UML meta-model, i.e., classes, associations, methods and variables. Here we limit our
considerations to classes and associations. Moreover, the incidences between meta-objects are translated into
relational attributes in the RCF, e.g., the attribute target-class in Table 2. The encoding of the entire running
example is jointly represented by Tables 1 and 2, together with the left-hand side of Figure 2. The resolution
of some naming conflicts takes place at this step, in particular conflicts in attribute/method names, which are
often less ambiguous than the class or association ones.

At the abstraction stage, a set of inter-related concept hierarchies are constructed on top of the global RCF.!!
The global hierarchy construction starts by processing only the non-relational part of context attributes. Next,

55

lahire
55

name s-mult t-mult nav source-class target-class
Allows allows 1 0..N st BA-Account BA-Operation
BA-Owns ba-owns 1..N 1 st BA-Account Client
BA-Has ba-has 0..N 1 st BA-Account BA-Features
CCA-Owns cca-owns 1..N 1 st CCA-Account Holder
CCA-Has cca-has 0..N 1 st CCA-Account CCA-Features
Supports supports 1 0..N st CCA-Account CCA-Operation

Table 2. Context Kqss0c Of associations.

the process iterates between construction and scaling of relational attributes in the RCF until a fixed point is
reached, i.e., isomorphism between lattices at step ¢+ 1 and their counterparts at step ¢. Relational scaling turns
each object-valued attribute into a set of binary ones each of whom represents a concept from the conceptual
hierarchy of the underlying context. For a relational attribute « that is scaled along an existing lattice on its
range context, the resulting scale attributes will have the form a-1#j#i-c#k where j is the context number
(here 1 stands for classes and 2 for associations), 4 refers to the step of the iterative construction process and
k is the concept index in E; For instance, as the values of target-class in Kyss0c are objects in Koqss (see
Table 2), the attributes of the scale context Kiqrget—ciass correspond to concepts from Eglass (see Figure 4 on
the left). They are used to compute the relational extension of X!, . along the link target-class (see the
tc-110-cX attribute in Figure 4 on the right). Figures 3 and 5 show the final hierarchy derived from the class
and association contexts, respectively. Reverse encoding turns the resulting lattices into a global UML class

olalaw|ls|[n]olalS o] NN E
PR Y RPN Pl Rl e YRy
oclo|lo|lo|o| o] o]l o o o ololo|lo| o] o
-~ ~ -~ -~ -~ -~ -~ -~ -~ ~ -~ ~ -~ -~ -~ -~
U T A R B B I I R R R N e I
o o o o o o o o O o o o o o o o
» P PO I A A » » PR IR P »

BA-Features X X X Allows X X X

BA-Operation X X BA-Owns X X

CCA-Features X X X BA-Has X X X

CCA-Operation X X X CCA-Owns X X

Client X X CCA-Has X X X

Holder X X Supports X X X

Figure 4. Left: Scale context Ktarget—ciass- Right: Relational extension of KL ssoe through Ktarget—class-

diagram (see Figure 6). The process starts with an initial set of class concepts and examines iteratively both
lattices following inter-concept relational attributes to figure out the appropriate associations. Initial class set
includes all the object-concepts which represent existing local classes and some of the attribute-concepts in L7,
which means the GSH of L, . is the focus. However, concepts with exclusively relational scale attributes in
their intents are left aside at this step as they represent potential classes of high generality level. In our running
example, the object-concepts in L1, .. are as follows (corresponding classes in Figure 6 given in brackets):
#3 (BA-Account), #16 (BA-Features), #11 (BA-Transaction), #4 (CCA-Account), #18 (CCA-Features), #15
(CCA-Transaction), #17, #19. The concepts #17 and #19 are discarded as they hold only links in their intents.
The attribute-concepts in £}, .. are also considered: #1 (Account), #7 (Transaction), #12 (Feature), and
#14 (Holder) are kept while the remaining concepts such as #2 and #5 are ignored. The selected concepts, once
assigned a name each, constitute a first draft of the global UML model. The next step consists in detecting the
appropriate associations from the relational information in the retained class concepts. According to our forward
encoding, concepts from /C.j,ss have incoming and outgoing links to concepts from Kyss0c. Moreover, as these
links play symmetrical role, tracking one of them is enough. The scale attributes of the incoming link in each
selected concept (prefix in) are examined and only those corresponding to a minimum of the related concept
set are kept for association computation. For example, the concept #7 in L}, .. which corresponds to the class
Transaction has two such attributes in-121-c0 and in-121-c2 hence potentially two incoming associations.

56

lahire
56

¥ [=Inav-st, se-10-¢0, se-10-c1, te-10-c0}
EE=D

@ @ :
% |=fsmult-1, te-110-4e2, tmuft-0.. M} 7 ¥ [=ftmult-1}
®E] Er |

]

b |
¥ |={sc-110-08}
izah

4)
¥ =fzc-110-06}
¥

- @))
[N @ Lol 8 :
5 7) . | ; :
¥=0 ¥ =supports, te-110-¢10} / R:E—jsmult-ﬂ..N.tc-HD-tcz} Ir—/‘ x:z—jsmuh-l..N.tc-HD-cfl} | ['10-"1:
¥ED | ¥ E={Support=} s dsatie S | #ED S
’ /%\/\\ ®EL|
".5 \ A = 9 oy kil
I=allows, to-10-c8} Qi«l _— \J?;.-I — iz PO
E=[All | =pa-has, te-l10-eiy | ={ha- uins Rt A L
¥ E=[Allow=} ®E-[BAHas] i BB Duns) ¥ |=foca-Has, te-10-03] |~ ¥ Eoea-Diine]
T NN : HEECA T

qn
¥I=p
¥R

Figure 5. Relational lattice £.,0c-

However, the concepts #0 (in-121-c0) is a parent of #2 (in-121-c2) in £ = and thus the unique incoming
association for Transaction is described by #2. The latter has two source class attributes, sc-110-c0 and
sc-110-c1, whereby the corresponding concepts in Eglass, i.e., #0 and #1, satisfy #1 < #0. Thus, the source
class is #1 which corresponds to the super-concept of the object-concepts for both account classes, i.e., the class
Account in our interpretation. As the target of the new association is known to be Transaction, the exploration
of the relations between L, . and L, . continues with another class concept. Figure 6 shows the result of the
integration process. Clearly, interesting abstractions have been discovered: Account generalizes both sorts of
accounts and Transaction the respective operations on them, Holder become the generic account owner after
discarding the Owner class as independent one. A new associations have been found as well, i.e., Supports which

links Transaction and Account.

BankAccountFeatures -
BankAccount BanckAccountTransaction
('Ifom BankAccoLfnt). Has-baf (from BankAccount) | SUpports-bat (from BankAccount)
&creditOverdraftLimit obranch Siocation
&swithdrawLimit 1 0.* 1 0.*
Holder
(from Account)

&name

&phoneNumber

&address

1
1.
Owns Account
Features (from Account) Transaction
.(lrom Account) Has &accountNumber Supports (from Account)
&pinterestRate &balance Ssamount
&period 0.+ |&openedDate * | &odate
&periodFee 1 &closedDate 1 0..
%getBalance()
- CreditCardAccount - -
CreditCardFeatures CreditCardTransaction
(from CreditAccount) Has-ccf (frurr.| CTEG_“ACCGUH‘) Supports-cct (from CreditAccount)
& Availabl &screditLimit Sunit
insurranceAvailable | 0. 0 units
“%authorizeCharge()

Figure 6. Global UML model.

57

lahire
57

4. RESEARCH AVENUES

We addressed the integration of a set of UML class diagrams into a global one as an instance of the generic
hierarchy integration problem. The underlying challenges amount to abstracting new and previously unknown
concepts and properly match overlapping parts of the hierarchies. We suggested a RCA-based framework for
integration where concepts and relations are organized in a separate but mutually related abstraction hierarchies,
the concept lattices. The core abstraction process is highly complex while the gap between a conceptual hierarchy
and its encoding in terms of a RCF requires an effective set of tools that facilitate the back and forth navigation.

