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Abstract

We propose a new number representation, and the corresponding arithmetic, for the

elements of the ring of integers modulo p. The so-called Polynomial Modular Number System

(PMNS) allows for fast polynomial arithmetic and easy parallelization. The most important

contribution of this paper is certainly the fundamental theorem of a Modular Number System

which gives up an upper-bound on the coefficients of the polynomials used to represent the

set of non-negative integers {0, . . . , p − 1}. However, we also propose a complete set of

algorithms for the arithmetic operations over a PMNS, which make this system of practical

interest for people concerned about fast implementation of modular arithmetic.
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1 Introduction

Efficient implementation of modular arithmetic is an important prerequisite in today’s public-key

cryptography [1]. The famous RSA algorithm [2], and the cryptosystems based on the discrete

logarithm problem, such as Diffie-Hellman key exchange [3], need fast arithmetic modulo integers

of size 1024 to roughly 15000 bits. For the same level of security, elliptic curves defined over

prime fields, require operations modulo prime numbers whose size range approximately from

160 to 500 bits [4].

Classical implementations use multiprecision arithmetic, where long integers are represented

in a predefined high-radix (usually a power of two depending on the word size of the targeted

architecture). Arithmetic operations, namely modular reduction and multiplication, are per-

formed using efficient algorithms, such as as Montgomery [5], or Barrett [6]. (For more details,

see [1], chapter 14.) Those algorithms do not require the modulus to be of special form. When

this is the case however, modular multiplication and reduction can be accelerated considerably.

Mersenne numbers of the form 2m − 1 are the most common examples. Pseudo-Mersenne num-

bers [7], generalized Mersenne numbers [8], and their extension [9] are other examples of numbers

allowing fast modular arithmetic.

In a recent paper [10], we defined the so-called Modular Number Systems (MNS) and Adapted

Modular Number Systems (AMNS) to speed up the arithmetic operations for moduli which do

not belong to any of the previous classes. In this paper, we propose a new representation, and

the corresponding arithmetic, for the ring of integers modulo p (the integer p does not have to

be a prime, although it is likely to be for practical cryptographic applications). We define the

Polynomial Modular Number System (PMNS), into which integers are represented as polyno-

mials. Over the classical binary representation, polynomial arithmetic offers the advantages of

no carry propagation and easiest parallelization.

The main contribution of this paper is the fundamental of an MNS, which gives an upper

bound on the coefficients of the polynomials used to represent the elements of Zp. This theorem

is presented in Section 4. It uses results from lattice reduction theory [11, 12] that are briefly

recalled in Section 3. The second half of the paper focuses on the arithmetic operations. In

Section 5, we propose algorithms for the basic operations – addition, multiplication, conversions

– which all require a last step, called coefficient reduction, that we present in details in Section 6.
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Numerical examples are provided in Section 7.

2 Modular number systems

In classic positional number systems, every non-negative integer x is uniquely represented in

radix r as

x =

n−1
∑

i=0

xi r
i, where xi ∈ {0, . . . , r − 1}. (1)

If xn−1 6= 0, x is said to be a n-digit radix-r number.

In most public-key cryptographic applications, computations have to be done over finite rings

or fields. In prime fields GF (p), we deal with representatives of equivalence classes modulo p

(for simplicity we generally use the set of positive integers {0, 1, . . . , p− 1}), and the arithmetic

operations – addition and multiplication – are performed modulo p.

In order to represent the set of integers modulo p, we define a Modular number system by

extending the definition (1) of positional number systems.

Definition 1 (MNS) A Modular Number System (MNS) B, is a quadruple (p, n, γ, ρ), such

that all positive integers 0 ≤ x < p satisfy

x =

n−1
∑

i=0

xi γ
i mod p, with γ > 1 and |xi| < ρ. (2)

The vector (x0, . . . , xn−1)B denotes a representation of x in B.

In the rest of the paper, we shall omit the subscript (.)B when it is clear from the context.

We shall represent the integer a either as the vector a, or the polynomial A, without distinction.

We shall use ai to represent both for the ith element of a, and the ith coefficient of A. (Note that

we use a left-to-right notation; i.e., a0 is the constant term.) Hence, depending on the context,

we shall use ‖a‖ = ‖A‖, to refer to the norm of the vector or the corresponding polynomial. We

shall also use the notation ai to refer to the ith vector within a set of vectors or a matrix.

