
HAL Id: lirmm-00109200
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109200

Submitted on 24 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Divide and Conquer Revisited. Application to Graph
Algorithms

Binh-Minh Bui-Xuan, Michel Habib, Christophe Paul

To cite this version:
Binh-Minh Bui-Xuan, Michel Habib, Christophe Paul. Divide and Conquer Revisited. Application to
Graph Algorithms. 04027, 2004, pp.14. �lirmm-00109200�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00109200
https://hal.archives-ouvertes.fr

Divide and Conquer Revisited

Application to Graph Algorithms

Binh Minh Bui Xuan, Michel Habib, and Christophe Paul

CNRS - LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France,
{buixuan,habib,paul}@lirmm.fr

Abstract. Divide-and-conquer is a seminal paradigm of computer sci-
ence that can be summarised as divide the problem into subproblems,
conquer (solve) the subproblem and combine the partial solutions. With-
out any specific assumptions on the size of the subproblems, it enables
to design quadratic time worst case bound algorithms. Well-known algo-
rithms (e.g. median search [3]) propose to minimise the recursive com-
putation in order to yield linear time. Up to our knowledge, no known
method proposes to cut down the divide-and-combine part. This paper
show that doing so quadratic time can also be improved.
As an example of application, the Common Connected Problem is con-
sidered (a problem arising from computational biology [2]). Given a pair
of graphs G1 and G2 on the same vertex set V , it consists of finding the
coarsest partition of V such that each part induces a connected subgraph
of both G1 and G2. Using a divide-and-conquer approach, we propose
a generic algorithm that, depending on the data-structure, can be used
as well for arbitrary graphs, interval graphs and planar graphs. This al-
gorithm equals the best known complexity bounds for the two former
cases [6, 8] and improves the planar case by a log n factor.

1 Introduction

The political proverb divide ut imperes is now a fundamental strategy in com-
puter science; the best known examples probably are standard sorting algorithms
such as Quicksort or Mergesort, dynamic programming algorithms. . .Divide-
and-conquer paradigms are recursive and involve three steps level of the recur-
sion: it divides the problem into subproblems; conquers the subproblems (solves
them); and combines the solutions to subproblems into a global solution.

Formally, let be given a problem P over some set S of data structures, along
with a function Size that maps a data structure S ∈ S to some arbitrary number
Size(S) − for instance, the size Size(G) of a graph may ignore the number of
vertices and only count the number of edges. An algorithm H is defined as a
divide-and-conquer algorithm for P with respect to Size, or DaC algorithm for
short when no confusion occurs, if H takes S ∈ S in the input; and, unless S

is a trivial case for P , namely unless S ∈ TrivH(S), divides it into a set SH(S)
of subsets of S, then conquers, i.e. possibly performs some recursive calls over
a subset of SH(S); and finally combines the results to the output. If CH

total(S)

2 B.-M. Bui Xuan, M. Habib and C. Paul

denotes the total cost for solving P over S by H, RecH(S) time for recursive
calls over SH(S), and DCH(S) the divide and combine time, then the total cost
for solving P over S with H can be formalised by induction as follows (see [4]).

{

CH
total(S) = 1 if S is a trivial case for P ,

CH
total(S) = DCH(S) + RecH(S) otherwise.

(1)

The last inductive relation contains two sum-terms, implying that the to-
tal computing time for divide-and-conquer algorithms can be lightened by at
least two distinct approaches. Since the costs of divide-and-conquer methods are
mainly though as dependant on the cost for a data of lesser size, the second sum-
term, related to the number of recursive calls, is usually optimised to decrease
the complexity. In this framework, linearity can be achieved when one can avoid
the recursive calls on a fraction of S (see e.g. the median finding algorithm [3]
or algorithms deriving from the planar separator theorem [10]) Such examples
mostly do not care about the first sum-term, since minimising the recursive part
turns out to be an efficient way to lessen the total cost for divide-and-conquer
algorithms.

