
HAL Id: lirmm-00109164
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109164

Submitted on 18 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Consistencies in SAT
Christian Bessiere, Emmanuel Hébrard, Toby Walsh

To cite this version:
Christian Bessiere, Emmanuel Hébrard, Toby Walsh. Local Consistencies in SAT. SAT: Theory
and Applications of Satisfiability Testing, May 2003, Santa Margherita Ligure, Italy. pp.299-314,
�10.1007/978-3-540-24605-3_23�. �lirmm-00109164�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109164
https://hal.archives-ouvertes.fr

Local Consistencies in SAT

Christian Bessière1, Emmanuel Hebrard2, and Toby Walsh2

1 LIRMM-CNRS, Université Montpellier II
bessiere@lirmm.fr

2 Cork Constraint Computation Centre, University College Cork
{e.hebrard, tw}@4c.ucc.ie

Abstract. We introduce some new mappings of constraint satisfaction
problems into propositional satisfiability. These encodings generalize most
of the existing encodings. Unit propagation on those encodings is the
same as establishing relational k-arc consistency on the original prob-
lem. They can also be used to establish (i,j)-consistency on binary con-
straints. Experiments show that these encodings are an effective method
for enforcing such consistencies, that can lead to a reduction in runtimes
at the phase transition in most cases. Compared to the more traditional
(direct) encoding, the search tree can be greatly pruned.

1 Introduction

Propositional Satisfiability (SAT) and Constraint Satisfaction Problems (CSPs)
are two closely related NP-complete combinatorial problems. There has been
considerable research in developing algorithms for both problems. Translation
from one problem to the other can therefore profit from the algorithmic im-
provements obtained on the other side. Enforcing a local consistency is one of
the most important aspect of systematic search algorithms. For CSPs, in par-
ticular, enforcing arc consistency is often the best tradeoff between the amount
of pruning and the cost of pruning. The AC encoding [12] has the property that
arc consistency in the original CSP is established by unit propagation in the
encoding [10]. A complete backtracking algorithm with unit propagation, such
as DP [6], therefore explores an equivalent search tree to a CSP algorithm that
maintains arc consistency. Likewise, DP on the Direct encoding behaves as the
Forward Checking algorithm which maintains a weaker form of Arc Consistency
[17]. In this paper we show that there is a continuity between direct and support
encodings, and following this line, many other consistencies can be simulated by
unit propagation in the SAT encoding, for any constraint arity and all in optimal
worst case complexity.

The rest of the paper is organized as follows. In section 2 we present the
basic concepts used in the rest of the paper. In section 3 we introduce a family
of encodings called the k-AC encodings where k is a parameter. These encodings
enable a large family of consistencies, the so called relational k-arc-consistency
[8] to be established by unit propagation on the SAT encoding. They work
with any constraint arity. Section 4 focuses on binary networks, and shows that

E. Giunchiglia and A. Tacchella (Eds.): SAT 2003, LNCS 2919, pp. 299–314, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

300 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

these encodings can also be used to establish any (i,j)-consistency (another large
family of consistencies [9]). We also show that unit propagation on the k-AC
encodings can achieve the given level of consistency in optimal time complexity
in all cases. Section 5 introduces mixed encodings that combine previous ones
to perform a high level of filtering only where it is really needed. And finally,
in section 6, we present some experiments, that assess the improvement of these
encodings in comparison with the direct encoding. The results also show the
ability of this approach to solve large and hard problems by comparing it with
the best algorithms for CSPs.

2 Background

2.1 Constraint Satisfaction Problem (CSP)

A CSP P = (X ,D, C) is a set X = {X1, . . . , Xn} of n variables, each taking
a value from a finite domain D(X1), . . . , D(Xn) elements of D, and a set C
of e constraints, d is the size of the largest domain. A constraint CS , where
S = {Xi1 , . . . , Xia} ⊂ X , is a subset of the Cartesian product of the domains
of the variables in S, CS ⊂ D(X1) × D(X2) × . . . × D(Xa) that denotes the
compatible values for the variables in S. The incompatible tuples are called
nogoods. We are calling S, the scope of CS and |S| = a its arity. An instantiation
I of a set T of variables is an element of the Cartesian product of the domains of
the variables in T . We denote I[A] for the projection of I onto the set of variables
A, and CS [A] the projection of the constraint CS onto A. An instantiation I is
consistent if and only if it satisfies all the constraints, that is, ∀CS ∈ C such that
S ⊆ T, I[S] ∈ CS . A solution is a consistent instantiation over X .
Let T and S be two distinct sets of variables T, S ⊂ X , and I an instantiation
of T which is consistent. A support J of I on S is an instantiation J of S such
that I ∪ J is consistent. For an instantiation I, if there exists a set S such that
I has no support on S, then I doesn’t belong to any solution.

2.2 Direct Encoding

The direct encoding [17] is the most commonly used encoding of CSPs into
SAT. There is one Boolean variable Xv for each value v of each CSP variable X .
Xv = T means the value v is assigned to the variable X . Those variables appear
in three sets of clauses :
At-least-one clause : There is one such clause for each variable, and their
meaning is that a value from its domain must be given to this variable.
Let X be variable and D(X) = {v1, v2, . . . , vn}, then we add the at-least-one
clause : Xv1 ∨ Xv2 ∨ . . . ∨ Xvn.
At-most-one clause : There is one such clause for each pair of values for each
variable, and their meaning is that this variable cannot get more than one value.
Let vi, vj ∈ D(X), i �= j, then we add the at-most-one clause : ¬Xvi ∨ ¬Xvj .
Conflict clause : There is one such clause for each nogood of each constraint,
and their meaning is that this tuple of values is forbidden.