Our focus in future steps will be on increasing the precision of the mapping from a hierarchy to a RCF and
on the design of effective tools for naming conflict detection and on-line adaptive restructuring of the hierarchies.
A possible approach would be to assess term “similarity” using a lexical database as in.'? Moreover, we shall
look at interactive simplification (pruning) of the obtained hierarchies and at increasing the automation of the
identification of relevant classes and associations as starting point for the reverse-encoding of the global hierarchy.
Finally, studying practical cases to assess the quality of the integrated hierarchies.

REFERENCES

1. I. Mirbel and J.-L. Cavarero, “An integration method for design schemas,” in Conference on Advanced
Information Systems Engineering, pp. 457-475, 1996.

2. N. Noy and M. Musen, “Promptdiff: A fixed-point algorithm for comparing ontology versions,” in Proc.
18th AAAI 2002.

3. H. Ossher and P. Tarr, “Using multidimensional separation of concerns to (re)shape evolving software,”
Commun. ACM 44(10), pp. 43-50, 2001.

4. B. Ganter and R. Wille, Formal Concept Analysis, Mathematical Foundations, Springer, Berlin, 1999.

5. Object Management Group, Inc., OMG Unified Modeling Language Specification, version 1.5 ed., March
2003.

6. R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi, and T. Chau, “Design of Class Hierarchies Based on
Concept (Galois) Lattices,” Theory and Practice of Object Systems 4(2), 1998.

7. M. Huchard, C. Roume, and P. Valtchev, “When concepts point at other concepts: the case of uml diagram
reconstruction,” in Proceedings of the 2nd Workshop on Advances in Formal Concept Analysis for Knowledge
Discovery in Databases (FCAKDD), pp. 32—43, 2002.

8. P. Valtchev, M. H. Rouane, M. Huchard, and C. Roume, “Extracting Formal Concepts out of Relational
Data,” in Proceedings of the 4th Intl. Conference Journées de 'Informatique Messine (JIM’03): Knowledge
Discovery and Discrete Mathematics, Metz (FR), 3-6 September, E. SanJuan, A. Berry, A. Sigayret, and
A. Napoli, eds., pp. 37-49, INRIA, 2003.

9. J. Guigues and V. Duquenne, “Familles minimales d’implications informatives résultant d’un tableau de
données binaires,” Mathématiques et Sciences Humaines 95, pp. 5-18, 1986.

10. B. Ganter, “Attribute exploration with background knowledge,” 217, pp. 215-233, 1999.

11. M. Dao, M. Huchard, M. H. Rouane, C. Roume, and P. Valtchev, “Improving generalization level in uml
models: ITterative cross generalization in practice,” in Proceedings of the 12th International Conference on
Conceptual Structures (ICCS’04), 14, Springer-Verlag, LNCS 3127, July 2004.

12. M. Lafourcade and V.Prince, “Relative synonymy and conceptual vectors,” in Proceedings of NLPRS2001,
Tokyo, pp. 127-134, 2001.

58

lahire
58

Behavior Consistent Inheritance with UML Statecharts
Markus Stumptner and Michael Schrefl

Advanced Computing Research Centre, University of South Australia,
5095 Mawson Lakes, Adelaide, Australia

{mst|cismis}@cs.unisa.edu.au

ABSTRACT

* Object-oriented design methods express the behavior an object exhibits over time, i.e., the object life cycle, by
notations based on Petri nets or state charts. The paper considers the specialization of life cycles via inheritance
relationships as a combination of extension and refinement, viewed in the context of UML state machines.
Extension corresponds to the addition of states and actions, refinement refers to the decomposition of states into
substates. We use the notions of observation consistency and invocation consistency to compare the behavior
of object life cycles and present a set of rules to check for behavior consistency of state machines, based on a
one-to-one mapping of a meaningful subset of UML 2.0 state machines to Object/Behavior Diagrams.

1. INTRODUCTION

Object-oriented systems organize object types in hierarchies in which subtypes inherit and specialize the structure
and the behavior of supertypes. These inheritance hierarchies provide a major aid to the designer in structuring
the description of an object-oriented system, and they guide the reader who tries to understand the system
by pointing out similarities between object types that are so connected. Informally, specialization means for
object life cycles that the object life cycle of a subtype should be a “special case” of the object life cycle of the
supertype. There are two ways in which an object life cycle may be made more special. One way is to add new
features, which we call extension. For example, a “reservation with payment” extends a “reservation” in that it
provides for additional features relevant for payment such as billing, paying, and refunding. The other way is to
consider inherited features in more detail, which we call refinement. For example, a “reservation with alternative
payment” refines a “reservation with payment” in that it provides for special means to pay, such as by cash, by
cheque, or by credit card.

Extension and refinement should not be employed arbitrarily but according to certain consistency criteria in
order to increase understandability and usability. Ebert and Engels? pointed out that object life cycles can be
compared based upon what a user observes (observation consistency) and based upon which actions associated
with transitions a user may invoke on an object (invocation consistency).

Informally, observation consistent specialization guarantees that if features added at a subtype are ignored
and features refined at a subtype are considered unrefined, any processing of an object of the subtype can be
observed as correct processing from the point of view of the supertype. In our example of “reservation with
payment”, observation consistency is satisfied if the processing of reservations with payment appears (can be
observed) as a correct processing of reservations when all features relevant to payment are ignored.

Weak invocation consistency captures the idea that instances of a subtype can be used the same way as
instances of the supertype. For example, if one extends a television set by a video text component, one would
expect that the existing controls of the television set should continue to operate in the same way. An extended
property, strong invocation consistency, guarantees that one can continue to use instances of a subtype the same
way as instances of a supertype, even after operations (activities) that have been added at the subtype have been
executed. In our television set example, to obey strong invocation consistency means that invoking any video
text function should still leave the volume control operative.

An earlier version of this work was published in the Proceedings of the 20th Int’l Conf. on Conceptual Modeling.

59

lahire
59

use

issue Void ®
archive,
Requested
cancel
SorrySent

Figure 1. UML statechart diagram of object class RESERVATION

sendSorryLetter archive;

In this paper, we will analyze these properties in the UML statechart context give a set of rules for checking
whether an inheritance relationship satisfies them. For space reasons, we have reduced the formalism to a
minimum, as detailed definitions are available elsewhere.!

UML statechart diagrams are the standard UML “lifecycle” diagrams. Transitions are triggered by call
events and their actions invoke the operation at that point.> For the sake of brevity we exclude completion
and stubbed transitions as well as history states, and assume that an event is associated with every transition.
Since transitions are considered instantaneous, we can say that every instance of an object class is at any point
in time in one or several states of its state machine. The set of states an object is situated in at a given moment
is jointly referred to as life cycle state. As given by the UML semantics definition, a transition will be performed
if its event occurs and its guard condition is satisfied. For ease of presentation we also assume that at most one
transition exists between each pair of states.

Definition: A UML State Machine (USM) of a class O consists of a set of states S # () and a set of transitions
T of the form [: (S1,S2) where S1,S2 C S, and | € Lo with Lo being the set of event labels. The labels are
of the form e (where e is an event name) if e is associated with one transaction, or of the form e; (i.e., with a
unique index is added), if the event name e occurs multiple times in Up. There is a distinguished initial state
a, and a set of distinguished states final states Q. In addition, every transition ¢ can have associated with it a
guard condition (g(t)).

For a transition [: (S1,52), we call S the set of source states of the transition, and S, the set of sink states.

