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Abstract

In all-optical networks, several communications can be transmitted
through the same fiber link provided that they use different wavelengths.
When given a list of pairs of nodes standing for as many point to point
communication requests, the objective is, according to this rule, to assign
to each request both a path through the network and a single wavelength
to convey the information.

The ALL-OPTICAL ROUTING problem (minimizing the overall num-
ber of assigned wavelengths) has been paid a lot of attention and is known
to be N'P-hard. Thus rings, trees and meshes have been investigated as
specific networks, but leading to yet as many NP-hard problems.

This paper investigates row-column routings in meshes (paths are al-
lowed one turn only). We show the ROW-COLUMN MINIMUM LOAD
ROUTING and the ROW-COLUMN ALL-OPTICAL ROUTING prob-
lems to be N'P-hard, as well as the k-CHOICES MINIMUM LOAD
ROUTING problem. The latter we prove to be k—APX, yielding the
ROW-COLUMN MINIMUM LOAD ROUTING problem to be 2-APX,

3

while no approximation ratio can be less than 5. From there, we prove

the ROW-COLUMN ALL-OPTICAL ROUTING problem to be APX.
These results can be extended to tori.

keywords: minimum load routing, all-optical networks, mesh, torus, row-column
routing, approximation algorithms

1 Introduction

In optical networks, links are optical fibers. Each time a message reaches a
router, it is converted from optical to electronic state and back again to optical
state. These electronic switchings are considered as bottlenecks for the network.

Contrary to optical networks which use expensive optoelectronic conver-
sions, all-optical networks allocate to each communication request a physical
path into the network, as for usual circuit switching; each router being set up,
messages can stay in their optical state from start to end. The all-optical net-
work commutation nodes we are interested in are Wavelength Routing Optical
Cross-connect (WR-OXC) with Optical Add/Drop Multiplexer (OADM) (see
for instance [Bea00]). An example of such a router is depicted in figure 1.

Wavelength Division Multiplexing (WDM) is a technique (see for instance
[BBG197]) that proposes to take advantage of the huge bandwidth of optical
fiber by allocating a unique frequency to each communication. Several commu-
nications can simultaneously use the same fiber as long as their wavelengths are
different.

In this context, networks can be viewed as graphs, wether directed or not,
and communication requests in the network as pairs of nodes of the graph.
A communication instance can then be defined as a graph together with
a family of pairs of nodes (pairs may not be unique in the given family of
requests). Given some communication instance, a routing for this instance can
be defined as a family of paths in the graph yielded by linking the two nodes



Fibers from network

L

Fiber from electronic memory
Fiber to electronic memory

Fibers to network

Figure 1: As an example, a router WR-OXC with OADM dedicated to directed
communications.

of each request by a path in the graph!, and an all-optical routing for this
instance is a routing for this instance where each routing path is assigned a
colour? in such a way that no two paths using a commun edge bear the same
colour.

As wavelengths are usually a critical ressource, the all-optical routing
problem is the optimization problem defined as: given some communication
instance, compute an all-optical routing for this instance which minimizes the
overall number of colours used to label the routing paths. An optimal solution
to an all-optical routing problem will be called an optimal all-optical routing
(see figure 2 for an example).

The all-optical routing problem is N"P—hard in general, wether graphs are
directed [EJ97Db] or not [KL84, Rab96, EJ97b]. Moreover, restricted to directed
graphs, the problem is known to be No-APX? [Bea00, corollary 3.1.5]. Therefore

IWhen two different requests are made of the same pair of nodes, they may not be assigned
the same path in the graph.

2When k colours are used to label the routing paths, it is not uncommun to use integers
1 to k as colours, though basically the set of colours is not an ordered set (on the other
hand, refering to the i*" colour becomes handy when expressing some algorithm making use
of colours).

3For more about approximation theory, the reader can be referred to [Vaz01]. For short,
given some N'P-minimization problem and some real number d, a polynomial algorithm A
is said to be a d—approzimation algorithm for the problem, and the problem is then said to
be d-APX (or simply APX if the exact value of d is not under consideration), when, given
any instance I of the problem, one has #1{()1) < d, where A(I) is the cost of the solution
computed by algorithm A, and OPT(I) is the cost of an optimal solution (OPT(I) is always
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Figure 2: Figure (a) shows a communication instance I. Figure (b) and (c) show
all-optical routing Ry, and R, resp. which are solution to I. R, is an optimal
all-optical routing for I, but Ry is not (Ry, resp. R., makes use of 6 colours,
resp. 5). On the other hand, R, is a minimum load routing for I while R, is not
(R, makes every link support 4 colours, R. makes link zy support 5 colours).

some topologies have been selected to be paid specific attention.