Local Consistencies in SAT 301

Let CXY Z be a constraint on the variables X, Y, Z and [u, v, w] ∈ D(X)×D(Y)×
D(Z) an instantiation forbidden by CXY Z ([u, v, w] /∈ CXY Z), then we add the
conflict clause : ¬Xu ∨ ¬Y v ∨ ¬Zw.

2.3 AC Encoding

The AC encoding [12] enables a SAT procedure to maintain arc-consistency
during search through unit propagation. It encodes not only the structure of
the network, but also a consistency algorithm used to solve it. It differs from
the direct encoding only on the conflict clauses which are replaced by support
clauses, the others clauses remain unchanged.
Support clause : Let X, Y be two variables, v ∈ D(X) a value of X and
{w1, . . . , wk} the supports of X = v on Y , then we add the support clause :
¬Xv ∨ Y w1 ∨ Y w2 ∨ . . . ∨ Y wk.
This clause is equivalent to Xv → (Y w1 ∨ Y w2 ∨ . . . ∨ Y wk) which means : as
long as Xv holds (i.e, Xv �= False, that is “the value v remains in X ’s domain”),
then at least one of its support must hold. Therefore when all the supports of
X = v are falsified Xv is itself falsified.

3 Generalisation of the AC Encoding

The AC encoding can only be applied to binary networks, because support
clauses encode the supports of a single variable on another single variable. Our
goal is to encode any kind of support that follows from the definition in sec-
tion 2.1. The new encoding we introduce here, k-AC encoding, represent supports
on subsets S of variables of any size, for an instantiation of another subsets T of
any size. Since a literal stands for an assignment, an instantiation (or a support)
of several variables corresponds to a conjunction of positive literals. A k-AC
clause represents the implication between the instantiation and its supports: if
the instantiation holds, one of the supports must hold. Let [v1, . . . , vp] be a sup-
port on X1, . . . , Xp of a given instantiation on other variables. The conjunction
that encodes this support is (X1v1∧ . . .∧Xpvp). To keep the encoding in clausal
form, we need then to add an extra variable, say s, for this support and the
following equivalence, s ↔ (X1v1 ∧ . . . ∧ Xpvp) which result in the following
equivalence clauses: (¬s∨X1v1), . . . , (¬s∨Xpvp) and (¬X1v1∨ . . .∨¬Xpvp ∨s).
We call s support-variable. If the support is unit (say Y = v), then there is no
need for an extra variable, and the support-variable is the corresponding boolean
variable (Y v).
k-AC clause : Let CS be a constraint, T = {X1, . . . Xk} ⊂ S be a set of
k variables, I = [v1 ∈ D(X1), . . . vk ∈ D(Xk)] an instantiation of T and
{s1, . . . , sm} the supports of I on S − T , then we add the k-AC clause :
¬X1v1 ∨ . . . ∨ ¬Xkvk ∨ s1 ∨ s2 . . . ∨ sm.
This clause is equivalent to I → (s1 ∨ s2 ∨ . . . ∨ sm) which means : as long as I
holds then at least one of its support must hold. Therefore when all the supports

302 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

of I are falsified I is itself falsified i.e, the k-AC clause is reduced to the conflict
clause of length k forbidding I.

In figure 3, we show the four possible k-AC encodings for a ternary constraint.
Note that, in the particular cases where the set of support variables is a singleton
or the empty set, in other words, a−k = 1 or a−k = 0, the conjunctions standing
for the supports are unit and we do not need to add extra variables.

X Y Z
a a b
a b b
b a a
b a b

⇒encoding

0-AC encoding 3-AC encoding
T → (S1 ∨ S2 ∨ S3 ∨ S4)∧ ((Xa ∧ Y a ∧ Za) → F)∧
(Xa ∧ Y a ∧ Zb) ↔ S1∧ ((Xa ∧ Y b ∧ Za) → F)∧
(Xa ∧ Y b ∧ Zb) ↔ S2∧ ((Xb ∧ Y b ∧ Za) → F)∧
(Xb ∧ Y a ∧ Za) ↔ S3∧ ((Xb ∧ Y b ∧ Zb) → F)
(Xb ∧ Y a ∧ Zb) ↔ S4

2-AC encoding 1-AC encoding
((Xa ∧ Y a) → Zb)∧ (Xa → (S1 ∨ S2)∧
((Xa ∧ Y b) → Zb)∧ (Xb → (S3 ∨ S1)∧
((Xb ∧ Y a) → (Zb ∨ Za))∧ (Y a → (S4 ∨ S5 ∨ S6))∧
((Xb ∧ Y b) → F)∧ (Y b → S4)∧
((Xa ∧ Za) → F)∧ (Za → S7)∧
((Xa ∧ Zb) → (Y a ∨ Y b))∧ (Zb → (S7 ∨ S8 ∨ S9))∧
((Xb ∧ Za) → Y a)∧ ((Y a ∧ Zb) ↔ S1)∧
((Xb ∧ Zb) → Y a)∧ ((Y b ∧ Zb) ↔ S2)∧
((Y a ∧ Za) → Xb)∧ ((Y a ∧ Za) ↔ S3)∧
((Y a ∧ Zb) → (Xa ∨ Xb))∧ ((Xa ∧ Zb) ↔ S4)∧
((Y b ∧ Za) → F)∧ ((Xb ∧ Za) ↔ S5)∧
((Y b ∧ Zb) → Xa) ((Xb ∧ Zb) ↔ S6)∧

((Xb ∧ Y a) ↔ S7)∧
((Xa ∧ Y a) ↔ S8)∧
((Xa ∧ Y b) ↔ S9)

Table 1. First table: a ternary constraint involving the variables X, Y, Z, the
allowed tuples are given. Second table: four possible k-AC encodings of this
constraint, T = True and F = False.

