
HAL Id: lirmm-00109196
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109196

Submitted on 24 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Longest Common Subsequence Problem for Unoriented
and Cyclic Strings

François Nicolas, Eric Rivals

To cite this version:
François Nicolas, Eric Rivals. Longest Common Subsequence Problem for Unoriented and Cyclic
Strings. [Research Report] 04003, LIRMM. 2004, pp.12. �lirmm-00109196�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109196
https://hal.archives-ouvertes.fr

Longest Common Subsequence Problem
for Unoriented and Cyclic Strings

François Nicolas and Eric Rivals

L.I.R.M.M., CNRS U.M.R. 5506
161 rue Ada, F-34392 Montpellier Cedex 5, France

{nicolas, rivals}@lirmm.fr

Abstract. Given a finite set of strings X, the longest common subsequence problem
(LCS) consists in finding a longest common subsequence of the strings in X. LCS is a
central problem in stringology and finds broad applications in string correction, text
compression, conception of error-detecting codes, or biological sequence comparison.
However, in numerous contexts words represent cyclic or unoriented sequences of
symbols and LCS must be generalized to consider both orientations and/or all cyclic
shifts of the strings involved. This occurs especially in computational biology where
genetic material is sequenced from circular DNA or RNA molecules. In this work, we
define three variants of LCS where the input words are unoriented and/or cyclic. We
show that these problems are NP-hard even when restricted to instances over a binary
alphabet, and W[1]-hard if parameterized in the number of input strings or in the
length of the sought subsequence. We also study the approximability of these variants
and conclude that they are as hard to approximate as Maximum Independent
Set. We obtain this through a reduction from Maximum Independent Set in
Hypergraphs for which we also prove similar results.

1 Introduction

1.1 The Longest Common Subsequence problem

Let s, t be two words and denote the length of a word s by |s|. s is a subsequence (or
a subword) of t if s can be obtained by erasing zero or more symbols of t. In that case,
t is a supersequence of s. For a set of words X, finding a word s that is a subsequence
common to all words in X and such that |s| is maximal is known as the Longest Com-
mon Subsequence problem (LCS). The dual problem of finding a Shortest Common
Supersequence for the input X is denoted SCS. The LCS problem, as well as the SCS

problem, find numerous applications, for instance in string correction, text compression,
conception of error-detecting codes, biological sequence comparison, and many more (see
[21] for a review). Moreover, it is of theoretical interest as a central problem in stringology
and as a simpler version of the more general Multiple Alignment problem [12, Chapter
14].

1.2 Examples of cyclic and/or unoriented words

We review some domains in which linear words represent cyclic sequences of symbols.
In nature, inherited information is stored on linear or circular DNA or RNA molecules

[2]. Bacterial genomes are in majority circular, as well as chloroplasts and mitochondrial
genomes. Viruses often store their genetic material on circular DNA, especially bacterio-
phages, which are widely used as vectors for cloning a gene of another species. Plasmids,
small circular DNA molecules that have the ability to replicate on their own, are extensively

used in biotechnology [2]. All such cyclic molecules are sequenced and represented as linear
strings by choosing an arbitrary starting point. It follows that the comparison of two such
sequences needs to consider all possible cyclic shifts (also called conjugates) of one of the
sequences. This is cyclic string comparison.

DNA, as well as RNA, are oriented molecules. In the sequencing process that is now
carried out automatically, the DNA of interest is cloned into a double-stranded vector and
the vector is sequenced. For technical reasons, it is not always possible to know in which
orientation the DNA is inserted into the vector (i.e., on which strand). Therefore, in some
cases, e.g., for Expressed Sequence Tags, sequences must be compared in each orientation
[1]. We call this unoriented comparison.

Another domain in which cyclic strings arise is pattern representation and recognition
[7]. There, the closed contour of a two-dimensional (polygonal) shape is encoded into a linear
string by choosing arbitrarily a start position on the contour. Determining if two shapes are
similar or equal requires to compare one string with all cyclic shifts of the other. Practically,
this type of comparison is applied, for instance in an industrial context, to recognize the
class of an object currently visible on a conveyor belt.

1.3 Known results

A large literature is devoted to LCS; we summarize below the main results.

The case of two input strings. Suppose given two words s and t with |s| ≤ |t|. The
first algorithm shows that a longest common subsequence (lcs) of s and t can be computed
in O(|s| |t|) time and O(|s|) space by dynamic programming ([21, Chap. 12]). This can be
improved to O(|s| |t| / log |t|) time [19]. Other algorithms yield better complexities when the
problem is parameterized, e.g., by the number of identities between the two words (see [3,
Chap. 4] for a review). The complexity of O(|s| |t| / log |t|) can also be achieved to compute
an optimum alignment between s and t with unrestricted cost matrices [9].