For a survey on divide-and-conquer methods see standard textbooks on al-
gorithms [4, 12]. Our works mainly lay on the alternative of saving the divide
and combine time in a given divide-and-conquer algorithm, when no minimising
on recursive calls might easily occur. More specifically, we investigate an “avoid
the largest“ idea under the formal framework of divide-and-conquer algorithms.
A divide-and-conquer algorithm H is avoid-the-largest-DC when the divide and
combine time for any SH(S) = (Si)i∈J1,kK is proportional to Size(S)−Size(Si0),
where i0 is such that Size(Si0) is the largest among (Size(Si))i∈J1,kK. In this case,
Θ(Size(S) logSize(S)) computing time is obtained even if recursive steps have
to be applied on all parts. It could seem hard and tricky at first sight to de-
sign decomposition algorithms that avoid at each recursive step to consider the
largest part (and therefore that do not scan the entire data), but an algorithm
achieving this requirement will afterwards be presented.

Indeed, as an application this paper presents a method, called competitive
search, which enables us to solve the Common Connected Problem (CCP for
short). Given a pair of graph G1 = (V, E1), G2 = (V, E2) on the same vertex
set, CCP aims to compute a partition of V into subsets (V1, . . . Vk) such that
any Vi is a maximal subset of vertices such that both induced subgraphs G1[Vi]
and G2[Vi] are connected. CCP arises in theoretical computer science since it
is strongly related to the modular decomposition problem [11, 7] but also in
applied fields, namely computational biology (interested reader should refer to [2,
8] for this aspect). The algorithm we present achieves the best known complexity
in case of arbitrary graphs (namely O((n + m) log2 n) [6]) and interval graphs
(O((n + m) log n) [8]) and improves the complexity in case of planar graphs to
O((n + m) log n).

The paper is organised as follows. Section 2 proposes the analysis of the
”avoid-the-largest-DC” divide-and-conquer algorithm. Section 3 depicts the ex-
ample of competitive search to illustrate the ”avoid-the-largest-DC” paradigm.

Divide and Conquer Revisited Application to Graph Algorithms 3

The competitive search is then used in Section 4, which is dedicated to CCP

resolution.

2 Minimising the Divide-and-Combine Time

Divide-and-conquer techniques have numerous variants. The aim of this paper is
not to review them. Indeed it focuses in the case when divisions do not “super-
size“ the sub-instances, i.e. when axiom Adiv below holds.

Adiv(H) : ∀S ∈ S\TrivH(S),







SH(S) = (S1, S2, . . . , Sk)
∀i ∈ J1, kK, Si ∈ S ∧ Size(Si) 6= 0
Size(S) = Size(S1) + . . . + Size(Sk)

(2)

In this case, a naive bound in O(DCH(S)2) is easily obtained when analysing
H(S) worst case computing time. To improve the quadratic bound, common tech-
niques consist of minimising the recursive part RecH, which most of the time
leads to linear − on the size of DCH(S) − worst case analysis, leaving no real
need for coarser minimising the divide and combine time. Unfortunately, min-
imising RecH sometimes might be intricate and difficult to realise. In this case,
it somehow becomes crucial to investigate the “incomplete divide and combine
time“ paradigm.

Let be given a divide-and-conquer algorithm H holding Adiv(H) with respect
to Size. We define H to be completely-recursive and avoid-the-largest-DC when
there exists a constant αH such that, for all non-trivial input S, if Si0 is the
largest with respect to Size among S

H(S) = (S1, S2, . . . , Sk), then

DCH(S) ≤ αH ×





∑

i∈J1,kK,i6=i0

Size(Si)



 ,

RecH(S) =
k
∑

i∈J1,kK

CH
total(Si).

Theorem 1 (Avoid-the-Largest-DC Computing Time). Any divide-and-
conquer algorithm, satisfying axiom Adiv, with respect to Size that is completely-
recursive and avoid-the-largest-DC runs in αH ×Size(S) logSize(S) worst case
time where S is the given input. The upper bound is reached.

Proof. Let be given a completely-recursive and avoid-the-largest-DC DaC algo-
rithm H, we prove by induction on Size(S) the following.

∀S ∈ S, CH
total(S) ≤ αH × Size(S) logSize(S).