When networks are linear (i.e. the graph is a path), the problem is equiv-
alent to the interval graphs vertex colouring problem, known to be in P(see
for instance [Wes96, p. 176]). It is again AN"P-hard when networks are rings
(i.e. when graphs are cycles), wether directed or not [EJO1], but is shown to be
2-APX ([RU94, MKR95], see also [EJO1]).

Restricted to undirected stars (i.e. graphs made of edges which all together
share a common end-point), the all-optical routing problem is N'P-hard but
4/3-APX [Erl99]. If restricted to directed stars, the problem is in P and the
same holds for spiders (i.e. graphs made of paths which all together share a
common end-point) [Bea00, WW9g].

And for trees of rings (i.e. the graph is the result of expanding each node
of a tree into a cycle in such a way that when to nodes are adjacent in the
tree, the corresponding cycles must have one and one only vertex in common),
wether directed or not, the problem is N'P-hard but APX in the undirected
case [RU94] as well as in the directed case [KP96].

As a matter of fact, when all-optical networks are concerned, meshes (graphs
with a grid pattern, see figure 3 and definition below) have been considered as
real competitive solutions among current metropolitan topologies [Bea00, Chi97,
SSV97]. For deflecting routing methods [Chi97], good results corroborate this
idea. While trees can be disconnected by a single link failure, meshes need up
to four links to fail (in most cases) at an expense of no more than twice as
much links. Furthermore, meshes have already been used in the past to build
parallel computers : 2D meshes for Intel Paragon, Intel Delta, Symult 2010 or
IBM Victor multiprocessors, and 3D meshes for Wavetracer computer Zaphir
or J-Machine (MIT).

assumed to be strictly positive). If no such d exists, then the problem is said to be No-APX.



Restricted to meshes, the all-optical problem is still NP—hard [KL84]. To
our knowledge it is not known wether it is APX (at least, if it is d-APX, then one
must have d > 2 [KL84]), and the best result is a poly(Inln N) approximation
algorithm on mesh of N x N nodes, while computing the number of colors of
an optimal all-optical routing is APX [Rab96]. Therefore, turning to particular
routings commonly used in meshes seems worthwile (see for example [BBP96,
Pal02a]), and this paper is devoted to the all-optical routing problem in meshes
when restricting to "row-column" routings (also known as "XY routings" or
"E-cube routings"), which we now define in a formal way.

From now on, all graphs we consider are undirected graphs : a graph G is
an ordered pair (V, E) where E, the set of edges of G, is a set of pairs of elements
of V, the set of vertices of G. When needed, V(G) (resp. E(G)) denotes the
set of vertices (resp. the set of edges) of G.

Given integer i, P; denotes the graph such that V(Py)) = {0,1,...,4 — 1,4}
and E(P;)) = {{0, 14 {1,2}, ... {i— 1,i}}. A path is a graph isomorphic? to
By for some integer i.

A subgraph of a graph G is a graph H such that V(H) CV(G) and E(H)
CE(QG). A path of a grah is any of its subgraphs which is a path.

The cartesian sum of two graphs G and G’ is the graph whose vertices
are the ordered pairs (x,z’) where z is a vertex of G and z’ a vertex of G’ and
such that there is an edge from (z,z’) to (y,y’) if and only if x = y and {2/, y'}
is an edge of G’, or ' = ' and {z,y} is an edge of G.

Given integers i and j, My ] denotes the cartesian sum of Pj; and Pj).
A mesh is a graph isomorphic to Mj;, ;) for some integers i and j. See fig-
ure 3 where M|, 5) is given a planar representation which suggests the following
definitions.

In a mesh, a row path (resp. a column path) is a path whose every edge
is of the form {(p, q), (p,q+1)} (resp. {(p, ¢), (p+1,9)}) for some integers p
and ¢, and a row-column path is a path which is the union of a row path
and a column path of the mesh (see figure 3). Note that row paths and column
paths are considered as special instances of row-column paths (formally, a path
of length 0 can be viewed both as a row path and a column path). Given some
communication instance whose network is a mesh, a row-column routing for
this instance is a routing made of row-column paths only.