The problem of finding a lcs between any cyclic shift of s and any cyclic shift of t has
also been studied. Little thinking shows that this is equivalent to finding the lcs between
s and any cyclic shift of t. Application of dynamic programming to compute the lcs of
all combinations yields a brute-force algorithm in O

(
|s|2 |t|

)
time. Schmidt [22] gives the

first algorithm in O(|s| |t|) time, whereas Maes exhibits an algorithm that computes an
optimum alignment between any cyclic shift of s and any cyclic shift of t with unrestricted
cost matrices in O(|s| |t| log |s|) time [17].

The case of many input strings. When the number of input strings is unbounded, LCS

becomes intractable: it is proven to be NP-hard even when the alphabet is binary in [18],
W[1]-hard when parameterized by the number of input strings in [20], and inapproximable
for unbounded alphabets in [15]. The parameterized complexity with respect to (w.r.t.)
several other parameters is also studied in [4, 5], while the average error of approximation
algorithms is also investigated in [15]. These questions remain open for the variants of LCS

where the input strings are cyclic and/or unoriented.

1.4 Our contribution

In this work, we define three variants of LCS when considering a set of input words that
are i/ unoriented, ii/ cyclic or iii/ both. We show that these problems are first, NP-hard
even when restricted to instances over a binary alphabet, and second W[1]-hard if param-
eterized by the number of input strings or in the length of the sought subsequence. We

study the approximability of these variants and conclude that they are as hard to approxi-
mate as Maximum Independent Set. We obtain this through a reduction of Maximum
Independent Set in Hypergraphs (MISH), for which we also prove similar results.

The paper is organized as follows. Section 2 gives basic notations, defines the problems
and summarizes useful known results on the MISH problems. Section 3 studies the classical
and parameterized complexity of our three variants of LCS, while Section 4 tackles with
their approximability. We conclude and list open questions in the last section.

2 Notations and Definitions

2.1 Approximability

Let Max be a maximization problem. To any instance x of Max is associated a set S(x)
of solutions. Let (x, s) be a pair where x is an instance of Max and s ∈ S(x) a solution.
To each pair (x, s) is associated a measure µ(x, s) ∈ IN of the quality of solution s for the
instance x. The measure for an optimal solution is maxs∈S(x) µ(x, s)

Let ρ be a function that maps an instance of Max to a real number larger than or equal
to 1. An approximation algorithm with bound ρ for Max is an algorithm that for each input
instance x of Max returns a solution a ∈ S(x) satisfying ρ(x)µ(x, a) ≥ maxs∈S(x) µ(x, s).

The decision problem associated with Max, denoted by MaxD, can be stated as follows.

Problem (MaxD). Let (x, k) be a pair where x is an instance of Max and k a positive
integer. Does it exist s ∈ S(x) satisfying µ(x, s) ≥ k?

2.2 Words, Subsequences and Languages

Words and Languages. We denote the cardinal of any finite set A by #A. An alphabet
Σ is a finite set of letters. A word over Σ is a finite sequence of elements of Σ. The set
of all words over Σ is denoted by Σ?. The empty sequence, denoted by ε, is called the
empty word. For a word x, |x| denotes the length of x. Given two words x and y, we denote
by xy the concatenation of x and y. For all i ∈ [1, |x|], x[i] denotes the i-th letter of x:
x = x[1]x[2] . . . x[|x|]. For all letter a, |x|a := #{i ∈ [1, |x|] : x[i] = a} denotes the number of
occurrences of the letter a in x. For all n ∈ IN, we denote by xn the n-th power of x that is,
the concatenation of n copies of x (note that x0 = ε). A word x is unary if it exits a letter
a such that x = a|x|. The mirror image of x is the word x̃ := x[|x|] · · ·x[2]x[1]. Two words
x and y are conjugates of each other if there exists two words u and v such that x = uv and
y = vu. A language over Σ is any set of words over Σ. We denote by σ(X) the cardinal of
the smallest alphabet Σ such that X ⊆ Σ?.

Subsequences of a Word. In addition to the usual notion of subword or subsequence,
we define three more types of subsequences.

Definition 1. Let s and x be two words. We say that:

1. s is a subword of x if one obtains s by erasing some letters of x (eventually all or none),
2. s is an unoriented subword (U-subword) of x when s or s̃ is a subword of x,
3. s is a cyclic subword (C-subword) of x when a conjugate of s is a subword of x,
4. s is an unoriented cyclic subword (UC-subword) of x when a conjugate of s is a U-

subword of x.

Remark 1. For any words x and s one has:

– s is a U-subword of x iff s is a subword of x or of x̃,
– s is a C-subword of x iff s is a subword of a conjugate of x,
– s is a UC-subword of x iff s is a U-subword of a conjugate of x,
– any subword of x is both a U-subword and a C-subword of x,
– any U-subword of x and any C-subword of x are UC-subwords of x.