The k-AC clauses are a generalisation of support clauses in two different ways.
First they capture a larger family of consistencies, relational k-arc-consistency
(section 3) and (i, j)-consistency (section 4). Second they work for any constraint
arity. Note that support clauses are 1-AC clauses for binary constraints, and
conflict clauses are a-AC clauses for constraints of arity a. For instance, let CXY Z

be a constraint on the variables X , Y and Z. If I = {X = u, Y = v, Z = w} is an
allowed tuple, then the corresponding 3-AC clause is (Xu ∧ Y v ∧ Zw) → True
and is useless. If I is a nogood, then we have (Xu ∧ Y v ∧ Zw) → False, which
is a conflict clause (¬Xu∨¬Y v ∨¬Zw). Direct and support encodings are then
particular cases of k-AC encoding.

Recall that in a CSP, a nogood is a forbidden set of assignments, ¬(X1 =
v1 ∧ . . . ∧ Xi = vi). And that a Boolean variable correspond to an assignment,
the atom Xivi represents Xi = vi. For the theorems and proofs below, the word
variable will refer to a CSP variable, assignment to a Boolean variable of the
encoding and support to a conjunction of assignments in the conclusion of a
k-AC clause. An interpretation I is a function that associates a value in {0, 1}

Local Consistencies in SAT 303

to the atoms of a set of clauses B. I is a model (I(B) = True), iff all the clauses
in B are satisfied by I.

Theorem 1 (Correctness and completeness of the k-AC Encoding.)
I is a model of the set with the at-least-one, at-most-one, and k-AC clauses,
iff the assignment such that a variable X take a value v iff I(Xv) = T is a
solution of the original constraint network.

Proof: Suppose that all the assignments of a nogood N are satisfied.

N = ¬(X1v1 ∧ X2v2 ∧ . . .Xnvn)

Let C be the k-AC clause which premiss P is a subset of this nogood

C = (X1v1 ∧X2v2 ∧ . . . Xkvk) → (s1 ∨ s2 ∨ . . . sm), sj = (Xk+1jk+1 ∧ . . .Xnjn)

and let S be the rest of this nogood, S = N−P . This premiss is satisfied and then
the conclusion must be satisfied. Now recall that at-least and at-most clauses
ensure that one and only one assignment per (CSP) variable is satisfied. All the
supports in C refer to the same variables but are by definition different from
S by at least one assignment, (say Xivi is the assignment in the nogood, and
Xiji is the assignment in the support). Since, for this variable, Xivi is satisfied,
therefore Xiji is not, and then the whole conclusion is not satisfied.

Let S be a solution of the original constraint network, and let I be the
assignment in which I(Xiv) = T iff, in S, the value v is given to the variable Xi.
S gives one and only one value to each variable, the at-most-one and at-least-
one clauses are thus satisfied. Without loss of generality, let C be a k-AC clause
which premiss P is an assignment on a set R and conclusion are supports on a
set T . If S is a solution then S[R ∪ T] is consistent and then S[T] is a support
of S[R]. Either P �= S[R] and then C is satisfied since the premiss is falsified, or
S = S[R] and then S[T] is one of its support and belongs to C’s conclusion. C
is then satisfied since both premiss and conclusion are satisfied. �

Unit propagation on the k-AC Clauses corresponds exactly to enforcing re-
lational k-arc-consistency. Relational arc-consistency [8] extends the concept of
local consistency, which usually concerns variables, to constraints. A constraint
is relationally arc-consistent if any instantiation which is allowed on a subset
of its variables extends to a consistent instantiation on the whole. Relational
k-arc-consistency is the restriction of the definition above to sets of variables of
cardinality k.

Definition 1 (Relational k-arc-consistency.). Let R = (X ,D, C) be a con-
straint network, CS a constraint over the set of variables S ⊂ X . CS is re-
lationally k-arc-consistent iff ∀A ⊂ S such that |A| = k and ∀I a consistent
instantiation on A, I can be extented to a consistent instantiation on S in rela-
tion to CS . This means : if CS [A] is the projection of the relation CS on A and
I is consistent on A, therefore I ∈ CS [A].
A constraint network is relationally k-arc-consistent iff all its constraints are
relationally k-arc-consistent.

304 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

A k-AC clause is an implication which premiss is a conjunction that stands for
the k-instantiation I, and conclusion is a disjunction of supports s1∨s2∨. . .∨sm.
The k-AC clause for I is H = I → s1∨s2∨ . . .∨sm. Relational k-arc-consistency
ensures that each consistent instantiation of k variables of a constraint can be
extented to all the variables of that constraint. In other words, if an instantiation
doesn’t satisfy this assertion, it is removed from the corresponding constraint, i.e,
this tuple is now explicitly forbidden. In the case of the k-AC clauses, when all
the supports (which are linked to the conjunction of assignments they represent
by equivalence clauses), are falsified, then the premiss must be falsified and this
is exactly the nogood corresponding to the k-instantiation, H = ¬I. To prove the
equivalence between unit propagation on those encodings, and relational k-arc
consistency on the original problem we first recall some definitions given in [1]
and slightly modified for our purpose.