Indeed, if S is not trivial, let S
H(S) = (Si)i∈J1,kK, k be such that Size(Sk) is

the largest among (Size(Si))i∈J1,kK, and ni = Size(Si). Then,

CH
total(S) = αH ×

k−1
∑

i=1

ni +

k
∑

i=1

CH
total(Si).

4 B.-M. Bui Xuan, M. Habib and C. Paul

Besides, for nk is largest among (ni)i∈J1,kK,

∀1 ≤ i ≤ k − 1, ni ≤
Size(S)

2
Hence, ∀1 ≤ i ≤ k − 1, log ni ≤ log Size(S)− 1

Combining these to the inductive hypothesis results in:

CH
total(S) ≤ αH ×

(

k−1
∑

i=1

ni +

k
∑

i=1

ni log ni

)

≤ αH ×

(

k−1
∑

i=1

ni +

k−1
∑

i=1

ni log ni + nk log nk

)

≤ αH ×

(

k−1
∑

i=1

ni +

k−1
∑

i=1

ni(log Size(S)− 1) + nk log Size(S)

)

≤ αH × Size(S) logSize(S).

Finally, let be constructed a sequence (Sn)n∈N of instances for P as follows.
S0 is a trivial case for P . For all i ≥ 1, Si is such that H divides Si into two
sub-instances that are both identical to Si−1. Thus, every element Si in (Sn)n∈N

is such that H spends at least αH × Size(Si) log Size(Si) solving P on Si. �

Remark 1. As opposed to median search [3] or planar separator techniques [10],
in which the size of the input along recursive calls diminish geometrically, yield-
ing a logarithmic bound on the recursion depth, it is noteworthy that the above
complexity is reached even if the recursion depth of such a method can be linear
in Size(S).

3 Competitive Graph Searches do Avoid the Biggest

Divide and Combine Time

This section focuses on a particular graph search algorithm, namely the com-
petitive graph search, that identifies any connected component but the largest
without exploring entirely the graph. That algorithm ables us to answer the
“avoid the largest“ in the divide and combine step and therefore follows the set-
tings of Theorem 1. First of all, notice that the size of a connected component
is best represented by the number of its edges.

Roughly, a classical search on a given graph begins by selecting some ar-
bitrary vertex, then stays within the connected component that contains the
selected vertex until the whole component is identified. Therefore, applying a
classical graph search for identifying the small connected components might re-
quire investigating the whole initial graph, for vertex selections are haphazard.

A competitive search can be launched if a pointer to each connected com-
ponent is available. Dealing with a given connected component, whenever one

Divide and Conquer Revisited Application to Graph Algorithms 5

of its unvisited edge is identified, the search on that component is postponed
until one new edge is identified for each of the remaining components. Once all
the edges of a component have been visited, that component is removed from
the competitive search. The algorithm continues as long as there are at least two
remaining components. Obviously the last connected component C is the largest
one and has not been entirely visited by the search. Indeed, if m′ is the number
of edges of the second largest connected component, then only m′ edges of C

have been discovered.

Lemma 1. Given a pointer per connected component of a graph G, a competitive
search identifies the connected components but the largest, say C, in time 2.(mG−
mC) where mG and mC are respectively the number of edges of G and C.

Remark 2. Using such a competitive search to answer the “avoid-the-largest-
DC“ aspect of Theorem 1 leads to constant αH = 2.

In the following, the list of pointers required by the competitive search will be
a list, namely Rep, of vertices in G such that every connected component in G has
exactly one representative vertex in Rep. And GET_SMALL_SUBGRAPHS(G, Rep)
will denotes the competitive graph search.

4 Bringing Competitiveness to the CCP

Let us first recall that the Common Connected Problem, given two graphs G1

and G2 on the same vertex set V , aims to identify maximal subsets of vertices
that induce connected subgraphs of both G1 and G2. As explained in [6], solving
CCP may be restricted to pair of graphs with disjoint edge sets. Moreover let
us assume w.l.o.g. that one of the two graphs, say G1, is connected. If G2 is
also connected, then such an instance is trivial. Lemma 2 [6] is the basis of the
algorithm and allows us to use the competitive search.