Longest Common Subword of a Language. Let X be a non empty language. A common
subword (resp. U-subword, resp. C-subword, resp. UC-subword) of X is a word that is
subword (resp. U-subword, resp. C-subword, resp. UC-subword) of each word in X.

Definition 2. For any non empty language X, we denote by lcs(X) (resp. lcus(X), resp.
lccs(X), resp. lcucs(X)) the length of a longest common subword (resp. U-subword, resp.
C-subword, resp. UC-subword) of X.

Remark 2. For any non empty language X, it follows from Remark 1 that

lcs(X) ≤ lcus(X) ≤ lcucs(X) and lcs(X) ≤ lccs(X) ≤ lcucs(X) .

Example 1. One easily checks that in the following example that each of these inequalities
may be strict, which guarantees the consistency of Definition 2.

– lcs(X) = 1 < 2 = lcus(X) = lcucs(X) for X := {01, 10},
– lcus(Y) = 2 < 3 = lccs(Y) = lcucs(Y) for Y := {011, 101} and
– lccs(Z) = 5 < 6 = lcus(Z) = lcucs(Z) for Z := {101001, 100101}.

Definitions of the Problems. To each of these notions of common subword corresponds
an optimization problem. We call respectively

– Longest Common Subsequence (LCS),
– Longest Common Unoriented Subsequence (LCUS),
– Longest Common Cyclic Subsequence (LCCS) and
– Longest Common Unoriented Cyclic Subsequence (LCUCS)

the following maximization problems:

Problem (LCS (resp. LCUS, resp. LCCS, resp. LCUCS)). Let X be a non empty finite
language, find a common subword (resp. U-subword, resp. C-subword, resp. UC-subword) of
X of maximal length.

2.3 Independent Sets in Graphs and Hypergraphs

Definitions. A hypergraph is a pair H = (V(H),E(H)) where V(H) is a finite set and
E(H) is a set of subsets of V(H). The elements of V(H) are the vertices of H and the ones
of E(H) are the hyperedges of H. We denote by |H| := #V(H) the number of vertices in
H. A hypergraph on V (where V is any finite set) is a hypergraph H such that V(H) = V .

An independent set of H is a set of vertices of H that contains no hyperedge of H. We
denote by α(H) the maximum cardinality of an independent set of H. One calls Maximum
Independent Set in Hypergraphs (MISH) the following optimization problem:

Problem (MISH). Let H be a hypergraph, find an independent set of H whose cardinal is
maximal.

A r-uniform hypergraph (where r ∈ IN \ {0, 1}) is a hypergraph whose hyperedges
have cardinal r. A graph is a 2-uniform hypergraph. The hyperedges of a graph are called
edges. For any r ∈ IN \ {0, 1}, we denote by r-MISH the restriction of MISH to r-uniform
hypergraphs, H. The instances of 2-MISH, which are graphs, are denoted by G instead of
H.

Known Results. The decision problem associated with 2-MISH is NP-complete [8] and
W[1]-complete for parameter k [10]. The maximization problem MISH admits a polynomial
approximation algorithm with bound O(|H| / log |H|) [13]. In the case of 2-MISH, there
exists a polynomial approximation algorithm with bound O

(
|G| / log2 |G|

)
[6]. For MISH,

the trivial algorithm that for each input hypergraph H returns an independent set with
cardinal 1 yields bound |H|, which is only slightly worse than the previous one.

Further studies on the approximability of 2-MISH show that the existence of a polynomial
approximation algorithm with bound |G|δ(|G|) where δ : IN → [0, 1] implies the unprobable
inclusion of NP in various complexity classes according to the asymptotic behavior of δ:

– if sup
n∈IN

δ(n) <
1
2

then NP = P [14],

– if sup
n∈IN

δ(n) < 1 then NP = ZPP [14] and

– if δ(n) = 1−O
(
(log log n)−1/2

)
then NP ⊆ ZPTIME

(
2O((log n)(log log n)3/2)

)
. [11]

3 Hardness of LCUS, LCCS, and LCUCS

In this section, we show that the decision problems associated with LCUS, LCCS, and LCUCS

are NP-complete and W[1]-hard when parameterized by the number of input words. Our
proofs are valid also in the case of binary input languages.

Let us first demonstrate a synchronization lemma.

Lemma 1. Let a, b be two distinct letters, and s, t be two words. Let m, n, p, q be four
strictly positive integers satisfying |s| < min{p, q}. Set u := amsbn and v := aptbq. Then, v
is a conjugate of u or of its mirror image iff u = v.

Proof. Any conjugate of u that is distinct from u adopts one of the three following forms:

(i) aksbnam−k with k ∈ [1,m− 1],
(ii) bkamsbn−k with k ∈ [1, n− 1],

(iii) s2b
nams1 where s1 and s2 are two words such that s = s1s2.