We can now specialize the all-optical routing problem : the row-column
all-optical routing problem is the all-optical routing problem restricted to
networks being meshes and whose solutions are to be row-column routings.

To our knowledge, the row-column all-optical routing problem has been
known to be N'P—hard (for instance a proof can be derived from [EJ97a] where
communication instances on rings are mapped on meshes) though the result
seems not to have been published as such. In any case we give it a genuine
proof and we then prove the optimization problem to be APX.

In order to do so, we first turn our attention to another optimization problem
related to communication requests which we will eventually specialize to meshes.

4Two graphs are isomorphic when renaming their vertices can yield the same graph.
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Figure 3: Figure (a) gives a planar row-column representation of the mesh
Mi4x5)- Figure (b) shows the row-column path with end-points (1,1) and (4, 3),
and, therefore, with node (1,3) as “turning-point”.

Namely, given somme communication instance and some routing for this
instance, the load of an edge is the number of routing paths which this edge
belongs to, and the load of the routing is the maximum load of an edge with
regards to this routing (see figure 2 for an example).

The L—-load routing problem is then the decision problem consisting in,
given some communication instance and some positive integer L, answering the
question : is there a routing for the instance whose load is at most L 7 And
the minimum load routing problem is the associated optimization problem
defined as : given some communication instance, compute a routing for this
instance which minimizes the routing load®. A solution to a minimum load
routing problem will be called a minimum load routing.

Clearly, the load of a minimum load routing is at most the number of colours
used in an optimal all-optical routing, but their difference cannot be bounded
by a constant in general [ABNC*94, ABNC*96].

As the 1-load routing problem is known to be N'P—complete in meshes [KL84],
yielding the minimum load routing problem to be NP -hard, we specialize these
problems to meshes into the row-column L-load routing problem and to
the row-column minimum load routing problem respectively, namely by
restricting networks to be meshes and routings to be row-column ones.

Section 2 is devoted to load routing problems. We first show that the 1-
load row-column routing problem is in P, due the proof that the so-called 2-
choices 1-load problem (see section 2) is in P. We then prove the row-column

50ne can easily see that if networks nodes are converters, that is if any path can change
its colour at any node, minimizing the overall number of colours used in a routing for this
instance reduces to computing a minimum load routing.



L-load routing problem to be N'P-complete for L > 2, yieldind the row-column
minimum load routing problem to be N’P—hard and ensuring that the so-called
k-choices minimum load routing problem is too (where k > 2 is some positive
integer, see section 2). The latter is then proved to be k—APX, yielding that
the row-column minimum load routing problem is in turn 2-APX (while not
d— APX for any d < 2).

Section 3 is devoted to the row-column all-optical routing problem. Due to
a routing paths coloration result [Pal02a, BBP196]® and making use of results
from section 2, we prove the row-column all-optical routing problem to be d—
APX for some constant d (namely we show that d < 16).

We conclude in section 4 where extensions to tori are mentionned.

2 Row-column load routing problems

We investigate both decision and minimization load routing problems.

2.1 The row-column [-load routing problem NP—complete-
ness

As stated before, the row-column L-load routing problem is a decision
problem :

instance: a communication instance where the network is a mesh and a posi-
tive integer L

question: is there a row-column routing for the communication instance whose
load is at most L ?

It turns out that this problem is in P when L = 1 and otherwise N'P-
complete.

Our proof refers to the celebrated SATISFTABILITY problem whose restric-
tion as 3-SAT is N'P—complete (for instance, see [GJ79, p. 39, p. 48]) while its
2—-SAT restriction is in P (for instance, see [Pap94, p. 185]). Hereafter, we use
sets of clauses, sets of literals and boolean variables as in [GJ79] rather than
conjunctive normal form of boolean expression as in [Pap94].

211 L=1

We fisrt enlarge the problem to all kinds of networks.
The 2-choices 1-load routing problem is the decision problem defined
as follows:

instance: a communication instance I, and to each request {a,b} in I, the
assignment of two not necessarily distinct paths P$® and P{b joining a
and b in the I, network

6Though the algorithm given in [BBP196], as we understand it, seems not to prove the
result. See appendix for a possible counterexample.



question: is there a routing of load 1 for I. such that, for each request {a, b}

of I.., the corresponding routing path is P$® or P ?