Lemma 2. [6] Let G = (G1, G2) be given as a pair of graphs over the same
vertex set V . If X ⊂ V is such that there exists one graph Gi ∈ G where no edge
can be found between X and V \X − for instance, if X is a connected component
in Gi − then:

CCP (G) = CCP (G[X]) ∪ CCP (G[V \ X]),

Gi[Y] is the subgraph of Gi induced by Y , and G[Y] denotes (G1[Y], G2[Y]).

Let be given G = (G1, G2) as a non-trivial instance of the CCP and satisfy-
ing the above hypothesis. Let V1, V2, . . . , Vk stand for the connected components
of G2. Lemma 2 motivates dividing G into G[V1], . . . ,G[Vk]. Assuming a graph
search has already collected a list containing one representative per Vi, such
division step, which consists of removing in G1 the edges linking vertices of dif-
ferent Vi’s (henceforth a dynamic data-structure for maintaining connectivity is
required, see next subsection), can be done in an ”avoid-the-largest-DC” manner

6 B.-M. Bui Xuan, M. Habib and C. Paul

i
1(G) i > 1

(G) i > 12
i

:1 2G
4 = (G , G)4 4

G
k−1

G
k−1

2
G 1 2

2 2= (G , G) :

:= (G , G)1 2G
k

k k

iii

Fig. 1. A sequence (Gi)i>2 = ((Gi
1, G

i
2))i>2 of tricky instances of CCP , yielding the

maximal complexity to the divide-and conquer scheme for solving CCP . i. Recursive
definition for (Gi)i>2. ii. Example of G4.

as follows: 1) using a competitive search, select the k − 1 smallest components,
say V1, . . . Vk−1; 2) using a graph search extract G[V1], . . . ,G[Vk−1]; 3) G[Vk] can
be obtained by removing from G the vertices of V \Vk together with their incident
edges. These three steps can all be done in time linear in the number of edges
incident to

⋃

1≤i≤k−1
Vi. To prepare the next recursion step, a representative of

each connected component of the induced subgraphs G1[Vi] (1 ≤ i ≤ k) has to
be collected. For the subgraphs G1[Vi], for i < k, a graph search can be afforded
since they are of size small enough. The main trick concerns G1[Vk].

Let V k denote V \ Vk =
⋃

1≤i≤k−1
Vi. Since G1 is connected, the subset of

vertices of Vk neighbouring some vertex in V k contains at least one vertex per
connected component of G1[Vk]. This set can be computed in time proportional
to the number of edges incident to V k by routine GET_OUTGOING_VERTICES de-
fined afterwards. Then, using the dynamic data-structure for graph connectivity,
a cleaning will be performed by routine FILTER to save only one representative
per connected component. Finally the algorithm go ahead recursively by alter-
nating the respective roles of G1 and G2 depicted above.

Before presenting the whole algorithm, let us first describe the dynamic data-
structures and the various routines involved in its pseudo-code.

Dynamic Data Structure for Connectivity Maintenance We bid our
reader to notice that, with a certain degree of abusiveness, a dynamic data
structure sometimes is blended together with its represented graph. The dynamic
data structure should allow three following queries.

– INIT(G): input a graph G, output a data structure DS representing G.
– UPDATE(DS, DELETION, E): input a data structure DS and a list E of edges

in DS, delete in DS all edges in E, and output the remaining of DS.

Divide and Conquer Revisited Application to Graph Algorithms 7

– GET_COMPONENT(DS, v): input a data structure DS and a vertex v in DS,
output the connected component that contains v.

The use of the dynamic data-structure (in the initialisation step, in the
FILTER routine and along the updates) implies an extra cost Cextra. Depending
on the inquired data-structure Cextra may vary. For instance, the best known
O((n+m) log2 n) worst case complexity for solving CCP over arbitrary graphs [6]
has been reached using ET-trees dynamic data structure [9]. Actually, Cextra is
the only responsible for the second logarithmic factor in the global comput-
ing time. This highly motivates looking for dynamic data structures with lower
maintaining cost as clique-path representation of interval graph does [8]. Edge-
ordered dynamic tree [5] devoted to represent plane graphs also allows to solve
CCP over planar graphs with a low Cextra. It turns out that our algorithm can
be seen as a generic algorithm for all these three different cases. Moreover the
mixing different dynamic data-structures is allowed (e.g. for G1 being an interval
graph and G2 a planar graph).