• Assume that v is a conjugate of u. The word v ends by letter b, so it is not of the
form (i), and v begins with letter a, so it is not of the form (ii). Moreover, as |s| is strictly
lower than p, v admits a|s|+1 as a prefix, which is not the case of words of the form (iii).
Thus, v is a conjugate of u which is not of any of these three forms. The only possibility
left is u = v.

• Let us suppose that ṽ is a conjugate of u distinct from u. As ṽ = bq t̃ap begins by
letter b, it does not adopt form (i), and as ṽ ends by letter a, it does not adopt form (ii)
either. It follows that ṽ has form (iii) and thus, there exists two words s1, s2 such that
s = s1s2 and bq t̃ap = s2b

nams1. Since by hypothesis q ≥ |s| ≥ |s2|, one has s2 = b|s2|

and similarly, p ≥ |s| ≥ |s1| requires s1 = a|s1|. We obtain that ṽ = b|s2|+na|s1|+m and
u = ams1s2b

n = am+|s1|bn+|s2|, which yields u = v, a contradiction. ut

For any finite language X and any distinct letters a, b, we define:

mX := max
x∈X

|x| and T a,b
X :=

{
a2mX+1xb2mX+1 : x ∈ X

}
Thanks to the synchronization lemma, we obtain the following property.

Lemma 2.

lcucs(T a,b
X) = lccs(T a,b

X) = lcus(T a,b
X) = lcs(T a,b

X) = lcs(X) + 4mX + 2 .

Proof. One checks easily that, for any non empty language W and any letter c, lcs(Wc) =
lcs(W)+1, where Wc means the language formed by concatenation of letter c to each word
in W . Repeatedly applying this property, we get lcs(T a,b

X) = lcs(X) + 4mX + 2. It remains
to show that lcucs(T a,b

X) = lccs(T a,b
X) = lcus(T a,b

X) = lcs(T a,b
X) or equivalently, according to

Remark 2, that lcucs(T a,b
X) ≤ lcs(T a,b

X).
Let v be a common UC-subword of T a,b

X of length lcucs(T a,b
X). v has maximal length. For

any x ∈ X, there exists a subword ux of a2mX+1xb2mX+1 that is a conjugate of v or of ṽ.
Consider the family of words (ux)x∈X ; for all x, y ∈ X, we have

– |ux| = lcucs(T a,b
X) because ux has the same length as v,

– ux is a subword of a2mX+1xb2mX+1 by definition,
– ux is a conjugate of uy or ũy, by the transitivity of conjugacy.

First, let us choose x, y ∈ X and demonstrate that ux = uy. Words ux and uy can be
written as ux = amsbn and uy = aptbq with s subword of x, t subword of y, and m, n, p,
q ∈ [0, 2mX + 1]. By contradiction, assume p ≤ mX ; then we would have

lcucs(T a,b
X) = |uy| = p + |t|+ q ≤ mX + |y|+ 2mX + 1

≤ 4mX + 1
< 4mX + 2 = lcs(T a,b

X) .

which, by Remark 2, is a contradiction.
We know now that p > mX ≥ |x| ≥ |s| and m, n, q > |s| for the same reasons. Thus,
Lemma 1 with (u, v) := (ux, uy) can be applied and we get ux = uy.

The ux (x ∈ X) are all equal to the same word u, which is a common subword of T a,b
X .

Therefore, lcs(T a,b
X) ≥ |u| = lcucs(T a,b

X), what we wanted. ut

We can now state the hardness of our problems in the following theorem.

Theorem 1. The problems LCUCSD, LCCSD and LCUSD are

– NP-complete even if restricted to binary instances, i.e., instances such that σ(X) = 2,
– W[1]-hard for parameter #X even when restricted to binary instances,
– W[t]-hard for parameter (#X, σ(X)) for any t ∈ IN \ {0}.

Proof. Let X be a non-empty finite language and let k ∈ IN. If X is unary, then the problem
are polynomial since lcs(X) = lcus(X) = lccs(X) = lcucs(X) = minx∈X |x|. Now, let us that
σ(X) > 1, i.e., at least two distinct letters occurs in X. Consider a polynomial function that
to each non-empty finite language X associates a pair of distinct letters, (aX , bX) occurring
in a word of X. By Lemma 2, the function

(X, k) 7−→
{

(T aX ,bX

X , k + 4mX + 2) if σ(X) ≥ 2
(X, k) otherwise

is a valid reduction of LCSD to LCUSD, LCCSD and LCUCSD. Moreover, our reduction
is computable in polynomial time and preserves the parameters #X and σ(X), since
#T aX ,bX

X = #X and σ(T aX ,bX

X) = σ(X).
This allows us to generalize to LCUSD, LCCSD and LCUCSD the intractability results

established so far for LCSD: NP-completeness even when σ(X) = 2 in [18], W[1]-hardness for
parameter #X even when σ(X) = 2 in [20], and W[t]-hardness for parameter (#X, σ(X))
for any t ∈ IN \ {0} in [4]. ut

4 Approximability

This section is divided in two. In Section 4.1, we generalize to r-uniforms hypergraphs
approximability results obtained on the Maximum Independent Set problem in graphs
(2-MISH). In Section 4.2, we exhibit reductions of 2-MISH and 3-MISH to the unoriented and
cyclic variants of LCS, which enables us to conclude on the approximability of the latter.