Theorem 1 The 2-choices 1-load routing problem is in P.

Proof We reduce the 2-choices 1-load routing problem to 2-SAT.

Assume R = {r;|1 < i < n} is the set of requests of some instance I of a
2-choices 1-load routing problem such that Pi and P are the two paths assigned
to the request r; for 1 < i < n. Using R as a set of boolean variables, we define
C as the set of 2-clauses which, in turn, are defined for each pair {3, j} with
1 < 4,5 < n, according to three possible events:

e {-r;,—r;} when P} and P/ share a common edge
e {r;,r;} when P} and PJ share a common edge
e {-r;,r;} when P} and PJ share a common edge

Assume that S is a routing satisfying the set of requests R and let ¢ be
an interpretation of R such that, for each request r for which P¢® # Pg°,
é(r) = true, resp. &(r) = false, if r is satisfied in S by path P, resp. by
path P§® (values of ¢(r) are indifferent for other requests 7, if any). It can be
checked that ¢ satisfies C.

Conversely, let ¢ be an interpretation of R which satisfies C, and define the
routing S in such a way that if ¢(r) = true, resp. ¢(r) = false, r is satisfied
in S by path Pt resp. by path P®. It can be checked that S is a routing
solution to the 2-choices 1-load routing instance.

Thus, there exists a solution to the 2-choices 1-load routing instance if and
onnly if there exists a solution to the 2—SAT problem associated to C.

As 2-SAT is in P, we conclude from the fact that the set of clauses C can
be computed in polynomial time. O

Noticing that there are at most two possible row-column paths joining any
two vertices in a mesh, the following stems straightforwardly from theorem 1 :

Theorem 2 The row-column 1-load routing problem is in P.

2.1.2 L>2

Reducing 3-SAT to the row-column L-load routing problem, we now solve the
general case.

Theorem 3 The row-column L-load routing problem is N'P—complete for L >
2.
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Figure 4: Let C = {Cl, CQ, 03, 04} with Cl = {331, T2, _‘J,‘g}, CQ = {331, xr3, _‘J)4},
Cs3 = {x9, 3,24} and Cy = {—x1,22,24}. Figure (a) shows the commu-
nication instance I associated to C' and figure (b) shows a row-column 2-load
routing solution to /. The network in instance I is the mesh Mgy g). In figure
(a) each “horizontal” (resp. “vertical”) rectangle bears the two possible row-
column paths satisfying the communication request associated to one of vari-
ables x1,x9,z3 and x4 (resp. to one of the litterals of clauses C;, Cs, C3 and
C}, vertical rectangles being grouped according to the clause to which belongs
the litteral they stand for). “Blocking request” are depicted in dotted lines.

Proof We assume L = 2 (the proof is easily extended for L > 2 by solely
adding a convenient number of so-called "blocking requests" as defined below).
Clearly the problem is in N'P. Using a reduction of 3-SAT, we prove it to
be N'P-complete. Let C be some instance of 3-SAT with C = {c1,c2,...cm },
a set of 3-clauses over the set of boolean variables X = {z1,x2,..z,}. We
now define an instance I of the row-column 2-load routing problem using the
M(2n)x (2m+1)] mesh as the problem network (see fig. 4 for an example) :

e to each variable x;, we assign the request r; = {(2i — 1,0), (2¢,2m + 1)}

e to each positive literal [ € ¢;, with [ = x;, we assign the request r; ; =
{(0,25 — 1), (24,25)} together with a so-called "blocking request" blk; ; =
{(24,25 = 1),(24,25)}

e to each negative literal | € c¢;, with [ = —x;, we assign the request
ri; = 1(0,25 — 1),(2¢ — 1,2j)} together with a so-called "blocking re-

quest" blk; ; = {(20 — 1,25 — 1),(2i — 1,24)}
Fact 1 If there exists some interpretation ¢ satisfying C, then there exists a
row-column 2-load routing solution to I.