A CSP is said to be empty if at least one of its variables has an empty domain
or at least one of its constraints is empty, i.e, forbids all assignments.

We denote sat2csp(P) the transformation of a SAT-encoded CSP into a
CSP consisting of a variable Xi with a domain D(Xi) = [v1, . . . , vd] for each at-
least-one clause Xiv1 ∨ . . . ∨ Xivd in P , and a constraint forbidding the nogood
N = (X1 = v1 ∧ . . . ∧ Xk = vk) for each conflict clause (¬X1v1 ∨ . . . ∨ ¬Xkvk)
(or support clause reduced to a conflict clause by unit propagation).

First we show that the relational k-arc consistent closure of a CSP P , writ-
ten r-k-AC(P) is empty iff the k-AC encoding of P has an empty image under
sat2csp, that is, sat2csp(k-sat(P)) is empty. We ignore the isuue of discov-
ering the emptyness. This is trivial, both in the original problem and in the
encoding, when the empty constraint arity is 1, whereas it is not for other ar-
ities, though it remains polynomial. Usually, this will be quickly discovered,
providing that the empty constraint is small and that the branching heuristic
chooses first the variables of this constraint.

Second we prove that, assuming the same branching choices, this equivalence
is maintained at each node of the search tree by unit propagation in the encod-
ing. As a corollary, unit propagation on k-AC encoding prunes the search tree
equivalently to relational k-rac consistency on the original problem.

Lemma 1 (P) is empty after enforcing relational k-arc consistency
iff sat2csp(k-sat(P)) is empty.

Proof: The relational k-arc consistent closure of P contains all the nogoods
of length k forbidding k-instantiations that don’t have any support on the rest
of the constraint they belong to. By definition, the k-AC clause for such an
instantiation is the conflict clause of length k corresponding to the nogood. The
later therefore belongs to sat2csp(k-sat(P)). Moreover, all nogoods of length
k are added to the relational k-arc consistent closure if and only if they are not
supported. Therefore, for any nogood N of length k, N ∈ r-k-AC(P) iff N ∈
sat2csp(k-sat(P))

Beside, if P is emptied by relational k-arc consistency, then the empty con-
straint arity is always k, since only nogoods of size k are added during the
process. �

Local Consistencies in SAT 305

The proof of Lemmas 1 is based on the fact that the supports of an in-
stantiation are equivalent in the encoding and in the orginal problem. Unit
propagation ensures that this is the case as well during search. We consider
a relationally k-arc consistent CSP P , an assignment X = v and the in-
duced subproblem assign(X = v,P). In the SAT encoding this corresponds
to assign(Xv = T ,k-sat(P)). We prove that an instantiation looses a support
because of an assignment in the CSP if and only if the k-AC clause of this in-
stantiation looses the same support in the encoding by unit propagation of the
truth assignment.

Lemma 2 If an instantiation J , support of another instantiation I in P is not
a support anymore in assign(X = v,P) for relational k-arc consistency, then
the support-variable sJ of the corresponding k-AC clause is set to False after
unit propagation.

Proof:
Without loss of generallity, let I be an instantiation on a set T of k variables

of a constraint CS . Let J be a support of I for CS in P , such that J is not a
support of I in assign(X = v,P).

Implicitly, after the assignment X = v, all other values in D(X) are removed.
If J is not a support, it means that ∃X ∈ T−S, such that J [X] has been removed
from its domain (J [X] �= v).

In the encoding, the assignment Xv = T , propagated to the at-most-one
clauses yelds the assignments Xw = F for all w �= v. Let sJ be the proposition
standing for the support J , then the equivalence clause (¬sJ ∨ J [X]) gives the
unit clause ¬sJ , which is propagated to the k-AC clause. Consequently, the
support-variable sJ is set to False (it is not a “support” in the encoding either).
At any point of the resolution, a support-variable sJ belongs to the conclusion
of a k-AC clause (is not assigned to False) iff its corresponding support J holds
in the constraint network. �

Lemmas 1 establishes that if the supports are the same in the original and in
the encoded problem, then the problem is empty iff the reformulation is empty.
Lemma 2 shows that this is the case during search.

Theorem 2 Performing full unit propagation on at-least-one, at-most-one and
k-AC clauses during search is equivalent to maintain relational k-arc-consistency
on the original problem.

From this follows a strict equivalence between the search trees of an algo-
rithm that maintains relational k-arc consistency in the original problem, and
an algorithm that enforces unit propagation on the reformulation.

3.1 Complexity of k-AC Encoding

We assume that n is the number of variables, d is the size of the domains, e is
the number of constraints and a denotes their arity. We can ignore the at-most

306 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

and at-least clauses : there are n at-least clauses each containing d literals, and
nd2 at-most clauses, which are binary. This O(nd2) space complexity is in all
cases lower than the worst space complexity of the k-AC clauses. We therefore
focus on the size of the k-AC clauses themselves.