4.1 Approximability of r-MISH

The following theorem states that for any r ∈ IN \ {0, 1}, r-MISH is at least as difficult as
2-MISH from the view-points of approximation and parameterized complexity.

Lemma 3. Given p ∈ IN, it exists a mapping computable in polynomial time that maps any
hypergraph H to an independent set of H, denote it Jp

G, having cardinal min{α(H), p}.

Proof. For fixed p, enumerating all O(|H|p) p-subsets of V(H) and selecting those that are
independent sets of H takes polynomial time. ut

Theorem 2. Let r ∈ IN \ {0, 1} and b : IN → [1,∞[.

• The decision problem r-MISHD is W[1]-hard for parameter k.
• If it exists a polynomial approximation algorithm for r-MISH with bound b(|H|) then it

also exists a polynomial approximation algorithm for 2-MISH with bound b(|G|).

Proof. For any graph G, consider the set of r-subsets of V(G) that contains at least an edge
of G. We denote by HG the r-uniform hypergraph on V(G) whose set of hyperedges is this
abovementioned set. The proof relies on the three following properties of HG:

P1. Any independent set of G is also an independent set of HG, since any edge of HG

contains an edge of G.
P2. Any independent set of HG whose cardinal is at least r is an independent set of G, for

any r-subset of V(G) that contains an edge of G encloses also an edge of H.
P3. The mapping that associates to a graph G the hypergraph HG is computable in poly-

nomial time. Indeed, for a given r, one can enumerate the
(|G|

r

)
= O(|G|r) r-subsets of

V(G) and select those that contain an edge of G in polynomial time.

Note that HG and G do not have the same independent sets.
• Let us now demonstrate that r-MISHD is W[1]-hard for parameter k. Let G be a graph
and k ∈ IN. Consider the mapping

(G, k) 7−→
{

(HG, k) if k ≥ r
((Jr

G, ∅), k) if k < r

It associates G to HG if k ≥ r, in which case G and HG share any independent set whose
cardinal is larger than r (consequence of Properties P1 and P2). Otherwise it associates G
to (Jr

G, ∅), i.e., an independent set of G of maximal cardinality. The previous remark implies
that our mapping is a valid reduction of 2-MISHD to r-MISHD. Moreover, as a consequence
of P3 and of Lemma 3, it is computable in polynomial time. As our reduction preserves
parameter k, the W[1]-hardness of r-MISHD for parameter k follows from the W[1]-hardness
of 2-MISHD [10].
• Let us prove the announced approximation bound. Assume it exists a polynomial approx-
imation algorithm with bound b(|H|) for r-MISH. We describe a polynomial approximation
algorithm with bound b(|G|) for 2-MISH. For any input graph G, the algorithm proceeds as
follow.

1. Compute the r-uniform hypergraph HG,
2. Compute I, an independent set of HG whose cardinal is at least α(HG)/b(|HG|),
3. If the cardinal of I is at least r, then return I,
4. Otherwise, return Jr

G.

First, the four steps described above can be performed in polynomial time: Step 1
because of P3, Step 2 by hypothesis, and Step 4 because of Lemma 3. It remains to show
that the algorithm yields the right bound, i.e., b(|G|).

We have |G| = |HG| since V(G) = V(HG), and α(G) ≤ α(HG) because of P1. Thus, the
independent set I computed during Step 2 has at least α(G)/b(|G|) vertices. When #I ≥ r,
P2 guarantees that the set returned by the algorithm, I, is an independent set of G. In the
other case, when #I < r, the algorithm returns Jr

G, an independent set of G, such that

#Jr
G = min{α(G), r} ≥ min

{
α(G)
b(|G|)

,#I

}
=

α(G)
b(|G|)

.

In both cases, our algorithm outputs an independent set of G whose cardinal is at least
α(G)/b(|G|), which is the right bound. This concludes the proof. ut

Note that [16] uses the transformation G 7→ HG described in the preceding proof to
show a similar result about the Graph Coloring problem.

4.2 Approximability of LCS, LCUS, LCCS and LCUCS

The following proposition is one of the few approximation algorithm for LCS and its variants.
Note that the bound σ(X) is announced for LCS in [15].

Proposition 1. Each problem among LCS, LCUS, LCCS and LCUCS admits a polynomial
approximation algorithm with bound min{σ(X), l/ log l} where l := minx∈X |x|.

Proof. We proceed in two steps, one for each approximation bound.
• Existence of a polynomial approximation algorithm with bound σ(X).