Basic routines Let us briefly sketch the primary routines. For convenience, if
(V1, V2, . . . , Vp) is a collection of disjunctive subsets of V (G), we define the set
of “bridges“ in G between (Vi)i∈J1,pK as

InterEdges(G, (Vi)i∈J1,pK) = {(u, v) ∈ E(G) | ∃i 6= j, u ∈ Vi ∧ v ∈ Vj}.

– GET_REPRESENTATIVES(G): thanks to a classical graph search over G, com-
pute a list with exactly one vertex per connected component in G.

– GET_OUTGOING_EDGES(G, X): thanks to a classical graph search over G[X],
compute InterEdges(G, (X, V \X)).

– GET_OUTGOING_VERTICES(G, X): thanks to a classical graph search over G[X],
compute all extremities in InterEdges(G, (X, V \ X)) that are exterior to
X .

The first procedure runs in linear time on the size of the input graph. The
two last procedures compute in time proportional to

|X | + |E(G[X])| + |InterEdges(G, (X, V \X))|.

Given a list of vertices containing at least one vertex per connected compo-
nent of some graph, FILTER routine works as follows: 1) it queries the dynamic
data-structure to get an identifier (e.g. an integer) of the connected component
of each element of the list; 2) the elements of the list are sorted with respect to
the identifier of its connected component; 3) by a scan, the list is finally filtered
to save only one element per connected component.

We are now able to depict the recursive core of our algorithm (see procedure
MAIN).

8 B.-M. Bui Xuan, M. Habib and C. Paul

INPUT : (G, i, Representatives,DS): quadruplet, where

i is a number belonging to {1, 2} − we define i = 3 − i;

G = (G1, G2) a pair of graphs over the same vertices set s.t.

Gi is connected and E(G1) ∩E(G2) = ∅;
Representatives a list containing exactly one vertex per

connected component in Gi;

and DS = (DS1, DS2) data structures representing G.
OUTPUT: Result: list of maximal common connected components in G.

// The trivial and terminating case: Gi is also connected

1. If |Representatives| = 1 then Result← [V];
2. Else

3. Result← [];
4. (V1, V2, . . . , Vk−1)← GET_SMALL_SUBGRAPHS(Gi , Representatives);

// Proceeding small subgraphs in time prop. to their size

5. Forall j ∈ J1, k − 1K do:

6. Compute G[Vj] = (G1[Vj], G2[Vj]) from the knowledge of (G, Vj);
7. Representatives← GET_REPRESENTATIVES(Gi [Vj]);
8. OutgoingEdges← GET_OUTGOING_EDGES(Gi , Vj);
9. UPDATE(DSi , DELETION, OutgoingEdges);
10. Compute DS[Vj] from the knowledge of (DS, Vj);
11. Result← Result @ MAIN(G[Vj], i, Representatives,DS[Vj]);
12. EndFor

// Coping with the biggest subgraph in time proportional to

//the total size of the small subgraphs

13 Vk ← V1 ∪ V2 ∪ . . . Vk−1;

14. Compute G[Vk] from the knowledge of (G, Vk);

15. OutgoingV ertices← GET_OUTGOING_VERTICES(Gi , Vk);

16. Compute DS[Vk] = (DS1[Vk], DS2[Vk]) knowing (DS, Vk);
17. Representatives← FILTER(OutgoingV ertices,DSi [Vk]);
18. Result← Result @ MAIN(G[Vk], i, Representatives,DS[Vk]);
19. EndElse

20. Return Result.

Procedure MAIN.

Divide and Conquer Revisited Application to Graph Algorithms 9

Complexity Issues To analyse the computing time Ctotal(G) of our algorithm,
we need more knowledge on the inquired dynamic data structures. Thus, we
define CINIT (G) as the cost of INIT(G), CCOMP (DS) of GET_COMPONENT(DS, v),
and CDEL(DS) of UPDATE(DS, DELETION, E), when E is reduced to a singleton.