Since we do not consider action, guard, and activity semantics, the situation of an object at a given point in
its lifetime is described by the set of states it occupies in the USM. We refer to this situation as the life cycle
state of the object. A transition t =1 :(S,S5’) € T can be performed on a life cycle state o of an USM Up, if the
source states of ¢ are contained in o, the event e occurs (where [= e if e is unique in Up and I = e; if there are
multiple occurrences of €), and the guard g(t) evaluates to True.

ExXAMPLE 1. Figure 1 shows the statechart of object class RESERVATION.

A statechart diagram of an object class implicitly specifies all legal sequences of life cycle states. A particular
sequence of life cycle states of an object class is referred to as life cycle occurrence (LCO) of that object class.

EXAMPLE 2. A possible LCO of object class RESERVATION is [{a}, {requested}, {issued}, {void}] (c¢f. Figure 1).

A life cycle occurrence v can also be denoted by the sequence of transitions that cause v, called an activation
sequence.

EXAMPLE 3. A possible activation sequence for object class RESERVATION is [request, issue, use, archive; .

Our work in this paper relies on earlier work dealing with Object/Behaviour Diagrams (OBD’s).* For the
purpose of checking behavior consistency, since composite states have no intrinsic semantics, we transform UML
statecharts into a canonical form such that they contain only transitions between simple states and such that
concurrent regions are always explicitly exited. From this state, we can define a homomorphism from USM’s to
OBD’s, called the U20 mapping.!

60

lahire
60

issue

request

cancel

Requested

sendSorryLetter

archive,

SorrySent

custaccepts | Customer | a/Chives

Accepted
AltOffered

offer alternative

Customer | &rchive,

Rejected

cust rejects

Figure 2. UML state diagram of object class FRIENDLY_RES

'S

archiveg
Refunded
issue
request ~
Requested
(\ .
archive,
Void
—/

sendSorryLetter

Figure 3. UML state diagram of object class RESERVATION_WITH_PAYMENT

2. CONSISTENT EXTENSION

For UML statechart diagrams, “extension” means adding transitions and states. Simple transitions may become
complex transitions and complex transitions may receive additional sink and source states.

EXAMPLE 4. Figure 2 shows a statechart diagram for object class FRIENDLY_RES. This statechart extends the
statechart of object class RESERVATION shown in Figure 1.

Adding a “parallel path” is easily achieved in UML if the additional “parallel path” starts in all its alternatives
at transitions having the same sink state and, likewise, ends in all its alternatives at transitions having a common
source state. Since UML concurrency requirements trivially imply that an object always leaves and enters all
concurrent subregions of a composite state simultaneously, other extensions may not be expressible by adding
states and transitions to an existing statechart diagram unless behavior consistency is sacrificed. The semantics
of the intended extension must then be alternatively expressed by refinement, i.e., the decomposition of states
into so-called substates that provide a more detailed description of the inner workings of that state. This special
case is described elsewhere,! and we ignore it from here on.

2.1. Kinds of Behavior Consistency

Intuitively, one expects the statechart of a subclass to be “consistent” with the statechart of a superclass. In this
section, we define precisely what “consistent” means with respect to extension of UML statecharts. Following
the example from OBD’s,* the idea naturally emerges to use the addition of states and transitions in order to
define the notion of “consistent extension” of state machines. As an example, consider the statechart diagram
FRIENDLY _RES which is based on the diagram for RESERVATION (cf. Figures 2 and 1).

61

lahire
61

Based on our earlier research on Petri net-based behavior diagrams, we found two approaches are common for
comparing the behavior of two Petri nets®: (1) Abstracting from actions, one can compare the possible sequences
of sets of states in which tokens reside and (2) abstracting from states, one can compare the possible sequences
in which transitions can be performed. These approaches are usually followed alternatively. In UML, as noted,
we compare action sequences, not event sequences, and both approaches coincide since we can denote a life cycle
occurrence either by the sequence of its life cycle states or by the activation sequence generating it, whichever is
more convenient (see above).

We are now ready for describing the three kinds of behavior consistency* in an UML context. As described
above, the perspective of observation consistency in semantic data models and object-oriented systems is that
each instance of a subclass must be observable according to the structure and behavior definition given at the
superclass, if features added at the subclass are ignored. A life cycle occurrence of a subclass can be observed at
the level of the superclass, if activities, states, and labels added at the subclass are ignored. This is expressed by
the notion of the restriction of a life cycle occurrence to a supertype, which consists of omitting all transitions
and states that do not belong to the supertype from the individual LCS’s of the LCO.

EXAMPLE 5. A possible life cycle occurrence of object class RESERVATION_WITH_-PAYMENT (¢f. Figure 3) is
[{requested}, {issued,toBeBilled}, {issued,billed}, {issued,paid}, {void}]. The restriction of this life cycle occurrence
to object class RESERVATION yields [{requested}, {issued}, {issued}, {issued}, {void}].

Observation consistent extension of behavior requires that each possible life cycle occurrence of a subclass
is, if we disregard activities and states added at the subclass, also a life cycle occurrence of the superclass.
Observation consistency ensures that all instances of an object class (including those of its subclasses) evolve
only according to its statechart diagram. This property is especially important for modeling workflows, where,
for example, the current processing state of an order should always be visible at the manager’s abstraction level
defined by some higher-level object class.

EXAMPLE 6. The statechart of class FRIENDLY_RES depicted in Figure 2 is no observation consistent extension of
the statechart of class RESERVATION depicted in Figure 1. The restriction of LCO [{requested}, {altOffered}] of
class FRIENDLY_RES to class RESERVATION yields [{requested}, {}], which is no LCO of class RESERVATION.

As mentioned above, we distinguish two forms of invocation consistency.

Weak invocation consistency ensures that if an object is extended with new features, e.g., a television
set with video text, the object is usable the same way as without the extension, i.e., every activation sequence
p valid on A in U is also valid on supertype A’ in U’ and all traces of A’, when restricted to A’s states and
transitions, yield a trace for A.

EXAMPLE 7. The statechart diagram of class FRIENDLY_RES depicted in Figure 2 is a weak invocation consistent
extension of the statechart diagram of class RESERVATION depicted in Figure 1.

EXAMPLE 8. The statechart diagram of object class RESERVATION_WITH_PAY-MENT depicted in Figure 8
is no weak invocation consistent extension of the statechart diagram of object class RESERVATION depicted in
Figure 1. The activation sequence [request, issue, use, archives | is valid for class RESERVATION, but not for class
RESERVATION_WITH_PAYMENT, as use cannot be applied on the LCS {issued,toBeBilled} reached by executing

[request, issue].

Strong invocation consistency is satisfied if one can use instances of a subclass A’ in the same way as
instances of the superclass, despite using or having used new operations of the subclass A, i.e., for any activation
sequences p', v where p' is of the subtype that consists of actions from 7"\ T' (subtype only), but v’ would be
valid for an instance of A, then the concatenated sequence p', ' is also valid for A’.

EXAMPLE 9. The statechart diagram of object class FRIENDLY_RES depicted in Figure 2 is no strong invocation
consistent extension of the statechart diagram of object class RESERVATION depicted in Figure 1: The call
event sendSorrylLetter will perform the transition sendSorrylLetter:({Requested},{SorrySent}) for every instance of
RESERVATION in LCS {requested}, but the event will be ignored according to UML semantics on an instance of
FRIENDLY _RES if the call event offerAlternative has occurred before and the guard was true.

62

lahire
62

2.2. Checking Behavior Consistent Extension in UML 2.0

We rephrase the rules for checking behavior consistency introduced for OBD’s* in the context of USM’s. This
rephrasing is valid since the U20 mapping always produces an equivalent OBD, with two exceptions. The
mapping ignores guard conditions which are part of the preconditions for UML transitions. Also, the new
concept of Protocol State Machines (PrSMs) in UML 2.0 permits the addition of postconditions which have to
be considered in the rules. The guard conditions and postconditions therefore need to be explicitly introduced
and the corresponding passages are given in italics below. We denote the postcondition for a transition by p(¢).