The total number of k-AC clauses is bounded by e(a
k)dk. We need to cover all

the constraints (e). For each constraint, we consider all the subsets of k variables
of that constraint ((a

k)). And for each subset, we consider all the instantiations
(dk). The total number of literals for each k-AC clause is bounded by k +(3(a−
k) + 2)(da−k − 1). The premiss contains k literals, and the conclusion at most
da−k − 1. Furthermore, if a − k > 1, there are also (da−k − 1)(3(a − k) + 1)
additional literals from the equivalency clauses: Each one gives 1 clause of size
a−k+1 and a−k clauses of size 2. The space complexity is then O(edk) clauses
of O(d(a−k)) literals, which is still O(eda) for any arbitrary constraint and any k.
Note that the space complexity of the reformulation and of the original problem
are the same. Since unit propagation can be established in linear time, the time
complexity is also in O(eda), which is optimal worst case time complexity.

4 (i, j)-Consistencies in SAT

In addition to relational k-arc-consistency, k-AC clauses allow us to enforce
another very common family of local consistencies (specifically, (i, j)-consistency
[9]) by adding the joins of certain constraints and performing the k-AC encoding
on this augmented problem.

Definition 2 ((i, j)-Consistency.). A binary CSP is (i, j)-consistent
iff ∀Ei, Ej two sets of i and j distinct variables, any consistent assignment on
Ei is a subset of a consistent assignment on Ei ∪ Ej.

This family includes many well known consistencies.

– Arc Consistency (AC) corresponds to (1,1)-consistency.
– Path Consistency (PC) corresponds to (2,1)-consistency.
– Path Inverse Consistency (PIC) corresponds to (1,2)-consistency.

If on binary networks, arc consistency is often the best choice, higher level of
filtering may sometimes be useful. For instance, path consistency is used in tem-
poral reasoning. However, implementing algorithms to maintain other consis-
tency, and moreover, combining this with improvements like (conflict directed)
backjumping and learning requires a lot of work. With our approach, just by
setting two parameters, (k and the size of the subsets to consider) and applying
a SAT solver to the resulting encoding, we can solve the problem with the chosen
consistency and all the other features of the SAT solver.

Definition 3 (Join of Constraints.). Let CS1, CS2 be two constraints, the
join CS1 � CS2 is the relation on S1 ∪ S2 containing all tuples t such that
t[S1] ∈ CS1 and t[S2] ∈ CS2.

Local Consistencies in SAT 307

Theorem 3 Enforcing (i, j)-consistency is equivalent to enforcing relational i-
arc-consistency on the join of all constraints involved in a set of i + j variables,
for each of them.

Proof: Let Ei be a set of i variables, If I, a consistent instantiation on Ei,
is (i, j)-inconsistent, then there exists a set Ej of j variables such that ∀IJ a
consistent instantiation on Ei ∪Ej , IJ [Ei] �= I. Let C be the constraint induced
by the join of all the constraints involved in Ei∪Ej . C is the set of all the allowed,
i.e, consistent, instantiations on Ei ∪ Ej , but I is consistent and I /∈ C[Ei],
therefore C is relationally i-arc-inconsistent (see def 1). Conclusion : if I is (i, j)-
inconsistent, then for any set E of i + j variables containing the variables of I,
the constraint obtained by joining all constraints which scopes are subsets of E
is relationally i-arc-inconsistent. �

The space complexity results of section 3 also apply here, but the number of
constraints is equal to the number of subsets of i + j vertices in the constraint
graph, i.e, O(ni+j), and a = i + j. Therefore the worst case space complexity is
O(ni+jdi+j), and so is the worst case time complexity. This is again optimal.

5 Mixed Encoding

There is a clear relation between the tightness of a constraint and the perfor-
mance of DP on that constraint encoded with the direct or a k-AC encoding.
Consider the binary not equal constraint. It can be encoded by d conflict clauses
of size 2 with the direct encoding, whilst 2d clauses of size d are required in the
AC-encoding even though AC propagation in not equal doesn’t achieve much
pruning. On the other hand, consider the binary equal constraint. This is en-
coded with (d−1)2 binary clauses in the direct encoding, while you need only 2d
binary clauses in the AC encoding, and you can expect a lot of AC propagation.
The space complexity and the level of propagation is thus linked to the tight-
ness of the constraint. One strategy therefore is to adapt the encoding to the
constraint’s tightness, i.e, using the direct encoding when the constraint is loose
and the AC encoding when it is tight. Moreover we can use, for each constraint,
the k-AC clause with the best “adapted” k. The principal issue is to know a
priori how to pick k. The notion of m-looseness [14] give us a way to choose
among the different k.

Definition 4 (m-looseness). A constraint relation R of arity a is called m-
loose if, for any variable Xi constrained by R and any instantiation I of the
remaining a− 1 variables constrained by R, there are at least m supports of I to
Xi that satisfy R.

Theorem 4 (van Beek and Dechter[14]) A constraint network with do-
mains that are of size at most d and relations that are m-loose is relation-
ally (k,(� d

d−m − 1))-consistent for all k.