Assume ¢ satisfies C, and to each request r of I, choose the path that
joins the two end-nodes of r in M(2)x (2m+1)] according to the following:



o for any i, 1 <1i < n, if p(x;) = true (resp. ¢(z;) = false), the path
selected for r; uses column 2m + 1 (resp. column 0) ;

e for any j, 1 < j < m, there exists at least one litteral [ € c; such that
©(l) = true ; chose one such litteral [ and, in order to join the two
end-nodes of its corresponding request, select the row-column path
using column 25 — 1, while paths selected with regards to the requests
which are associated with the two other literals of c; use column 2j ;

e for any blocking request, the selected path is the only row-column
path joining its two nodes in the network (actually a row path).

It can be checked that the routing so computed is indeed a row-column
2-load routing solution to I.

Fact 2 If there exists a row-column 2-load routing solution R to I, then there
exists some interpretation ¢ satisfying C.

Assume R is a row-column 2-load routing solution R to I, we construct
an interpretation ¢ of C as follows : for any i, 1 < ¢ < n, if the path
selected for r; uses column 2m + 1 (resp. column 0), ¢(x;) = true (resp.
o(x;) = false). We now prove that ¢ satisfies C'.

Consider clause ¢; for 1 < j < m. Associated with literals from c;, there
are three requests in I sharing vertex (0,25 — 1) as an end-node. The
three of them cannot be assigned a row-column path using line 0, for R is
a 2-load routing solution to I. Therefore, at least one of them uses column
2j — 1. Assume, with no loss of generality, that this path is associated
with literal z; (the case —x; would be treated in a similar way). Then,
by definition of I, this path uses row 2i, and, because of the associated
blocking request blk; ; = {(2¢,25 — 1),(24¢,2)} which also uses row 23,
request r; = {(2¢ — 1,0), (2¢,2m + 1)} has been assigned a path using a
different row, namely row 2¢ — 1, thus using column 2m + 1, which means
@(x;) = true. Thus clause ¢; is satisfied, which ultimately leads us to
conclude that C itself is satisfied.

We conclude by considering that the instance I of row-column L-load rout-
ing problem associated with C' can be computed in polynomial time. O

Clearly, theorem 3 yields the following :
Theorem 4 The row-column minimum load routing problem is N"P—hard.

Reminding that it is not known, to our knowledge, wether the minimum load
routing problem is APX or not, and as the problem restricted to row-column
routings is still N'P-hard, the question of an approximation algorithm is posed.



2.2 The row-column minimum load routing problem ap-
proximation

Again, we first investigate a more general problem, namely, k being some posi-
tive integer, the k-choices minimum load routing problem, which we define
as follows :

instance : a communication instance I. and to each request r = {a,b} in I,
the assignment of at most k paths joining a and b in the I, netwotk

solution : a routing for /. such that each request r from I, is satisfied by a
path assigned to r

objective : minimize the load of the routing solution

When restricting to row-column paths to join two nodes in a mesh, routing
problems become 2-choices paths routing problems. This makes the row-column
minimum load routing problem a special case of the k-choices minimum load
routing problem, and we clearly may conclude from theorem 4 :

Theorem 5 The k-choices minimum load routing problem is N'P—hard.
We now show this more general problem to be APX.

Theorem 6 The k-choices minimum load routing problem is k—APX.

Proof Let I be some instance of the k-choices minimum load routing problem.
We restate the problem as a linear programming problem instance as follows.
Let R = {r;}1<i<n be the set of requests from I. To each request r; is associated
a set P; = {pi,ph,...,p}, } of k; feasible paths in the network G, with k; < k.
Selecting path pg- to join end-nodes of request r; if and only if xz =1 yields a
one-to-one mapping between routings solution to I and solutions to the integer
linear programming instance defined as :

ab e {0,1} foralli,j,1 <i<n,1<j<k
ki

xé:lforalli,lgign
=1

J
m(e) = Z x; for every edge e of the network G
c€E(p})

objective: minimize 7 = max m(e)
e€E(G)

Let 77, denote the optimal value of 7, and let 7}, be the optimal value of
7 when relaxing, for all i,j,1 <i <n,1 < j <k;, integer condition z} € {0,1}
to real condition z% € [0,1]. Obviously 7, < 7}y

10



For all 4,5,1 < i < n,1 < j < k;, assume a§» to be the value of x; in an

optimal solution to the relaxed linear programming problem and define :

b — 1 if a;- = maxi<n<k; a}'L

771 0 otherwise

(for a given i,1 < i < n, if more than one b; is equal to 1, put all of them but
one to 0).