Consider two USM’s U’ and U of an object class O' and its superclass O, where U’ extends the statechart
diagram of U by additional states and transitions. Then, the rules to check for behavior consistency of statechart
diagram extensions (based on the rules given previously for OBD’s?) are:

1. The rule of partial inheritance specifies that

(a) the initial states of the statechart diagrams U’ and U must be identical

(b) every transition of U’ which is already in U has at least the same source states and sink states than
it hasin U

(¢) (since the rule of partial inheritance is in the line of covariance) for each transition t in U’ that is
already present in U, the guard condition ¢'(t) in U' must be at least as strong as the guard condition
g(t) fort inU: ¢'(t) = g(t). In a PrSM, the postcondition in U' must be at least as strong as in U:

p'(t) = p(t).

2. The rule of immediate definition of pre states, post states, and labels requires that a transition of U may
in U’ not receive an additional source state or sink state that is already present in U.

3. The rule of parallel extension requires that a transition added in U’ does not receive a source state or a
sink state that was already present in U.

4. The rule of full inheritance requires that the set of transitions of U’ is a superset of the set of transitions
of U.

5. The rule of alternative extension requires that

(a) a transition in U’ which is already present in U has in U’ at most the source states that the transition
has in U.

(b) (since the rule of alternative extension is considered contra-variant) for each transition t in U’ that is
already present in U, the guard condition g'(t) must be in U' at least as weak as the guard condition
g(t) inU: g(t) = ¢'(t). In a PrSM, the postcondition in U' must be at least as strong as in U:

p'(t) = p(t).

Rules 1, 2, and 3 are sufficient to check whether a USM U’ is an observation consistent extension of another
statechart diagram U. They are also necessary, provided that analogous assumptions to the safety, activity-
reduced, and deadlock-free conditions introduced previously for behavior diagrams? are taken here.

Rules 1, 2, 4 and 5 are sufficient to check whether a USM U’ is a weak invocation consistent extension of
another USM U. They are also necessary if conditions corresponding to those introduced for OBD’s above are
obeyed.

Rules 1 to 5 are sufficient to check whether a USM U’ is a strong invocation consistent extension of another
USM U.

63

lahire
63

3. RELATED WORK AND OUTLOOK

UML has introduced an explicit notion of extension of a statechart diagram with the new UML 2.0 standard,’
(p-493), and the query isConsistentWith() is defined as an operation to check for extension. This compares favorably
with the old standard where inheritance of statecharts (referred to as “refinement”) was merely discussed briefly
in the text). However, the notion of extension is still not restricted in terms of the additions permitted, and
although simple states can be replaced by composite states, this only serves the representation of parallelism
and not the concept of refinement as described in earlier work.*

Other work on inheritance for object life cycles includes work based on state diagrams that are related via
graph (homo-)morphisms,>7 finite automata,® state machines,” and statecharts.!® A discussion of life cycles
on Petri net basis, but without completeness or sufficiency results, was given by van der Aalst.!! Restrictions on
inheritance relationships in concurrent object-oriented languages were examined, e.g., by Nierstrasz'? and Amer-
ica.!® An approach that expresses subtype relations in terms of implications between pre- and postconditions
of individual operations plus additional constraints was given by Liskov and Wing,!* providing explicit criteria
for individual operations, but not for descriptions of complete object life cycles. A more detailed comparison can
be found in our previous work.*

In this paper we have treated specialization of object life cycles by examining extension and refinement in
the context of UML statecharts.

The ubiquity of UML means that despite its shortcomings any step towards capturing the relevant semantic
properties of the language is of immense practical relevance. Our work is the first formal scheme for describing
consistency of UML lifecycle inheritance in terms of a set of explicit rules and provides a basis for incorporating
further aspects of UML. In particular we are applying the same principles to UML 2.0 activity diagrams.

REFERENCES

1. M. Stumptner and M. Schrefl, “Behavior consistent inheritance in UML,” in Proc. Intl. Entity-Relationship Confer-
ence (ER 2000), (Salt Lake City), Oct. 2000.

2. J. Ebert and G. Engels, “Observable or Invocable Behaviour — You Have to Choose,” tech. rep., Universitit Koblenz,
1994.

3. Rational Software Corp., UML Semantics, Version 1.1, Sept. 1997.

4. M. Schrefl and M. Stumptner, “Behavior consistent specialization of object life cycles,” ACM Transactions on Soft-
ware Engineering and Methodology 11(1), pp. 92-148, 2002.

5. L. Pomello, G. Rozenberg, and C. Simone, A Survey of Equivalence Notions for Net Based Systems, LNCS 609,

Springer-Verlag, 1992.

OMG, UML Superstructure 2.0 Draft Adopted Specification, 2004.

G. Saake, P. Hartel, R. Jungclaus, R. Wieringa, and R. Feenstra, “Inheritance conditions for object life cycle dia-

grams,” in Proc. EMISA-Workshop Formale Grundlagen fir den Entwurf von Informationsystemen, U. Lipeck and

G. Vossen, eds., Informatik-Berichte(3/94), pp. 79-88, (Institut fir Informatik, Universitdt Hannover), 1994.

8. B. Paech and P. Rumpe, “A new concept of refinement used for behaviour modelling with automata,” in Proc.
FME’94, Springer LNCS 873, pp- 154-174, 1994.

9. J. McGregor and D. Dyer, “A note on inheritance and state machines,” ACM SIGSOFT Software Engineering Notes
18(4), pp. 61-69, 1993.

10. D. Harel and O. Kupferman, “On object systems and behavior inheritance,” IEEE Transactions on Software Engi-
neering 28(9), pp. 889-903, 2002.

11. W. M. P. van der Aalst and T. Basten, “Life-Cycle Inheritance — A Petri-Net-Based Approach,” in Proc. 18th Intl.
Conf. on Application and Theory of Petri Nets, LNCS 1248, pp. 62-81, Springer-Verlag, 1997.

12. O. Nierstrasz, “Regular types for active objects,” in Proc. OOPSLA, 1993.

13. P. America, “Designing an object-oriented programming language with behavioural subtyping,” in Foundations of
Object-Oriented Languages, J. de Bakker, W. de Roever, and G. Rozenberg, eds., Springer LNCS 489, pp. 60-90,
1990.

14. B. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM Transactions on Programming Languages and
Systems 16, pp. 1811-1841, Nov. 1994.

64

lahire
64

Domain Modeling in Self Yields Warped Hierarchies

Ellen Van Paesschen - Wolfgang De Meuter - Theo D’'Hondt

Programming Technology Laboratory, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

ABSTRACT

Domain modeling can result in a hierarchical set-up in which the modeled entities follow the standard hierarchical
taxonomies while the proper execution of the corresponding code demands the reversed hierarchy. Modeling roles
and the identity problem are typical cases of these ”"warped” hierarchies, which are difficult to implement in class-
based languages. In the prototype-based language Self, entities are modeled into hierarchies of traits, supporting
multiple inheritance, dynamic parent sharing and copy-down techniques. This powerful cocktail of features allows
building warped hierarchies in a straightforward and natural manner.

Keywords: Prototypes, multiple inheritance, dynamic delegation, traits, parent sharing, roles

1. INTRODUCTION

Since the advent of Simula, object-oriented languages are promoted as programming languages that facilitate
modeling the real world and make it possible to create taxonomies from the entities that surround us. Indeed,
many aspects of a problem domain are easily modeled in object-oriented languages: usually, the modeled entities
correspond to an object or a class and taxonomies of entities give rise to class-hierarchies. This way of thinking
is pretty straightforwardly applied in a prototype-based language like Self as well. The only difference is that
one will replace classes and their hierarchies by traits objects and their hierarchies.