Example 1 Let us consider the MNS defined with p = 17, n = 3, γ = 7, ρ = 2. Over this

system, we represent the elements of Z17 as polynomials in γ of degree at most 2 with coefficients

in {−1, 0, 1} (cf. table 1).
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0 1 2 3 4 5

0 1 −γ2 1− γ2 −1 + γ + γ2 γ + γ2

6 7 8 9 10 11

−1 + γ γ 1 + γ −1− γ −γ 1− γ

12 13 14 15 16

−γ − γ2 1− γ − γ2 −1 + γ2 γ2 1 + γ2

Table 1: The elements of Z17 in the MNS(17, 3, 7, 2)

In example 1, we remark that the number of polynomials of degree 2, with coefficients in

{−1, 0, 1} is equal to 33 = 27. Since we only have to represent 17 values, the system is clearly

redundant. For example, we have 6 = 1 + γ + γ2 = −1 + γ, or 9 = 1 − γ + γ2 = −1 − γ. The

level of redundancy depends on the parameters of the MNS. Note yet that, in this paper, we

shall take advantage of the redundancy only by considering different representations of zero.

In a MNS, every integer 0 ≤ x < p is thus represented as a polynomial in γ. What do we

know about the coefficients of those polynomials? Are they upper-bounded? In other words,

given the integers p and n, can we determine ρ and construct a MNS? In order to answer these

questions, we shall use results from lattice reduction theory. We recall some basic facts about

lattice theory in the next section.

3 A brief introduction to lattice reduction theory

A lattice L is a discrete sub-group of Rn, or equivalently the set of all the integral combinations of

d ≤ n linearly independent vectors over R. (In this paper we shall only consider full-dimensional

lattices, i.e., with d = n.)

L = Z a1 + · · ·+ Z an = {λ1a1 + · · ·+ λnan : λi ∈ Z}.

We say that A = (a1, . . . ,an) is a basis of L. The same lattice L may have many different basis.

The fundamental domain of L is given by

H = {x ∈ Rn : x =

n
∑

i=1

xi ai, 0 ≤ xi < 1}.

In the two-dimensional case, H is the parallelogram generated by a1 and a2, two linearly inde-

pendent vectors in the plane (see Figure 1).
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The determinant of a lattice L is the volume of its fundamental domain; i.e., the n-dimen-

sional parallelepiped spanned by the vectors of the basis (see Figure 1).

Figure 1: A lattice in dimension 2, a basis, and a geometric interpretation of the fundamental

domain and the determinant

The determinant does not depend on the basis of L, except for its sign. We have

detL = |detA| ,

where A is any basis of L. The following inequality, called Hadamard’s inequality, is natural

from a geometric point of view:

‖a1‖ . . . ‖an‖ ≥ detL. (3)

Hermite proved that every lattice L has a basis (b1, . . . , bn) such that

‖b1‖ . . . ‖bn‖ ≤ cn detL, (4)

where cn is a constant depending only on n. The following algorithmic problem naturally follows

Hermitte’s result: Given a lattice L = L(A), and C > 0, find a basis B = (b1, . . . , bn) of L such

that

‖b1‖ . . . ‖bn‖ ≤ C detL.

It is known that this problem has a solution if C ≥ nn (see [11]). However, it is not know how

to find such a basis. A closely related problem, known as the Shortest Vector Problem (SVP),

is the following: Given a lattice L = L(A), and a number λ > 0, find a vector v ∈ L, v 6= 0,

such that ‖v‖ ≤ λ.
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In the rest of this paper, we shall use the following result from Minkowski in the case of the

`∞-norm:

Theorem 1 (Minkowski) Every lattice L contains a vector v 6= 0 such that

‖v‖∞ ≤ (detL)1/n . (5)

Proof: See [11] in the case of full-dimensional lattices, and [13] in the general case. �

4 Polynomial Modular Number Systems

In this section we consider some special cases of MNS, where γ is a root (modulo p) of a given

polynomial E. We propose the fundamental theorem of a MNS which provides an upper bound

on ρ. Before we state the theorem, let us prove the following two lemmas.

Lemma 1 Given B = MNS(p, n, γ, ρ), the lattice L generated by the n× n matrix

A =























p 0 0 0 . . . 0

−γ 1 0 0 . . . 0

−γ2 0 1 0 . . . 0
...

. . .
...

−γn−2 0 0 . . . 1 0

−γn−1 0 0 . . . 0 1























(6)

is the lattice of all the multiples of p in B, i.e. v ∈ L ⇔ V (γ) ≡ 0 mod p.

Proof: By construction, all the vectors of A are linearly independent, and all equal to zero

modulo p. By definition, L = L(A) is the lattice of all the integral combinations of the vectors

of A. Thus ∀v ∈ L, we have V (γ) ≡ 0 (mod p). In order to prove that L is actually the lattice of

all the vectors representing zero in B, we must prove that ∀v = (v0, v1, . . . , vn−1), with V (γ) ≡ 0

(mod p), there exists z ∈ Zn, such that z.A = v. The vector z = (V (γ)/p, v1, . . . , vn−1) always

exists (V (γ) is a multiple of p) and satisfies the condition. Thus, v ∈ L. �

Lemma 2 Let L be the lattice defined by the matrix A in (6). Then, there exists a vector v ∈ L

such that

‖v‖∞ ≤ p
1/n. (7)

6



Proof: The proof directly comes from Theorem 1. We simply remark that |det A| = p. �

Given a modular number system B = MNS(p, n, γ, ρ), the following theorem says that one

can represent every integer less than p as polynomials of degree less than n, with coefficients all

less than C × p1/n, where C is a small constant.