As before, we differentiate in Ctotal(G) a variable cost Cextra(G) due to queries
to the dynamic data structures from the remaining Ccore(G). Three terms are
contained within Cextra(G): the cost CInit(G) for initialising the dynamic data
structures, the total cost CFilter(G) for calls to FILTER, and the total cost
CMaintenance(G) due to edge-deletions. Concisely:

Ctotal(G) = Cextra(G) + Ccore(G),

Cextra(G) = CInit(G) + CFilter(G) + CMaintenance(G).

Lemma 3. Let be given an instance G = (G1, G2), along with m = |E(G1)| +
|E(G2)|, and DSi = INIT(Gi) for i ∈ {1, 2}. Then,

CInit(G) = CINIT (G1) + CINIT (G2)

CFilter(G) = O(m × (CCOMP (DS1) + log m))

= O(m × (CCOMP (DS2) + log m))

CMaintenance(G) = O(m × CDEL(DS1)) = O(m × CDEL(DS2))

We now evaluate Ccore(G). Though routine MAIN is an avoid-the-largest-DC
DaC algorithm, we introduce a function Size as follows: if G = (G1, G2) is the
instance, then Size(I) = |E(G1)|+ |E(G2)|, where I is the corresponding input
given to MAIN routine.

Lemma 4. Let be given G = (G1, G2) as an instance. Then,

Ccore(G) = O(m log m) where m = |E(G1)| + |E(G2)|.

Proof. When ignoring the processing time of lines 9 and 17, which already is
taken into account within Cextra, MAIN meets the definition of an avoid-the-
largest-DC DaC algorithm satisfying axiom Adiv with respect to Size.

Indeed let us first prove that MAIN is a DaC algorithm satisfying axiom
Adiv with respect to Size. Unless its input I = (G, i, Representatives,DS) is
trivial (line 1), the procedure divides V , set of vertices in G = (G1, G2), into a
partition V1, . . . , Vk−1, Vk, where Vk = V \(V1∪. . .∪Vk−1) (line 4). This operation
implicitly decomposes the input I into I1, . . . , Ik, Ik+1 defined as follows.

∀j ∈ J1, kK, Ij = (G[Vj], i, Representatives,DS[Vj])

Ik+1 = ((QuotientG1, QuotientG2), _, _, _),

where QuotientGi = (V, InterEdges(Gi, (Vj)j∈J1,kK)) for i ∈ {1, 2}, and the
symbol _ stands for dummies. Thus, by constructions of Size and (Ii)i∈J1,k+1K,
the non redundant divisions axiom Adiv holds for MAIN. Furthermore, MAINmakes
recursive calls (lines 11 and 18) to solve (Ij)j∈J1,kK. As for Ik+1, which is a
trivial non-productive case, its resolution is done by being skipped. Finally, MAIN

10 B.-M. Bui Xuan, M. Habib and C. Paul

merges, in insignificant time, the corresponding results (lines 11 and 18) to its
output (line 20). Hence, MAIN is a DaC algorithm with respect to Size with an
insignificant merging time.

We now compute the cost of dividing I , when I is not trivial, and achieve
proving that MAIN is avoid-the-largest-DC. Notice that the largest element among
(Ij)j∈J1,k+1K is Ik. First, in MAIN, lines 2-7, 10-14, 16 and 18-19 can be computed
in time proportional to Size(I)−Size(Ik)−Size(Ik+1) = Size(I1)+Size(I2)+
. . . + Size(Ik−1). Now, ignoring lines 9 and 17, there still are two lines left: 8
and 15. Fortunately, their computing time is proportional to

k−1
∑

i=1

Size(Si) + Size(Sk+1).

Since obviously Ik is the largest instance, we can afford the former computing
time and MAIN is an avoid-the-largest-DC DaC algorithm.