Nevertheless, there exists a significant hiatus in this story. During such a modeling process in Self, we
experienced a number of occasions where this straight-forwarded approach gives rise to a hierarchical set-up in
which the entities follow the standard hierarchical taxonomies but in which the corresponding code demands
exactly the reverse version of this hierarchy. We discovered the existence of such warped hierarchies while doing
role modeling, an activity which is known to be far from easy in a class-based language.* They also showed up
in relation to fundamental and philosophical shortcomings: e.g. a mathematician would consider a circle as a
special kind of ellipse, where both axes are equal, while an object-oriented modeler would rather define an ellipse
as a descendant of circle.

Warped hierarchies cannot be implemented in class-based languages. However, this is perfectly feasible in
Self, thanks to multiple inheritance, parent sharing and copy-down techniques. We will illustrate this using the
circles/ellipses example and the role modeling case.

2. PROTOTYPE-BASED LANGUAGES
2.1. In General

In general, prototype-based languages (PBLs) can be considered object-oriented languages without classes. The
most interesting feautures of a PBL are creation ex nihilo, cloning, dynamic inheritance modification, delegation
with late binding of self, dynamic parent modification, and traits objects*. Many PBLs have been designed in
research labs. Examples are Self,” Agora,? Kevo® and NewtonScript.® A taxonomy can be found in.?> We will
elaborate on the PBL Self, since it is a textbook example of a PBL and moreover, includes a mature programming
environment.

Send e-mail correspondence to {evpaessc,wdmeuter,tjdhondt}@vub.ac.be
*To avoid copying behavior every time an object is cloned, the SELF-group'! introduced traits objects: storing the
shared behavior in an object and let the cloned objects inherit from it, i.e. a kind of class-based programming in a PBL

65

lahire
65

2.2, Self

Self is closely related to the syntax and semantics of Smalltalk® but Self has no classes. Objects in Self are
created ex-nihilo by putting slot names (together with a possible initial filler value for that slot) between vertical
bars, separated by dots. The following code, for example, creates an ex-nihilo myPoint! object:

myPoint: (|parent* = traits clonable. x <- 3. y <- 4.
addPoint: point = ((copy x: x + point x)
y: y + point y)I|)

Self visualizes its objects with outliners, cfr. figure 1. A slot marked with an asterisk is a parent slot and makes

4 myPoint B %
Module:
parent™ traity clonable =
addPoint: point = |

(copy x: x + point x)
y: y + point y

Figure 1. The self-contained myPoint object combines data and behavior

the child inherit all the slots of the parent slot. In this way, myPoint inherits (its behavior) from the traits object
clonable’, and has two data slots containing an x and a y coordinate. The remaining method slot contains a
method for adding two points, by cloning point and initialize it with the added x and y coordinates.

Self implements a delegation mechanism that respects the late binding of self. Next to dynamic inheritance
and parent modification, this delegation mechanism also supports parent sharing, i.e. when two or more child
objects share the same parent object. This kind of sharing is typical for all PBLs. Child sharing (multiple
inheritance), on the other hand, when two or more parent objects share the same child object, is a specific
feature of Self. When modeling knowledge these two inheritance features are constantly combined.

3. MULTIPLE INHERITANCE IN SELF

When modeling a data type in Self, the data (specific for each “instance” of this data type) is contained in a
prototype while the behavior (shared by all objects of this data type) is typically gathered in a traits object. All
prototypes inherit their behavior from the traits object, which in his turn often inherits from traits clonable:

traits myPoint = (|parent* = traits clonable.
addPoint: point = ((copy x: x + point x)
y: y + point y)I|)

myPoint = (|parent* = traits myPoint. x . yl)

The graphical representation is illustrated in figure 2. To obtain @ point, we clone the myPoint prototype and
set the x and y coordinates.

(myPoint copy x: 1) y: 2.
(myPoint copy x: 3) y: 4.

"We use the name myPoint since Self already implements a point object
#Most concrete not-unique objects in the SELF world are descendants of the top-level traits object traits clonable.

66

lahire
66

Atraits myPoint 4| E|X

4myPoint EF Modide:
Module: : : parent™ traits clonable =
AT EEROE R EE " addPoint: paint .. B
; E; |(copy Xi X Fipoint X
¥ ¥+ point y A

Figure 2. The myPoint prototype inherits its behavior from traits myPoint

Both points now share the traits myPoint object since they both contain a copy of the parent* pointer of the
prototypical myPoint, i.e. the most common form of parent sharing.

When we want to create for example a coloured point, data and behavior are to be inherited from a normal
point. First, a prototypical coloured point is created that inherits its behavior from a corresponding traits
coloured point object. Naturally, the traits coloured point inherit behavior from the traits myPoint,
since the behavior of a coloured point will be a specialization of a normal point’s behavior. On the other hand,
the coloured point prototype can inherit the coordinates of the normal myPoint, and extend them with an extra
slot to contain the colour, see figure 3. Remark that this multiple inheritance structure is a diamond. Imagine a

pmyPoint A ED N eneerrnnnsinnnns p ptraits myPoint | [E]
data Tbehavior
peolouredPoint 4| Bl X/....pptraits colouredPoint A|E| X

Figure 3. colouredPoint inherits data and behavior from MyPoint

method m in traits myPoint that is overridden in traits coloured point. When we now send the message
m to a coloured point we get a name collision: the method lookup algorithm finds m in traits coloured
point (overriding method) but also in traits myPoint (original method) via the data inheritance link with
myPoint. The early version of Self solved this ambiguity with obscure language mechanisms like prioritized
parents or the tie-breaker sender path rule, which proved to be rather unsatisfying. In the current version of
Self we have to resolve ambiguous methods manually by adding a directed resend in coloured Point. Calling
m = (traits colouredPoint.m) would invoke the overridden method while m = (traits myPoint.m) would
return the original method. But then we violate the principle of traits-based inheritance, since we add shared
behavior in a prototype in stead of into the corresponding traits object.

Self avoids this problem by performing a copy-down of the myPoint prototype: this mechanism for data
inheritance copies (some of) the slots of the receiver into a new object, ensuring that changes (adding/removing
slots) to the receiver are propagated to all copied-down children. Next, we override the parent* pointer with
the traits colouredPoint object. In this way, colouredPoint inherits all the data of point except for its
parent: this implies that there are no name collision when traits coloured point override methods of traits
myPoint In fact, copy-down allows a kind of class-based programming: copy-down can be considered as creating
a subclass. The colouredPoint and myPoint inheritance structure is illustrated in figure 4. The complete Self
code for the literal point objects can be found in Appendix A.

4. WARPED SELF INHERITANCE HIERARCHIES

It is our experience that modeling domains in Self often results in a rather classical object organisation, differing
little from a class-based set-up. However, we found two examples where the transition from domain model
notation to code notation gives rise to warped inheritance hierarchies, namely the identity problem of circles and
ellipses and role modeling.

67

lahire
67

4 myPoint HETE A traits myPoint ¥ (5] =)

Module: : : Module:

panent™ traits myPoint @ = [parent traits clonable =
" mi % addPaint: point =
y mi %

(copy %x: ® + point x)
¥: ¥ + point y

4 colouredPoint Al EjX
Madule: : ___| 4, traits colouredPoint SR
parent™ traits colowredPoint -= | Module:
colour none' 3 |parent™ traits myPoint
L ml [print =
¥ mil 3

Figure 4. colouredPoint inherits data from myPoint, traits colouredPoint inherits behavior from traits myPoint

4.1. Is a circle an ellipse?

Although not many OO-programmers are aware of it, from the real world (domain model) point-of-view, a circle
really is-a kind of ellipse (with major semi-axis a = minor semi-axis b = radius) and thus the code should see
circles as specializations of ellipses. In a class-based language the circle type can be implemented as a subclass of
the ellipse type, resulting in inefficient code since circle will not use all instance variables inherited from ellipse.
The difficulty is mainly caused by the fact that the data of circle is less specialized than ellipse’s data while the
behavior of circle is more specialized than ellipse’s behavior. An extra problem in this context, is that circles can
receive messages intended for ellipses, transforming them dynamically into ellipses, and vice versa. E.g. when a
circle receives a stretch message that largens the width of an ellipse: a circle would become an ellipse but be
of class “Circle”!