Now, as maxi<j<k, a’ > 7, letting rglgorithm denote the load associated

algorithm

IN < kmir < kmir — I

* * *
TIN TIN TIR

We conclude by noticing that the size of the linear programming instance is poly-
nomialy related to the size of the k—choices minimum load routing instance. [

Restricting again k—choice routings to row-column routings in a meshes,
theorem 6 yields the following.

Theorem 7 The row-column minimum load routing problem is 2-APX.

The 2 approximation factor expressed in theorem 7 might be improved upon,
but not beyond % as stated in the following result.

Theorem 8 If the row-column minimum load routing problem is d-APX for
some constant d, then d > 3/2.

Proof Consider an optimization problem to which any solution has a cost
which is positive or null, while ¢ is some positive integer. Whenever the prob-
lem of the existence of a solution of cost less or equel to cis NP -complete then, it
is known that the optimization problem can’t be d-APX for any d < <! [LS95].
We can conclude from the fact that the row-column 2-load routing problem is
NP —complete (see theorem 3). O

3 The row-column all-optical routing problem

As mentioned in section 1, we first take advantage of the proof of theorem 3.

Theorem 9 The row-column all-optical routing problem is N'P—complete.

11



Proof Let C be some instance of 3—-SAT and let I be the communication in-
stance associated to C' in the proof of theorem 3. One can check that I can
be satisfied using 2 colours only if and only if there exists a row-column 2-load
routing which satisfies I, that is, due to the proof of theorem 3, if and only if
C is satisfaiable. Which leads to conclusion. O

Given a communication instance I and a row-column routing S for this
instance, let 7(S), resp. w(S), denote the load, resp. the number of colours,
used by S. Similarly, let «(I), resp. w(I), denote the load of a row-column
minimum load routing for I, resp. the number of colours used by an optimal
all-optical routing for I. As mentionned before, one has w(S) < w(S), and
therefore 7w(I) < w([l) as well.

Given a communication instance [ in a mesh, any row-column routing S for
I can be coloured into an all-optical routing for I using 87(S) colours at most
([Pal02a] claimed 97(S), [Pal02b, page 70] put it to 87 (S)). Taking advantage
of the row-column minimum load routing problem being 2—-APX, we can show
the row-column all-optical routing problem to be APX as well.

Theorem 10 The row-column all-optical routing problem is 16-APX.

Proof Let I be some communication instance whose network is a mesh, let S
be a routing for I computed by a 2-approximation row-column minimum load
routing algorithm whose existence is asserted by theorem 7, and let ¢(S) be the
number of colours used by the paths colouring algorithm from [Pal02a].

We then have ¢(S) < 8 x w(S) < 8 x 2 x 7w(I), and we conclude with the
general inequality 7(I) < w(I). O

4 Conclusion

The all-optical routing problem and the minimum load routing problem are
both N'P-hard in general, and it is not known wether they are APX or not.

Restricted to meshes, these two problems are known to be N'P—hard. In
this paper, we proved this still holds even when restricting routings to be row-
column routings. Contrary to the general case for which no answer seems to be
known, we proved the two problems to be APX.

Speaking of the row-column all-optical routing problem, and due to the
indirect proof of the result, we think the constant asserted in the 16-APX result
(see theorem 10) should be improved upon.

Regarding the 2—factor algorithm for the row-column minimum load routing
problem, it might also be improved upon, bearing in mind the % limit expressed
by theorem 8

Last, it is worth noticing that some results can be extended from meshes to
tori”.

"Given integer i, Cls) denotes the graph obtained by adding edge {4,0} to path P;. A
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Row-paths and column paths can be defined in tori as they are in meshes,
extending straightforwardly row-column paths and row-column routings to tori.
On the one hand, as any communication instance on a ring can be mapped on
a single row (or a single column) of a torus, the row-column all-optical problem
is N'P—complete in tori as is it in rings. On the other hand, viewing a mesh
as a "portion" of some larger torus and using adequate "blocking requests" to
confine routings inside such portions, the row-column L-load routing problem
can be proved to be N'P—complete for L > 2 in tori as in meshes (see appendix
for details). Futhermore, the row-column minimum load routing problem in
tori, thus N"P-hard, can be proved to be 8~APX (from theorem 6). Last,
using again APX results from [Pal02a] (or [Pal02b]), the row-column all-optical
routing problem can be shown to be APX in tori (a priori with rather a large
constant, namely 224, but still an APX problem).
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Appendix A

In [BBP196], the following problem is considered:
instance: a communication instance I. in a mesh and a routing R for I;

solution: a positive integer time assignment o(r) to each request r of I. such
that whenever two requests of I, are assigned the same time, their associ-
ated paths in R are edge-disjoints;

objective: minimize o(R) = max,cg o (r).