Consider the algorithm that maps any non empty finite language X to wX , one maximal
common unary subword of X. It chooses a letter a that occurs at least in a word of X and
that maximizes the quantity na := minx∈X |x|a. It returns wX := ana . All this requires
polynomial time.

We now show that our algorithm has bound σ(X), i.e., that uX has length at least
lcs(X)/σ(X) (resp. lcus(X)/σ(X), resp. lccs(X)/σ(X), resp. lcucs(X)/σ(X)). By Re-
mark 2, it suffices to prove that |uX | ≥ lcucs(X)/σ(X). The hint is that in any word
s (it contains σ({s}) distinct letters), it exists a letter whose number of occurrences in
s is at least |s| /σ({s}). Now, let s be a common UC-subword of X of maximal length
lcucs(X). The preceding observation implies the existence of a letter, say b, such that
|s|b ≥ |s| /σ({s}) ≥ |s| /σ(X). So, the unary word b|s|b is a common subword of X and we
obtain |uX | ≥

∣∣b|s|b ∣∣ = |s|b ≥ |s| /σ(X) = lcucs(X)/σ(X), what we wanted.
• Existence of a polynomial approximation algorithm with bound l/ log l.

After the general method described in [13], the following algorithm gives in polynomial
time an approximation with bound l/ log l for LCS (resp. LCUS, resp. LCCS, resp. LCUCS).

1. Select a word w ∈ X of minimal length l and factorize it under the form w = y1y2 . . . yp

where
– p is an integer smaller than or equal to l/ log l,
– for any i ∈ [1, p], yi is a word of length |yi| = O(log l).

2. For each i ∈ [1, p], enumerate the subwords (resp. U-subwords, resp. C-subwords, resp.
UC-subwords) of yi, and memorize those that are solution of our problem.

3. Among the words selected at Step 2, return one of maximal length.
ut

Lemma 4. Let w be a word that can be written as the concatenation of n strictly increasing
words. Then, any U-subword (resp. UC-subword) of w that is strictly increasing and whose
length is at least n + 1 (resp. n + 2), is a subword (resp. C-subword) of w.

Proof. We divide our proof in two parts depending on the type of subword.
• Let s be a strictly increasing U-subword of w such that |s| ≥ n + 1. We show that s is a
subword of w.

By hypothesis, either s is a subword of w or s̃ is subword of w. So, it suffices to demon-
strate that the latter eventuality is forbidden. By contradiction, assume that s̃ is a subword
of w. Then, one can write s̃ as the concatenation of n strictly increasing words. As s̃ is
strictly decreasing, each of these n words has length of at most 1. It follows that the length
of s̃ is at most n, which contradicts the hypothesis |s| ≥ n + 1.
• Let t be a strictly increasing UC-subword of w such that |t| ≥ n + 2 and let us prove that
t is a C-subword of w.

By hypothesis, t is a U-subword of a some conjugate w′ of w. Any conjugate of w may be
written as the concatenation of (at most) n + 1 strictly increasing words. So, the previous
point applies with n + 1 instead of n and w′ instead of w. It yields that t is a subword of
w′ and thus, a C-subword of w. ut

Let S be a finite subset of IN. We consider implicitly that any integer is a symbol, and
S as an alphabet. We denote by S̄ the unique word over S that is strictly increasing and
has length #S.

It is shown in [5] that LCSD is W[2]-hard for parameter k. In the following theorem,
we state a somehow weaker result, LCSD is W[1]-hard w.r.t. k, but exhibit a parameter
preserving PTAS-reduction that is simpler than the one in [5] and can be adapted to LCUSD.

Theorem 3. Let b : IN× IN× IN → [1,∞[.

– The problems LCSD and LCUSD are W[1]-hard for parameter k.
– If either LCS or LCUS admit a polynomial approximation algorithm with bound

b (minx∈X |x| , σ(X),#X) then 2-MISH admits a polynomial approximation algorithm
with bound b(|G| , |G| , |G|2).

Proof. First, we describe how we transform a graph G into an instance of LCS (resp. LCUS).
Let G be a graph over [1, |G|]. To any edge e ∈ E(G), we associate a sequence denoted xG,e

and defined by

xG,e :=
(
[1, |G|] \ e

)
ē[2] ē[1]

(
[1, |G|] \ e

)
.

In xG,e, the prefix and suffix [1, |G|] \ e is the ordered set of vertices except the ones
linked by e. In between, the latter are written in reverse alphabet order (ē[2]ē[1]). We can
now define the instance XG of LCS or (resp. LCUS).

XG := {xG,e}e∈E(G) ∪
{(

[1, |G|]
)p}

p∈[1,|G|2−#E(G)]
.

In addition to the xG,e’s (e ∈ E(G)), XG contains several powers of the string [1, |G|], which
represents the whole ordered set of vertices of G. Actually, only [1, |G|] to the power one is

useful to force the increasingness of common subwords of XG, while the other powers allow
us to set the cardinal of XG to what we need.