Proof: See [14]. �

308 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

We can restrict this to relational (k,1)-consistency (that is relational k-arc-
consistency) and then we have the relation � d

d−m − 1 ≥ 1 which is reduced
to : m ≥ d

2 . This means that, given a subset of variables, if all the relations
that constrain these variables are d

2 -loose or more (every instantiations of this
subset minus one variable have at least d

2 supports on this variable) then these
constraints are relationally k-arc-consistent for any k. Therefore enforcing rela-
tional k-arc-consistency will not give any pruning, at least initially. In addition,
the direct encoding would be more compact for such constraints. This suggests
to use support clauses whenever the number of supports is lower than d

2 and
conflict clauses otherwise. Moreover, for a given constraint arity a, the choice is
now extented to any k-AC clause with k between 1 and a. To make a choice, we
associate a treshold Tk on the number of supports above which we choose (k+1)-
AC clauses rather than k-AC to encode a particular instantiation. To compute
the mixed encoding of a given constraint we use the following algorithm:

First we consider all the instantiations of size 1 (all the values of all the
variables), and for each of them we count the number of supports (of size a−1),
if this number is less than T1 then we add the corresponding 1-AC clause. In
a second step, we consider all the instantiations of size 2 containing a non-yet-
encoded instantiation of size 1, if the number of supports of this instantiation is
less than T2 we encode it with a 2-AC clause, and so on for a steps.

We propose Ta−1 = d
2 whilst we don’t have yet any sound value for Tk with

k less than a − 1.

Theorem 5 (Correctness and completeness of the mixed encoding.)
I is a model of the set containing the at-least-one, at-most-one, and any
k-AC clauses, according to the rules above, iff I is a solution of the constraint
network.

Proof: By definition, all the nogoods have at least one k-AC clause which
premiss is one of its subsets, then theorem 1 (correctness) can be applied.

Theorem 1 says that k-AC encoding is complete for any k, therefore, k-AC
clauses are satisfied by I, and so is any combination of them. �

5.1 Complexity

Theorem 6 The mixed encoding (k = [1, 2]) requires less than 3
2d2 literals to

encode a binary constraint, This limit can be asymptoticly reached.

Proof: Let us consider the Boolean matrix of the constraint. Let r (resp c) be
the number of rows (resp colomns encoded with support clauses, 0 ≤ r, c ≤ d.
These clauses have each less than d/2 literals, so we have (r+ c)d

2 literals for the
supports clauses. There are (d − r)(d − c) elements of the matrix wich are not
covered by the support clauses. Besides, there are r(d− c) and l(d− r) elements
which are covered by only one support clause. On each row/colomn containing
these elements, there are at most d

2 0, so at most, half of them are 0. For each
0 we need a conflict clause of 2 literals, then, to encode these elements, we need

Local Consistencies in SAT 309

(r + c)d
2 − rc + d2 literals. If c > d

2 , then this number of literals increase when r

decrease, and if c < d
2 , then it increase with r. This number is maximized when

r is max and l min or vice versa. The worst case is then r = d and c = 0, in that
case there are 3

2d2 literals.

Let C be a constraint on variables with odd domains and relation matrix
as given in the margin (that is a checkerboard of 0 and 1, plus a full
column of 0 and a full but one row of 1). The rows are all but one encoded
with support clauses, half of this clauses are of size � d

2
� and the other half

are of size � d
2
�, the last row is encoded with a nogood. All the colomns

but one are encoded with � d
2
� conflict clauses, the remaining one with a

unary support clause. That is 3 + � d
2
�2 + � d

2
� × � d

2
� + � d

2
� × 2× (d − 1)

literals, which is asymptoticly equal to 3
2
d2 �.

1 0 1 . . . 0 0

0 1 0 . . . 1 0

1 0 1 . . . 0 0

. 0

. 0

0 1 0 . . . 1 0

1 1 1 . . . 1 0

6 Experimental Results

We have performed a set of experiments to compare the different encodings.
Section 6 and 1 give a concrete idea of the improvement, in term of pruning and
cpu time, in comparison with direct encoding. In section 1 we also show that
mixed encodings are an even better way to encode heterogeneous or structured
problems. And finally, in section 1 we compare this approach with the state of the
art in CSP. For all the random instances, we used Bessiere and Frost’s random
generator. The CSPs are defined by 5 parameters, the number of variables, the
size of the domains, the density (i.e, the number of constraints), their arity
and their tightness (i.e, the number of nogoods per constraint). The four first
parameters are fixed and the tightness is given on x axis, the y axis giving the
cpu time or the number of backtracks. We generally focused on results at the
phase transition, when the number of satisfiables instances is the closest to 50%.
We used Berkmin SAT solver [11] on generated cnf files.

k-AC Encodings. This experiment involves 1-AC, 2-AC and direct encoding on
the following class of ternary networks, 30 variables, 10 values, 60 constraints. 1-
AC and 2-AC encodings need both 5 times less backtracks than direct encoding3

at the phase transition. But only 2-AC encoding translate this greater filtering
into a cpu time reduction (again a factor 5). We can explain this by the amount
of propagations needed to perform the same filtering in 1-AC encoding, because
of the extra variables.

(i,j)-Encodings. This experiment involves PIC encoding, AC encoding and di-
rect encoding on two classes of networks. A sparse class, 150 variables, 15 values,
3 experiments with Chaff showed an even greater difference, about a factor 10 for

backtracks, and 15 for cpu time.

310 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

 0.001

 0.01

 0.1

 1

 10

 100

 400 500 600 700 800 900

DIRECT
1-AC
2-AC

(a) cpu time

 1

 10

 100

 1000

 10000

 100000

 400 500 600 700 800 900

DIRECT
1-AC
2-AC

(b) number of backtracks

Fig. 1. Cpu time and number of backtracks of BerkMin on GAC (1-AC), 2-AC
and Direct (3-AC) encoding.