Thanks to the separation of data and behavior inheritance, and dynamic modification of parents, Self allows
us to model the identity example with warped hierarchies. We let ellipse inherit data from circle (since it
extends it with an extra slot for a major semi-axis value), while traits circle inherit from traits ellipse,
see figure 5. As mentioned in the previous section, the diamond set-up can be broken by defining ellipse as

4 circle ~] E|x 4 traits ellipse ME|X
Modules: circleEllipse, - Module:
parent” traits circle @ parent™ traits clonable =
majorSemiAxis Aradius B . area A * radius * majerSemiAds B
radius 03 crcumfgrence 1E
-y |sTefth:a . B
4 ellipse A E X |
Module:
patent* traits ellipse
major: a s | L I |
majorSemiAxis LI = Atraits circle e Jud
minor; b _ B I;I;g‘r:ltf s eiire |
minorSemiAxis radus B - -
: stetch:a - B
radlius 0z

Figure 5. Warped hierarchy of circle and ellipse

a copy-down of circle and assigning the parent* pointer to traits ellipse. Thanks to the late binding of
the self variable, the correct data is accessed when executing methods (e.g, area, circumference) - and thus
polymorphism is ensured. When a circle is stretched to an ellipse, we add all the slots of the ellipse prototype
into the circle, thereby overriding the parent* pointer from traits circle to traits ellipse. Vice versa, an
ellipse whose major semi-axis is stretched to the same value as its minor semi-axis, becomes a circle, by removing
all slots that were not copied-down from circle and by overriding the parent* pointer from traits ellipse to
traits circle. In this way, objects seem to change the prototypes they were cloned from dynamically.

68

lahire
68

4.2. Role Modeling

The roles a person can perform are on one hand subtypes of a person: e.g. an engineer is-a kind of person.
On the other hand, when a role type inherits from person, how will we - in a class-based language - model
that this person can perform other roles? E.g. when both engineer and manager are subclassed from person
and we want to model a person that is both manager and engineer. When we instantiate the manager class,
the engineer class will be invisible and vice versa. Creating combination classes is not feasible: imagine the
difficulties when a person can change dynamically between a large set of roles?! Alternatively, roles are often
modeled with aggregation: a set of roles is held by an instance variable in the person class. By delegating the
messages of person to its roles, polymorphism is simulated.*

The real difference with the previous example lies in the fact that roles can be added or removed dynamically,
and that a person can have multiple roles implementing the same method. Simply warping the data hierarchy
between a person and its roles will not be sufficient.

Therefore, we implemented receiver createDataparent:parent? as a reverse of the copy-down method:
in stead of copying down the data from the receiver into a new child object, the data of the parent is copied
down into the receiver. We now create dynamically parents in stead of children. Due to the dynamic character
of the derived types, we also provided a receiver remove Dataparent:parent that removes all copied-down
data from the receiver.

Consider a person prototype that inherits from traits person, and a set of role prototypes (e.g. manager,
engineer) inheriting from their traits (e.g. traits manager, traits engineer), that in their turn all inherit
from traits person. A person that dynamically starts performing a role is implemented by dynamically adding
this role’s prototype as a data parent to the person prototype. Next, we remove¥ the person’s parentx link to
traits person since these are already inherited via the role data parent. Due to the multiple inheritance in
Self we can add as many roles as we like, cfr. figure 6. When a person dynamically stops performing a role, we

4.2 slots object i L
Module: roles
managerParent™ waits managerRST | =btraits managerRST i
salesmanParent™ traits salesmanRST @ = traitc salesmanRST aE|xf
arcount 03
budget 03
lcumentJobs a bst{'manager RST', ‘salesmanRsST') %
narme Jack' :
personParent traits personRST @ —= praits personRST & E| %
salary 10000 1
sales 01

Figure 6. Warped hierarchy of person and two roles

remove the data parent. When there are no more role data parent we make the traits person visible again.
In fact, the desired behavior is added or removed dynamically.

To ensure polymorphism we need to intercept the dynamic diamond that is implemented by a person that
inherits from two role data parents whose traits both inherit from traits person. More specifically, when two
roles of a person both override the same method in their traits, sending the corresponding message to person will
cause a VM ambiguity error. Our approach depends on the way the methods should be combined from the view
point of person. E.g. when we send the message pay to person, he should get payed for all the roles he performs
. Therefore, we implemented delegateMethod:selector that sequentially resends the message to all the data
parents, i.e. the roles, of person. However, it is possible that we only want to invoke a specific method, defined
in the role in whose context we currently see the person. E.g. when we send the message lunch to person, she

$Meta-programming methods heavily use the technique of Self mirrors: an object is reflected on by means of a mirror;
manipulating the mirror results in manipulating the object
TWe simply make a plain slot from this parent slot

69

lahire
69

might simulate the specific behavior to have lunch with her best friend and not, for example, with her boss and
some clients of the company she works for. In that case, we suggest to turn on/off the parent visibility of the
desired behavior, i.e. (temporarily) changing the parent slots, that point to the traits of currently non-desired
roles, to normal slots. In this way we maintain the illusion that we are dealing with one person performing
various roles.

5. CONCLUSION

PBLs, especially Self, are a suitable medium for modeling knowledge, with powerful inheritance mechanisms
which outrank the class-based ones. We experienced the phenomena of warped hierarchies and implemented a
technique, that profits from the separated data and behavior inheritance in Self, and intercepts the dangers of
multiple inheritance in this context. We have the “gut feelling” that these warped hierarchies are one of the
fundamental “missing links” in the transformation process that leads domain models to code.

REFERENCES
1. G. Blashek, Object-Oriented Programming with Prototypes., Springer Verlag, 1994
2. W. De Meuter, Agora: The Scheme of Object-Orientation, or, the Simplest MOP in the World. In J. Noble,

A. Taivalsaari, I. Moore, eds.: Prototype-based Programming: Concepts, Languages and Applications, 1998
. C. Dony, J. Malenfant, D. Bardou,“Classifying Prototype-based Programming Languages.”, In J. Noble,
A. Taivalsaari, I. Moore, eds.: Prototype-based Programming: Concepts, Languages and Applications, 1998
4. M. Fowler, Dealing with Roles., Collected papers from the PLoP ’97 and EuroPLoP ’97 Con-
ference, Technical Report wucs-97-34, Washington University Department of Computer Science;
http://www2.awl.com/cseng/titles/0-201-89542-0/apsupp/roles2-1.html, 1997
A. Goldberg, D. Robson, Smalltalk-80: The Language and Its Implementation., Addison-Wesley, 1983
. H. Lieberman, “Using prototypical objects to implement shared behavior in object oriented systems.”, In
N. Meyrowitz, ed.: Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA)., Volume 22, 214 - 223, 1987
7. R. Smith, D., Ungar, “Programming as an Experience: The inspiration for Self.”, In J. Noble, A. Taivalsaari,
1. Moore, eds.: Prototype-based Programming: Concepts, Languages and Applications, 1998
. W. Smith, “NewtonScript: Prototypes on the Palm.”, In J. Noble, A. Taivalsaari, I. Moore, eds.: Prototype-
based Programming: Concepts, Languages and Applications, 1998
9. A. Taivalsaari, A Critical View of Inheritance and Reusability in Object-oriented Programming. PhD thesis,
University of Jyvaskyla, Finland, 1993
10. D. Ungar, R. Smith, Self: The Power of Simplicity., In: Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), Volume 22, ACM Press, 1987
11. D. Ungar, C. Chambers, B. Chang, U. Holzle, Organizing programs without classes., Lisp and Symbolic
Computation 4, 223 - 242, 1991
12. Self Home Page, http://research.sun.com/research/self/.

w

> ot

oo

APPENDIX A. SELF CODE

A.1. myPoint objects

globals _AddSlots: (|myPoint]|).
traits _AddSlots: (|myPoint]|).

myPoint: (|parent* = traits clonable. x <- 3. y <- 4.
addPoint: point = ((copy x: x + point x)
y: y + point y)).

traits myPoint: (|parent* = traits clonable.
addPoint: point = ((copy x: x + point x)

70

lahire
70

y: y + point y)1|).
myPoint: (|parent* = traits myPoint. x . yl).