The lemma then follows from Theorem 1. �

best so far our algorithm conjecture

forests of O(n + “K“) [13] O(n log n) O(n) ?

disjunctive paths

arbitrary graphs O(n log n + m log2 n) [6] O(n log n + m log2 n) ?

interval graphs O((n + m) log n) [8] O((n + m) log n) ?

unit interval graphs O(n log ∆ log n) [1] O((n + m) log n) = O(n + m) =

O(∆n log n) O(∆n) ?

planar graphs O(n log2 n) [6] O(n log n) ?

forests of trees O(n log2 n) [6] O(n log n) ?

permutation graphs O(n log n + m log2 n) [6] O(n log n + m log2 n) O((n + m) log n) ?

Fig. 2. Time complexity solving problem CCP over two graphs with disjoint edge sets.

Theorem 2. Let be given G = (G1, G2) as an instance of CCP , along with
m = |E(G)| = |E(G1)| + |E(G2)| and n = |V (G1)| = |V (G2)|. Our CCP

algorithm runs in O((n + m) log n) worst case time if G is a pair of planar
graphs, in O((n + m) log2 n) otherwise.

Proof. Both ET-trees [9] and edge-ordered dynamic tree [5] data structures yield
CINIT (G) = O((nG+mG) log nG) and CCOMP (DS) = O(log nDS), where nG =
|V (G)|, mG = |E(G)|, and nDS is the size of DS, which can be the number

Divide and Conquer Revisited Application to Graph Algorithms 11

of vertices or the number of edges for both data structures are trees. Besides,
ET-trees maintain CDEL(DS) = O(log2 n) amortised cost per deletion, and
edge-ordered dynamic tree maintain an amortised CDEL(DS) = O(log n).

Then, the theorem follows from Lemma 3 and 4. Notice that G1 is supposed
to be connected, therefore O(n + m) = O(m). �

Correctness The correctness of the global algorithm follows from the one of
MAIN, which will be the issue of Theorem 3. However, we need some preliminaries
before stating the theorem.

Lemma 5. Let be given a connected graph G = (V, E), along with a subset
X ⊂ V of its vertices. Then, each connected component in G[V \X] has at least
one vertex that belongs to the list

OutgoingV ertices = GET_OUTGOING_VERTICES(G, X).

According to Lemma 5, whenever FILTER is inquired at line 17 in MAIN,
its input (OutgoingV ertices, DSi[Vk]) is such that DSi[Vk] encodes Gi[Vk] and
each connected component in Gi[Vk] has at least one representative vertex in list
OutgoingV ertices. Then, FILTER is to get rid of the extra-representatives from
OutgoingV ertices so that a competitive graph search can further be conducted
in GET_SMALL_SUBGRAPHS. This is to be formalised in Lemmas 6 and 7 below.

Lemma 6. Let be given a dynamic data structure DS that represents some
graph, along with a list X containing at least one representative vertex per con-
nected component in the graph. Then, FILTER(X, DS) selects from X exactly one
representative vertex per connected component in the graph that DS represents.

Lemma 7. Let be given a graph G; let G1, G2, . . . , Gk stand for the partitioning
of G into maximal connected subgraphs of G. If each graph among (Gi)i∈J1,kK has
exactly one vertex some list Rep, then GET_SMALL_SUBGRAPHS(G, Rep) outputs
(V (G1), V (G2), . . . , V (Gk−1)).

We now is ready for proving MAIN.

Theorem 3.
1. Every possible input (G, i, Representatives,DS) to MAIN holds the following.

i. G = (G1, G2) is a pair of planar graphs, where V (G1) = V (G2) = V and
E(G1) ∩ E(G2) = ∅.

ii. i ∈ {1, 2} is such that Gi is connected.
iii. Representatives is a list of vertices such that every connected components

in Gi has exactly one representative among its elements.
iv. DS = (DS1, DS2) is a pair of data structures that respectively represent G1

and G2.

2. If the above properties hold, MAIN(G, i, Representatives,DS) computes the
maximal common connected components in G.

12 B.-M. Bui Xuan, M. Habib and C. Paul

Proof.
1. Mostly follows from Lemma 6.
2. By induction on the size n of the vertex set.

If n = 1, or if Gi is connected, then |Representatives| = 1 and MAIN will
returns [V] (line 1). The lemma holds.