350 binary constraints, and a dense one, 70 variables, 10 values, 310 binary con-
straints. According to the theory, PIC prunes even more the search tree than
AC, (i.e, the backtracks are less numerous). However, on dense networks, where
the gain in pruning is more evident, the amount of extra variables, as previously
for 1-AC encoding, slow down the resolution.

Mixed Encoding. To emphasize the benefits of the mixed encoding on more
structured problem, we used the Instruction Scheduling Problem, introduced
in [15], The problem is to find a minimum length instruction schedule for
a basic block of instructions (a straight-line sequence of code with a single
entry point) subject to precedence, latency, and resource constraints. Basic
blocks are represented as DAG (Direct Acyclic Graph). To model this prob-
lem, van Beek used one variable for each instruction, its domain represents
the possible positions in the total order we have to find. The constraints are:
instructioni < instructionj + k for each arc ij labelled with k in the DAG
(instructionj must wait at least k cycles after instructioni), and an AllDiff con-
straint on all the variables. The domains are initiallized with a lower bound on
the number of cycles required, and the instance is solved, if no solution is found
they are incremented and the instance is solved again. The first solution encoun-
tered is the optimal solution. Each point of the figure 1 represents the runtime
Berkmin needed to find the optimal solution on the mixed encoding (x axis) and
AC encoding (y axis). (all instances have the same parameters : 20 instruction,
40 constraints of latency and a latency between 1 and 3 inclusive). Figure 1
compares the mixed and direct encodings. The mixed encoding is almost always
better in cpu-time, compared to the direct or the AC encoding. The number of
backtracks is nearly the same as in AC encoding, while the space complexity is
greatly reduced (mostly because of the alldiff constraint).

Local Consistencies in SAT 311

 0.01

 0.1

 1

 10

 100

 100 120 140 160 180 200

DIRECT
PIC
AC

(a) cpu time, sparse networks

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 120 140 160 180 200

DIRECT
PIC
AC

(b) backtracks, sparse networks

 0.001

 0.01

 0.1

 1

 10

 100

 20 25 30 35 40 45 50 55 60 65 70

DIRECT
PIC
AC

(c) cpu time, dense networks

 1

 10

 100

 1000

 10000

 100000

 20 25 30 35 40 45 50 55 60 65 70

DIRECT
PIC
AC

(d) backtracks, dense networks

Fig. 2. Cpu time and number of backtracks of BerkMin on Direct, AC and PIC
encoding for two classes of networks.

Comparison with the State of the Art in CSP. We also measured the
efficiency of this approach in comparison with the state of the art for CSP
solvers. We have done these comparisons on the following classes:

– (a) binary sparse : ¡180 variables, 15 values, 450 constraints, 147 nogoods¿.
– (b) binary dense : ¡90 variables, 10 values, 400 constraints, 38 nogoods¿.
– (c) ternary dense : ¡10 variables, 10 values, 100 constraints, 208 nogoods¿.
– (d) ternary medium : ¡30 variables, 6 values, 75 constraints, 109 nogoods¿.
– (e) ternary sparse : ¡50 variables, 10 values, 70 constraints, 790 nogoods¿.

For binary classes, 100 instances were generated and solved by MAC4 , (Maintain
Arc Consistency) with AC2001 algorithm [5], and the dynamic variable ordering
(dvo) H1 DD x [2], which outperforms the well known dom/deg heuristic. The
same instances were translated in SAT problems with AC and PIC encoding,
and then solved by BerkMin561.

For ternary classes 100 instances were also generated and solved by NFCx
[3], where x is 0 or 5, using GAC2001 [5], and dom/deg dvo [4] without singleton

4 For MAC the number of backtracks can be slightly overestimated, since the value
given is in fact the number of visited nodes.

312 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.0001 0.001 0.01 0.1 1 10 100 1000

CP
U

TI
M

E
M

IX
ED

CPU TIME AC

(a) mixed vs AC

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

CP
U

TI
M

E
M

IX
ED

CPU TIME DIRECT

(b) mixed vs direct

Fig. 3. 20 instructions, 40 latency constraints, max latency 3. cpu time for Berk-
Min on Mixed encoding (y axis) and AC encoding or Direct encoding (x axis).

propagation [13]. Here again, the same instances were translated with 1-AC, 2-
AC, 3-AC, mixed(1) and mixed(2) encodings, and solved by BerkMin561 5. The
results of our approach take also into account the translation duration, which
include the time spent on reading the csp file and writing the cnf. Note that this
duration is insignificant when the problem is really hard, and can be dramaticly
reduced by not creating a temporary file6. The first observation is that the
performance of BerkMin on high filtering k-AC encodings (all but direct) is
better on sparse than on dense networks. There are at least two reasons for that
behaviour : firstly, for dense networks, at the cross-over point, the constraints
are loose, and then there is not much propagation. Moreover, recall that k-AC
clauses encode the supports, and they are more numerous when the constraints
are loose. A 1-AC clause (and its equivalence clauses) for a ternary constraint can
have between 1 and 3d2 literals, according to the number of supports, that can
therefore make a great difference for the SAT solver. However, The results below
show that this approach can really handle large and hard problems. The best
algorithm should probably always be to solve the original problem rather than
its reformulation, but when good algorithms are hard to make, reformulation is
a good alternative. For example NFC is certainly more distant from the “best
possible algorithm” than MAC is, and then BerkMin on the right k-AC encoding
is very close, and sometimes better, than NFC. In the same way, there are very
few good PIC [7] or “Maintain Relational K-Arc Consistency “ algorithms.