A.2. colouredPoint objects

globals _AddSlots: (|colouredPoint]).
traits _AddSlots: (|colouredPoint|).

traits colouredPoint: (|parent* = traits myPoint.
print = (°...7)1).

colouredPoint: (((myPoint _Mirror) createSubclass) reflectee)

_AddSlots: (|parent* = traits colouredPoint.
colour <- ’none’|).

71

lahire
71

72

lahire
72

Inheritance Decoupled:
It’s More Than Just Specialization

L. Robert Varney and D. Stott Parker

University of California at Los Angeles

ABSTRACT

The predominant design of object-oriented programming languages provides insufficient support for interface
abstraction and implementation inheritance, spreading implementation bias and impairing evolution. While
some ascribe such problems to inheritance and propose restraining or eliminating it, we trace the origin of
implementation bias to concrete instantiation dependencies, and propose interface-oriented programming (IOP)
as a solution. IOP decouples the inheritance mechanism from implementation binding, and provides an interface-
oriented form of inheritance that keeps implementation bias in check and is useful for both specialization and
adaptation.

1. INTRODUCTION

The implementation of inheritance has been problematic. Multiple inheritance has fallen out of favor, and
some recommend limiting inheritance to specialization,! or replacing it entirely with composition.? While
understandable, these viewpoints blame a useful concept for troubles caused by particular implementations.
Inheritance, especially multiple inheritance, is a powerful tool for incremental development, useful both for
subtyping (specialization) and subclassing (adaptation). The challenge is to implement it effectively, and this
position paper proposes a new way of thinking about inheritance and a new approach to its implementation.

The motivation for this work is not to refute these views but to solve specific practical problems: excess
implementation bias and poor support for incremental programming. Implementation bias is overdependence
on particular implementations, caused by poor interface abstraction whenever objects are explicitly or implicitly
instantiated in terms of class name references. These concrete instantiation dependencies in turn weaken incre-
mental programming mechanisms such as composition and inheritance by tightly coupling conceptually separable
concerns.

Our proposed solution is a new approach to language design and software engineering we refer to as interface-
oriented programming (IOP).?> TOP eliminates implementation bias by strictly separating interfaces from imple-
mentations and decoupling the inheritance mechanism from implementation binding. IOP also encourages new
forms of incremental programming that resolve traditional complications of inheritance and enable new levels of
automation.

The rest of the paper is organized as follows. Section 2 describes the problems of implementation bias and
non-incremental programming and outlines our solution, and section 3 provides an example. The status of this
work, and questions for discussion at the workshop are presented in section 4. Related work is highlighted at
appropriate points throughout the paper.

2. PROBLEMS AND A SOLUTION APPROACH

Existing proposals for controlling implementation bias move implementation dependencies around instead of
eliminating them. In particular, abstract factories* replace direct instantiation dependencies with indirect ones,
yielding dependencies on factory implementations. Similarly, parameterized components® and mixins®”® intro-
duce parameters for abstract base classes or contained objects, but shift the responsibility to correctly instantiate
these objects to the supplier of the actual arguments.

Authors’ e-mail: {varney,stott}@cs.ucla.edu

73

lahire
73

Available methods for incremental programming are also insufficient. The nesting of collaboration-oriented
designs®'01! forces designers to co-locate specifications of independent concepts, whereas separately specified
partial elements'?'3 must somehow be recombined to create consistent wholes. Some combination methods
require that factors be composed manually and then checked for consistency, and other methods such as aspect-
oriented programming provide automated support for composition but without any guarantees about what the
compositions mean.'

As a result of these limitations, we are faced with an unfortunate tradeoff in component design: encapsulate
implementation choices and accept inflexibility, or expose them in interface parameters and allow their influence
to spread. We contend that the root of the dilemma is strong coupling of interfaces with implementations,
coupling that impairs the usefulness of incremental programming techniques such as composition and inheritance.
Although others (e.g., Snyder!®) have called for the separate treatment of interface and implementation, and for
the separate handling of subtyping and subclassing, no language we know of separates these issues sufficiently
to resolve the dilemma. For example, the separate treatment of abstract interfaces as first-class entities in Java
and C# is tenuous, as these languages effectively merge interface and class hierarchies and force programmers
to identify concrete implementations by name in places where abstract interfaces would suffice conceptually.

An effective and scalable solution requires all program dependencies to be strictly interface-oriented, a seem-
ingly radical practice that is impossible given the languages of today. Abstract interfaces should be mandatory
and ubiquitous, not optional constructs used occasionally. To realize this principle demands that incremental
programming mechanisms such as inheritance and composition be decoupled from implementation binding, and
that concern separation mechanisms be complemented by facilities for automatic and consistent integration of
concerns, leading to a novel form of object-orientation we call interface-oriented programming (IOP).

3. INTERFACE-ORIENTED PROGRAMMING BY EXAMPLE

In this section we introduce selected elements of interface-oriented programming through an example in a lan-
guage we are developing called ARC (Abstractions, Representations, and Contexts). At the statement level ARC
is similar to Java, but it replaces Java’s interfaces, classes, and packages with ARC’s abstractions, representa-
tions, and contexts.* Only abstractions and representations will be considered further here. All types in ARC
are declared using abstraction names only — representation names are never used. A client that dynamically
instantiates an object does so using an abstraction, and a representation that inherits some base implementation
also does so using an abstraction. Thus, clients and inheritors never know what representations they are using.

To illustrate IOP we will now describe the design of a stack in ARC. Figure 1 shows the abstractions Stack<T>
and List<T>, defined as subtypes of Collection<T>, along with three partial representations of Stack<T>, RSc,
RSi, and RSall.

Representation RSc implements the basic methods of a stack in terms of an aggregated list object, and assumes
that the bulk operation pushAll is provided by some other partial representation. Furthermore, the method
constraint in RSc constrains the implementation of pushAll to be defined in terms of push (this is similar to the
information included in Lamping’s specialization interfaces'®). Since we are using composition here, we must
explicitly forward method calls to the appropriate methods of the list object. The list object is appropriately
encapsulated in RSc, preventing clients from misusing it.

In contrast, representation RSi uses interface-oriented implementation inheritance of List<T> to accomplish
the same effect more efficiently, both in terms of run-time overhead and notationally. Despite the fact that the
List<T> base is invisible to clients, no forwarding or adaptation is needed for the empty and contains methods,
as the versions provided by List<T> are unified by assumption with those required by Stack<T> (because they
come from an assumed common base abstraction, Collection<T>). Forwarding is needed to adapt the other
methods of Stack<T> to List<T>, however. This forwarding is needed due to the translation of one interface
to another, but it is still done in terms of self calls. Thus, this example illustrates use of inheritance for both
specialization and adaptation.

*It is debatable whether ARC’s differences warrant these name changes. But there are nontrivial differences, in
particular between ARC representations and Java classes, an we conservatively chose to change the names in order to
avoid confusion.