Our proof relies on the four following properties of XG.

P1. Given a graph G on [1, |G|], the language XG can clearly be computed in polynomial
time.

P2. The shortest word of XG is [1, |G|] and thus, minx∈XG
|x| = σ(XG) = |G|. Moreover

#XG = |G|2.
P3. For any independent set I of G, Ī is a common subword of XG of length #I.
P4. Let s be a common U-subword s of XG of length at least 5. The set of letters occurring

in s is an independent set of G of cardinality |s|.

Let us prove Properties P3 and P4, starting with Property P3. Let I be an independent
set of G. Since I is a subset of V(G) = [1, |G|], Ī is a subword of each [1, |G|]

p
(p ∈ IN\{0}).

Let e ∈ E(G). Since I is an independent set, ē[1] and ē[2] cannot be both in I. If none
occurs in I then Ī is a subword of [1, |G|] \ e, and of xG,e. Assume ē[1] belongs to I and say
it occurs in Ī at position i. Then, the prefix of length i− 1 and the suffix of length

∣∣Ī∣∣− i

of Ī are both subwords of [1, |G|] \ e. As ē[1] can be picked up in (ē[2]ē[1]), we obtain that
Ī is a subword of xG,e. The case where ē[2] ∈ I is symmetric. This completes the proof of
Property P3.

We now demonstrate Property P4. Let s be a common U-subword of XG of length at
least 5. As either s or s̃ is a subword of [1, |G|], s is either strictly increasing or strictly
decreasing. Since the same letters occur in s and s̃, we can, if necessary change s in s̃ to
assume that s is strictly increasing. We know that s is a five letter U-subword of xG,e. Note
that xG,e can be written as the concatenation of four strictly increasing words: [1, |G|] \ e,
ē[2], ē[1] and finally [1, |G|] \ e. Since, 5 = 4+1, we obtain by Lemma 4 that s is a subword of
xG,e. If in xG,e, it picks ē[1] it cannot include ē[2], and conversely. So two vertices linked by
an edge cannot both occur together in s. This shows that s corresponds to an independent
set of G. This concludes the proof of Property P4.

With these properties in hand, we now show the validity of our reduction, as well as the
hardness and approximability results.
• The mapping that transforms any graph G over [1, |G|] and any integer k ∈ IN, into an
instance of LCSD (resp. LCUSD):

(G, k) 7−→

{
(XG, k) si k ≥ 5({

1#J5
G

}
, k

)
si k < 5

– is a valid reduction of 2-MISHD to LCSD (resp. LCUSD) by Properties P3 and P4,
– is computable polynomial time by Property P1 and Lemma 3,
– and preserves parameter k.

It allows us to establish the W[1]-hardness for parameter k of LCSD (resp. LCUSD).
• Assume it exists a polynomial approximation algorithm with bound
b (minx∈X |x| , σ(X),#X) for LCS (resp. LCUS). Let us exhibit a polynomial approx-
imation algorithm with bound b

(
|G| , |G| , |G|2

)
for 2-MISH.

Let G be the input graph. The algorithm proceeds as follows:

1. Compute language XG,
2. Compute a common subword (resp. U-subword) s of XG of length at least

lcs(XG)/b (minx∈XG
|x| , σ(XG),#XG) (resp. lcus(XG)/b (minx∈XG

|x| , σ(XG),#XG)),
3. If the length of s is at least 5, then return the set I of letters occurring in s,

4. Otherwise return J5
G.

With a similar argument to the one developed in the proof of Theorem 2, one obtains the
claimed bound. ut
Theorem 4. Let b : IN× IN× IN → [1,∞[.

– The problems LCCSD and LCUCSD are W[1]-hard for parameter k.
– If either LCCS or LCUCS admit a polynomial approximation algorithm with bound

b (minx∈X |x| , σ(X),#X) then 3-MISH admits a polynomial approximation algorithm
with bound b(|H| , |H| , |H|3).

Proof. The proof is only slightly different from the one of Theorem 3. Given a 3-uniform
hypergraph H on [1, |H|], we set

xH,h :=
(
[1, |H|] \ e

)2

h̄[3]
(
[1, |H|] \ e

)2

h̄[2]
(
[1, |H|] \ e

)2

h̄[1]

for every hyperedge h ∈ E(H) and

XH := {xH,h}h∈E(H) ∪
{(

[1, |H|]
)p}

p∈[1,|H|3−#E(H)]
.

As for Theorem 3, our proof relies on four properties of XH .

P1. Given a 3-uniform hypergraph H on [1, |H|], the language XH can clearly be computed
in polynomial time.

P2. minx∈XH
|x| = σ(XH) = |H| and #XH = |H|3.