7 Conclusion

We presented a new family of mappings of constraint problems into satisfaction
problems, and proved the optimality in space and time complexity of these en-
codings. We also proved that performing full unit propagation on k-AC encoding
5 all Christian Bessiere’s algorithms ran on a 1.6 GHz pentium, whereas BerkMin ran

on a 1.8 GHz one, BerkMin’s results are then corrected by a factor 1.8/1.6.
6 most of this time is spent on i/o

Local Consistencies in SAT 313

class (a) MAC2001 AC + BM PIC + BM
#backtracks 55559 66749 62006
total time 39.6 165 178
translation N/A 1.37 1.2

class (b) MAC2001 AC + BM PIC + BM
#backtracks 56718 136139 103173
total time 17.0 354 373
translation N/A 0.5 0.3

(a) results of MAC2001 and BerkMin
on AC and PIC encodings.

NFC 1-AC 2-AC 3-AC mix(1) mix(2)
(c) time 0.1 6.5 5.5 2.1 5.5 5.4
(c) trans N/A 0.87 1.8 1.8 1.9 2

(d) time 0.37 3.26 0.84 1.14 0.84 0.86
(d) trans N/A 0.37 0.42 .72 0.45 0.46

(e) time 18.40 59.8 15.5 85.8 11.4 9.5
(e) trans N/A 2.4 1.6 2.4 1.6 1.6

(b) Results of NFC and BerkMin on
different encodings on 3 classes of
ternary networks.

Fig. 4. total time is cpu time for MAC and BerkMin’s cpu time + translation
duration, all in seconds.

is the same as enforcing relational k-arc-consistency on the original problem, or
used in a slightly different way, (i,j)-consistency. We showed how to mix the
different encodings to take advantage of their best individual features. And fi-
nally we demonstrated preliminary experimental results of the efficiency of the
introduced encodings.

From a constraint programming perspective, these new encodings are a very
easy way to implement and test algorithms for enforcing a wide range of filter-
ings, all in optimal worst case time complexity.7 Such encodings also profit from
the sophisticated branching heuristics and other algorithmic features of the SAT
solver (like non-chronological backtracking and nogood learning). Given the re-
cent rapid advances in SAT solvers, they offer an alternative way to solve hard
problem instances. From the satisfiability perspective, these encodings are useful
for modelling, since many real life problems are likely to have straightforward
representations as CSPs whereas SAT models are often not as easy to make.
Modelling is also far more understood for CSPs than for SAT. These encodings
allow the SAT research community to take advantage of CSP modelling results.

Acknowledgements

We thank Ian P. Gent for helpful discussions about SAT encoding. We also thank
Eugene Goldberg for his giving us a slightly modified version of Berkmin561. This
work was supported by Science Foundation Ireland.

References

[1] F. Bacchus, X. Chen, P. van Beek, and T. Walsh. Binary vs. non-binary con-
straints. Artificial Intelligence, 140(1-2):1–37, 2002.

7 this goal was also pursued in [16], though the approach was completly different

314 Christian Bessière, Emmanuel Hebrard, and Toby Walsh

[2] C. Bessière, A. Chmeiss, and L. Säıs. Neighborhood-based variable ordering
heuristics for the constraint satisfaction problem. In Proceedings CP’01, pages
565–569, 2001. Short paper.

[3] C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward checking for
non-binary constraint satisfaction. Artificial Intelligence, 141:205–224, 2002.

[4] C. Bessière and J.C. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings CP’96, pages 61–75, 1996.

[5] C. Bessière and J.C. Régin. Refining the basic constraint propagation algorithm.
In Proceedings IJCAI’01, pages 309–315, 2001.

[6] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1962.

[7] Romuald Debruyne. A property of path inverse consistency leading to an optimal
PIC algorithm. In Proceedings ECAI’00, pages 88–92, 2000.

[8] R. Dechter and P. van Beek. Local and global relational consistency. Theoretical
Computer Science, 173(1):283–308, 1997.

[9] E.C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the
ACM, 32:755–761, 1985.

[10] I.P. Gent. Arc consistency in SAT. In Proceedings ECAI’02, 2002.
[11] E. Golberg and Y. Novikov. Berkmin: a fast and robust sat-solver. In Proceeding

DATE’02, pages 142–149, 2002.
[12] S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction

networks. Artificial Intelligence, 45:275–286, 1990.
[13] B.A. Nadel. Constraint satisfaction algorithms. Computational Intelligence,

5:188–224, 1989.
[14] P. van Beek and R. Dechter. Constraint tightness and looseness versus local and

global consistency. Journal of the ACM, 44:549–566, 1997.
[15] Peter van Beek and Kent Wilken. Fast optimal instruction scheduling for single-

issue processors with arbitrary latencies. Lecture Notes in Computer Science,
2239:625–639, 2001.

[16] G. Verfaillie, D. Martinez, and C. Bessière. A generic customizable framework for
inverse local consistency. In Proceeding AAAI’99, pages 169–174, 1999.

[17] T. Walsh. SAT v CSP. In Proceedings CP’00, pages 441–456, 2000.

	Introduction
	Background
	Constraint Satisfaction Problem (CSP)
	Direct Encoding
	AC Encoding

	Generalisation of the AC Encoding
	Complexity of k-AC Encoding

	(i,j)-Consistencies
in SAT
	Mixed Encoding
	Complexity

	Experimental Results
	Conclusion