74

lahire
74

abs Collection<T> { rep RSc represents Stack<T> assumes Stack<T> {

boolean contains(T); List<T> list;
boolean empty(T); Stack<T>() { list = new List<T>(); }
control Iterator<T> elements(); boolean empty() { return list.empty(); }
} boolean contains(T x) { return list.contains(x); }
void push(T x) { list.addRear(x); }
abs List<T> extends Collection<T> { T top() { return list.rear(); }
List<T>(); T pop() { return list.removeRear(); }
void addFront(T); void pushAll(Collection<T> c) uses push(T);
void addRear(T); }
T removeFront();
T removeRear(); rep RSi represents Stack<T> assumes Stack<T>, List<T> {
T front(); Stack<T>() assumes List<T>() { }
T rear(); void push(T x) { addRear(x); }
} T top() { return rear(); }
T pop() { return removeRear(); }
abs Stack<T> extends Collection<T> { void pushAll(Collection<T> c) uses push(T);
Stack<T>(); }
void push(T);
void pushAll(Collection(T) c); rep RSall represents Stack<T> assumes Stack<T> {
T pop(); void pushAll(Collection<T> c) uses push(T) {
T top(); for (T x in c.elements()) push(x);
} }
}

Figure 1. ARC Abstractions and Representations for a Stack

The effect of an assumes clause in ARC is similar to that of an extends clause in Java — they both may
involve extension or overriding of some base implementation. However, an assumed base in ARC is an unspecified
representation of a specified abstraction, not an explicitly named implementation class.

Finally, representation RSall implements the bulk operation pushAll in terms of push. Since each represen-
tation only partially implements the Stack<T> interface, each must also assume Stack<T> as a basis. Multiple
representation fragments must therefore be combined to yield a whole Stack<T>, and these in turn must be
combined with some suitable representation of List<T> (not shown). We can now represent Stack<T> in two
general ways:

e RSc @ RSall @ rep(List<T>)

e RSi @ RSall @ rep(List<T>)

where @ indicates representation unification and the term rep(List<T>) requires further expansion, generating
even more possibilities when alternative ways of representing List<T> are substituted for it. RSall is combinable
with both RSc and RSi because its method constraints and base assumptions are unifiable. If RSall had
implemented pushAll in terms of something other than push it would not be consistent with RSi or RSc.

Our representations of Stack<T> do not and should not care about which of these representations List<T>
are chosen, and similarly, the client of Stack<T> should not care which of these representation combinations is
used to represent Stack<T>. Thus, when a client invokes:

Stack<T> s = new Stack<T>();

the instantiation is interpreted non-deterministically — all the client expects is that some valid representation of
Stack<T> will be used. Not only is the client freed from the burden of selecting a representation of Stack<T>,
the client can also ignore the selection of representations for other subordinate abstractions. This is in stark
contrast to existing approaches (such as mixins or parameterized components) that burden the client with the
need to select and compose a mutually consistent set of implementation fragments. Our approach for handling
this automatically relies on two new mechanisms: representation inference and representation selection.

Representation inference can be thought of as a new form of program linking, a step that occurs after
compilation and before run-time, generating for each interface a set of alternative complete representations
based on available partial representations. Partial representations must be unified in a way that provides a

75

lahire
75

complete implementation of all interface methods and also respects each partial representation’s local constraints
on assumed base types and unspecified methods. Representation selection is simply the means to select one of
the available alternatives. This mechanism amounts to a built-in factory mechanism and can be as simple
or as sophisticated as desired. We envision a number of approaches that are configurable and controllable at
the meta-level, from simple arbitrary selection of one of the available alternatives for each interface considered
separately, to context-dependent, evolutionary optimization of the overall set of representation choices for a
whole application.

4. SUMMARY AND DISCUSSION

In summary, IOP forces all program interdependencies to be expressed in terms of abstract interfaces, sepa-
rating the client of an interface from its implementation. Incremental specialization and adaptation also occur
using interface-oriented inheritance, separating derived implementations from their foundations. Partial imple-
mentation of interfaces is allowed, separating independent segments of an implementation from each other, and
encouraging encapsulation of a minimal set of design decisions in each component. This provides a form of
mixin-inheritance that separates subtyping from subclassing, but supports constructors and does not require
explicit composition of incremental implementation fragments.

Consistent assembly of complete components from partial ones relies on interface-oriented constraints defined
locally in terms of assumed base types and unspecified methods. But rather than use such constraints to check
the consistency of manually crafted compositions, IOP applies these constraints in a new form of program link-
ing called representation inference to automatically generate a set of candidate component assemblies from the
available parts, avoiding the fragile base class problem!” without imposing conservative constraints on inheri-
tance, and without exposing “specialization information” through client interfaces. Whole implementations of
abstract interfaces are then selected automatically from among the inferred alternatives using a user-controllable
representation selection mechanism.

At this point the detailed design of the ARC language and the implementation of the compiler and supporting
mechanisms are in progress. The basic questions to be addressed by this work include:

1. How should local representation constraints be expressed and used to synthesize complete representations?

2. What is the relationship between IOP and formal approaches to specification and verification — can model-
based specification approaches be extended to IOP?

3. A segmented object model is required — what are its costs?

4. How should representation selection be controlled?

Perhaps the most striking result is that a strictly interface-oriented approach forces programmers to delegate
to some other agent in the system the responsibility for two tasks normally in their purview, the tasks of
(1) composing complete implementations from incrementally defined ones, and (2) selecting suitable complete
implementations of an interface from among several alternatives.

In the end, when combined with support for representation inference and evolutionary representation selec-
tion, IOP can radically alter our approach to software development. Rather than craft systems to occupy single,
fixed points in some solution space, we can instead describe the system by articulating the space itself, and
defer to a separate agent the task of growing and adjusting the system in response to changes in the system’s
environment.

REFERENCES

1. M. Torgersen, “Inheritance is specialisation,” in Proceedings of the ECOOP Inheritance Workshop, 2002.

2. P. Frolich, “Inheritance decomposed,” in Proceedings of the ECOOP Inheritance Workshop, 2002.

3. L. R. Varney, “Interface-oriented programming,” Technical Report TR-040016, UCLA Department of Com-
puter Science, 2004.

76

lahire
76

10.
11.

12.

13.

14.

15.

16.
17.

. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.

D. Batory, J. Liu, and J. N. Sarvela, “Refinements and multi-dimensional separation of concerns,” in
Proceedings of SIGSOFT ESEC/FSE, pp. 48-57, 2003.

G. Bracha and W. Cook, “Mixin-based inheritance,” in Proceedings of ECOOP/OOPSLA, 1990.

M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and mixins,” in Proceedings of ACM Conference on
Principles of Programming Languages (POPL), pp. 171-183, 1998.

D. Ancona, G. Lagorio, and E. Zucca, “Jam: A smooth extension of java with mixins,” in Proceedings of
ECOOP, pp. 154-178, 2000.

E. Ernst, “Family polymorhpism,” in Proceedings of ECOOP, pp. 303-326, 2001.

M. Mezini and K. Ostermann, “Conquering aspects with caesar,” in Proceedings of AOSD, 2003.

M. Veit and S. Herrmann, “Model-view-controller and object teams: A perfect match of paradigms,” in
Proceedings of Aspect-Oriented Software Development, 2003.

C. Prehofer, “Feature-oriented programming: A fresh look at objects,” in Proceedings of ECOOP, pp. 419—
443, 1997.

N. Schirle, S. Ducasse, O. Nierstrasz, and A. Black, “Traits: Composable units of behavior,” in Proceedings
of ECOOP (to appear), 2003.

J. Aldrich, “Open modules: Reconciling extensibility and information hiding,” in Proceedings of Workshop
on Software Engineering Properties for Languages for Aspect Technologies (SPLAT 04), 2004.

A. Snyder, “Encapsulation and inheritance in object-oriented programming languages,” in Proceedings of
OOPSLA, pp. 3845, 1986.

J. Lamping, “Typing the specialization interface,” in Proceedings of OOPSLA, pp. 201-214, 1993.

L. Mikhajlov and E. Sekerinski, “A study of the fragile base class problem,” in Proceedings of ECOOP,
1998.

77

lahire
77