P3. For any independent set I of H, Ī is a common subword of XH of length #I.
P4. Let s be a common UC-subword of XH of length at least 11. Then, the set of letters

occurring in s is an independent set of H of cardinality |s|.
The remaining of the proof goes along the same lines as the one from Theorem 3 and are
left to the reader. ut

Theorem 3 (resp. Theorem 4) and results mentioned in Section 2.3 guarantee that for
any constant δ ∈ [0, 1[, one may not find a polynomial approximation algorithm for LCS

or LCUS (resp. for LCCS or LCUCS) with bound max{minx∈X |x|δ , σ(X)δ, (#X)δ/2} (resp.
max{minx∈X |x|δ , σ(X)δ, (#X)δ/3}).

5 Conclusion

Our investigation provides the first hardness and approximability results concerning LCS

for cyclic and unoriented strings. Similar results are also achieved for MISH in r-uniform
hypergraphs. Nevertheless, some questions remain open.

• It is shown in [5] that LCSD is W[1]-complete for parameter (#X, k), but the com-
plexity of LCUS, LCCS and LCUCS for this parameter is unknown.

• The existence of a real valued constant δ, 0 ≤ δ < 1, such that one problem among
LCS, LCUS, LCCS or LCUCS admits a polynomial approximation algorithm with bound
(#X)δ is open.

• For any σ ∈ IN, we demonstrated (Proposition 1) that problems LCS, LCUS, LCCS

and LCUCS restricted to instances for which σ(X) ≤ σ admit a polynomial approximation
algorithm with bound σ, but the existence of a PTAS require further studies.

• The problem 2-MISH gave rise to numerous publications, some of which are referenced
in here, but fewer works concern MISH and r-MISH with r ∈ IN \ {0, 1, 2}. Specifically,
the existence of a t ∈ IN \ {0} such that 3-MISHD parameterized by k is W[t]-complete is
open, as is the existence of a polynomial approximation algorithm for 3-MISH with bound
o(|G| / log |G|).

References

1. M. D. Adams, J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Polymeropoulos, H. Xiao, C. R.
Merril, A. Wu, B. Olde, R. F. Moreno, et al. Complementary DNA sequencing: expressed
sequence tags and human genome project. Science, 252(5013):1651–1656, June 1991.

2. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of
the Cell. Garland, New York, 1983.

3. A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms. Oxford University Press,
1997.

4. H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T. Wareham. Parameter-
ized complexity analysis in computational biology. Computer Applications in the Biosciences
(CABIOS), 11(1):49–57, 1995.

5. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. The parameterized
complexity of sequence alignment and consensus. Theoretical Computer Science, 147(1–2):31–
54, 1995.

6. R. Boppana and M. M. Halldòrsson. Approximating maximum independent sets by excluding
subgraphs. BIT, 32(2):180–196, 1992.

7. H. Bunke and U. Buehler. Applications of approximate string matching to 2D shape recogni-
tion. Pattern Recognition, 26(12):1797–1812, december 1993.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, second edition, 2001.

9. M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence alignment algo-
rithm for unrestricted cost matrices. In Proceedings of the 13th Annual ACM-SIAM Symposium
On Discrete Mathematics, pages 679–688, New York, 2002. ACM Press.

10. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
11. L. Engebretsen and J. Holmerin. Towards optimal lower bounds for clique and chromatic

number. Theoretical Computer Science, 299(1–3):537–584, 2003.
12. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and Computa-

tional Biology. Cambridge University Press, 1997.
13. M. M. Halldòrsson. Approximations of weighted independent set and hereditary subset prob-

lems. Journal of Graph Algorithms and Applications, 4(1), 2000.
14. J. Hȧstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142, 1999.
15. T. Jiang and M. Li. On the approximation of shortest common supersequences and longest

common subsequences. SIAM Journal on Computing, 24(5):1122–1139, 1995.
16. M. Krivelevich and B. Sudakov. Approximate coloring of uniform hypergraphs. Journal of

Algorithms, 49(1):2–12, 2003.
17. M. Maes. On a cyclic string-to-string correction problem. Information Processing Letters,

35(2):73–78, 1990.
18. D. Maier. The complexity of some problems on subsequences and supersequences. Journal of

the Association for Computing Machinery, 25(2):322–336, 1978.
19. W. J. Masek and M. S. Paterson. A faster algorithm computing string edit distances. Journal

of Computer and System Sciences, 20(1):18–31, 1980.
20. K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common superse-

quence and longest common subsequence problems. Journal of Computer and System Sciences,
67(4):757–771, 2003.

21. D. Sankoff and J. B. Kruskal, editors. Time Warps, String Edits and Macromolecules: the
Theory and Practice of Sequence Comparison. CSLI Publications, second edition, 1999.

22. J. P. Schmidt. All highest scoring paths in weighted grid graphs and its application to finding
all approximate repeats in strings. SIAM Journal on Computing, 27(4):972–992, 1998.