Assuming that communication r lifetime lays in time interval [o(r), o(r)+1],
no interference is to be feared, and this objective reduces to minimizing the
overall communication duration.

Obviously, it is equivalent to colouring the paths in routing R in such a way
that no two paths sharing an edge should be assigned the same colour and so
that the least possible number of colours is used.

In their section 5.2, the authors restrict the problem to so-called ESM
(Eastward-Southward Mesh) networks: “The N x N Eastward-Southward mesh
network has node-set V = {(7,7) : 0 <,5 < N — 1} and arcs connecting each
node (i,7) to node (i + 1, j) providing that ¢ < N — 1, and to node (¢, + 1),
providing that 7 < N — 1".

Then their theorem 8 states that a time assignment ¢ can be computed in
polynomial time so that o(R) doest not exceed twice the load of R, leading to
the same result as in [Pal02a] that we use in section 3 to prove our theorem 8.

However, we do not feel confident in their proof which, as we understand it,
performs a greedy assignment of ¢ to a family of paths restricted to row-column
paths which start going eastward then turn to go southward, and according to
the following points (see figure 5):

e To scan node (i, j) means to provide the least “feasible” integer as its time
assignment o(r), doing so, one at a time and in any order, to each request
r whose associated path has its “turning point” on node (4, j).

e Nodes belonging to a same diagonal of equation i — j = constant are to
be scanned consequently and in ascending order of i and j.

e Diagonals are to be scanned one after the other in decreasing order of the
constant (thus nodes (N —1,0) and (0, N — 1) are the firt and the last
node to be scanned respectively).

Figure 6 shows a routing R with load 2, while it seems that the last request
to be scanned will be assigned time 5, therefore not an assignment fulfilling
theorem 8 requirement in [BBP196].
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Figure 5: Figure (a) shows a so-called 4 x 4 ESM. Figure (b) shows the order
according to which its nodes are to be scanned.

Figure 6: Seemingly a counterexample to the proof of theorem 8 in [BBPT96]:
the routing load is 2 while the last path to be scanned, according to our un-
derstanding of their algorithm, is assigned number 5, thus exceeding twice the
load.
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Appendix B

We extend the row-column L-load routing problem completeness from meshes
to tori.

Theorem 11 In tori, the row-column L-load routing problem is N'P—complete
for L > 2.

Proof We reduce the row-column L-load routing problem in meshes to the
row-column L—-load routing problem in tori.

Let M be the mesh M, for some integers m and n. Let I. be some
communication requests on M. Let L be some positive integer and I be some
row-column L-load routing instance whose network is M and communication
instance is 1.

Let T be the torus Tj(m+41)x(nt+1)] and let I” be the row-column L-load
routing instance whose network is 7" and whose communication instance I/ is
defined by adding to I, the following so-called blocking communication requests:

e for all j € [0,n], L requests {(m + 1,5),(m,j)} and L requests {(m +
1,5),(0,5)}

o for all ¢« € [0,m], L requests {(i,n + 1), (¢,n)} and L requests {(i,n +

1), (i,0)}

If Ry is a routing of load at most L satisfying I then I’ can be satisfied
by Rp; U S where S is a routing satisfying each blocking request by a path of
length 1. This routing is of load L.

Conversely, if Rt is a routing of load at most L satisfying I’ then the paths
of Rr satisfying the blocking requests saturate the edges that where added to
the mesh (see figure 7), as deduced from the following facts:

e the number of blocking requests is 2L(n+1)+2L(m+1) and each blocking
request has one vertex in V(M) and one outside;

e the number of edges with one end point in V(M) and one outside is
2(n+1)+2(m+1).

Thus the restriction of Ry to I. is a routing in M of load at most L and a
solution to I.
Which leads to conclusion.
O
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Figure 7: A mesh M3, 4 (solid edges). A torus Tjss5) (solid and dotted edges).
Blocking requests saturate the dotted edges.
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