Let now be given a number p such that the lemma holds for any possible
input to MAIN where the two graphs share the same vertex set of size lesser
than or equals to p. We suppose that n = p + 1. As before, if Gi is connected,
the lemma holds. If Gi is not connected, |Representatives| ≥ 2 and line 1 is
skipped. Moreover, Lemma 7 states that, after line 4, (V1, V2, . . . , Vk−1) are the
corresponding non-empty vertex sets to the maximal connected subgraphs of
Gi but the biggest. For convenience, let Vk stand for the remaining vertex set.
Lemma 2 can be applied successively on V1, V2, . . . , Vk−1 and results in the
following.

CCP (G) = CCP (G[V1]) ∪ CCP (G[V2]) ∪ . . . ∪ CCP (G[Vk]).

Since |Vi| ≤ p for all 1 ≤ i ≤ k, we deduce from the inductive hypothesis that
MAIN correctly computes all the sets CCP (G[Vi]) at lines 11 and 18. Therefore,
lines 3-19 correctly compute CCP (G), which is union of all the sets CCP (G[Vi]).
The lemma holds.

Finally, the inductive reasoning over V is exhibited in order to achieve the
proof: the lemma holds when |V | = 1; besides, for all p ∈ N+, if the lemma holds
when |V | ≤ p, the lemma holds when |V | = p + 1; therefore, the lemma holds
for all size p ∈ N+ of the vertex set V . �

5 Conclusion

We have presented here a generic algorithm which enlightens a new divide and
conquer scheme. As a direct byproduct this scheme can be used to solve varia-
tions of the CCP problem, such as Common Strongly Connected Components
as soon as a dynamic data structure satisfying our requirements is provided.

We hope that it could be helpful to solve other problems and be extended to
probabilistic algorithms on problems of very large size.

References

1. Marie-Pierre Béal, Anne Bergeron, Sylvie Corteel, and Mathieu Raffinot. An al-
gorithmic view of gene teams. Theoretical Computer Science, February 2004.

2. A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. In
Workshop on Algorithms in Bioinformatics (WABI), number 2452 in Lecture Notes
in Computer Science, pages 464–476. Springer Verlag, 2002.

3. M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds for
selection. Journal of Computer and System Science, 7(2):36–44, 1973.

4. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms. Second Edition. The MIT Press, 2001.

Divide and Conquer Revisited Application to Graph Algorithms 13

5. David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a
dynamic plane graph. J. Algorithms, 13:33–54, 1992.

6. Anh-Tuan Gai, Michel Habib, Christophe Paul, and Mathieu Raffinot. Identifying
common connected components of graphs. Technical Report RR-LIRMM-03016,
LIRMM, Université de Montpellier II, July 2003.

7. M. Habib, F. de Montgolfier, and C. Paul. A simple linear-time modular decom-
position algorithm. In T. hagerup, editor, Scandinavian Workshop on Algorithm
Theory- SWAT04, number 3111 in Lecture Notes in Computer Science, pages 187–
198. 9th Scandinavian Workshop on Algorithm Theory, 2004.

8. M. Habib, C. Paul, and M. Raffinot. Common connected components of interval
graphs. In S. Cenk Sahinalp and S. Muthukrishnan, editors, Combinatorial Pattern
Matching - CPM04, number 3109 in Lecture Notes in Computer Science, pages
347–358. 15th Annual Combinatorial Pattern Matching Symposium, 2004.

9. J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2−edge, and bicon-
nectivity. In 30th annu ACM Sympos. Theory Comput., pages 79–89, 1998.

10. R.J. Lipton and R.E. Tarjan. Applications of a planar separator theorem. SIAM
Journal on Computing, 9(3):615–627, 1980.

11. R. M. McConnell and J. Spinrad. Linear-time modular decomposition and effi-
cient transitive orientation of comparability graphs. In Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 536–545, 1994.

12. K. Mehlhorn. Data Structures and Efficient Algorithms. Springer Verlag, EATCS
Monographs, 1984.

13. Takeaki Uno and Mutsunori Yaguira. Fast algorithms to enumerate all common
intervals of two permutations. Algorithmica, 26, Number 2:290–309, 2000.