Theorem 2 (Fundamental theorem of a MNS) Let p, n > 1. Also define E(X) = Xn +

αX + β, with α, β ∈ Z, such that E(γ) ≡ 0 (mod p), and E irreducible in Z[X]. Then, we can

define a modular number system B = MNS(p, n, γ, ρ) as soon as

ρ ≥ (|α|+ |β|) p1/n. (8)

Proof: Let L be the lattice defined by the n× n matrix A in (6), and let u ∈ L, u 6= 0, be

a vector which satisfies Minkowski’s Theorem; i.e., such that ‖u‖∞ ≤ p
1/n.

We define a new lattice L′ generated by the n vectors (b0, . . . , bn−1) with b0 = u, and for

i ≥ 1, bi is the vector corresponding to the polynomial Bi = Xi U mod E. (We recall that,

according to our notations, U is the polynomial which corresponds to u.) Using the property of

E; γn ≡ −αγ − β (mod p), we obtain the n× n matrix

B =























u0 u1 u2 . . . un−1

−βun−1 (u0 − αun−1) u1 . . . un−2

−βun−2 (−βun−1 − αun−2) (u0 − αun−1) . . . un−3

...
. . .

...

−βu2 (−βu3 − αu2) (−βu4 − αu3) . . . u1

−βu1 (−βu2 − αu1) (−βu3 − αu2) . . . (u0 − αun−1)























. (9)

Since u ∈ L, we know from Lemma 1 that u corresponds to zero in B, i.e., U(γ) ≡ 0

(mod p). By construction, ∃Q ∈ Z[X] such that Bi(X) = Xi U(X) − Q(X)E(X). Since

U(γ) ≡ 0 (mod p) and E(γ) ≡ 0 (mod p), we have Bi(γ) ≡ 0 (mod p), ∀i = 0 . . . n − 1, or

equivalently, the vectors bi of B correspond to zero in B. So are all the integral combinations

of bis. Thus, L′ = L′(B) ⊆ L is also a lattice of multiples of p.

In order to prove that B is a basis of L′, we must prove that the vectors bi are linearly

independent. Let us assume that they are not linearly independent. Then, there exists a vector

z ∈ Zn, different from the null vector, such that z.B is equal to the null vector; or equivalently,

7



such that
∑n−1

i=0 zi bi = (0, . . . , 0). In the polynomial notation, since Bi = Xi U mod E, this is

equivalent to
n−1
∑

i=0

ziX
i U ≡ 0 (mod E).

If we let Z be the polynomial with coefficients z0, . . . , zn−1, we obtain the congruence

Z U ≡ 0 (mod E),

which is in contradiction with the hypothesis that Z and U are both non-null polynomials of

degree less than n, and E is irreducible of degree n. Thus, we have proved that B is a basis of

L′.

Let H′ be the fundamental domain of L′. A well known result in lattice theory is that, every

vector v (v belongs to Zn in our case) is congruent to a unique vector of H′ modulo the lattice

L′. Intuitively, this comes from the fact that we do not change the value represented by v by

subtracting any vector of L′ since they all represent zero modulo p. More formally

∀v ∈ Zn,∃w ∈ L′ such that v −w ≡ v (mod L′), and v −w ∈ H′.

As a consequence, if we let v
′ be the unique vector in H′, congruent to v modulo L′, we have

‖v′‖∞ ≤ max
0≤i<n

{‖bi‖∞, bi ∈ B}.

By construction, we can see in (9) that the largest vector of B, in the `∞-norm, is less than

(|α|+ |β|)‖b0‖∞, where b0 = u is a vector of L which satisfy ‖u‖∞ ≤ p
1/n. Hence

‖v′‖∞ ≤ (|α| + |β|) p1/n. (10)

To complete the proof, we simply remark that every integer a ∈ N can be first associated

with the vector a = (a, 0, . . . , 0), and reduced modulo L′ to the vector a
′ which satisfy (10). We

thus obtain a polynomial representation of a as a0+a1X+. . .+an−1X
n−1, with a = A(γ) mod p,

and ‖A‖∞ ≤ (|α| + |β|) p1/n. This concludes the proof. �

Definition 2 (PMNS) A modular number system B = MNS(p, n, γ, ρ) that satisfies the con-

ditions of Theorem 2 is called a Polynomial Modular Number System (PMNS). We shall denote

B = PMNS(p, n, γ, ρ,E).

In practice, we shall define the polynomial E with α and β as small as possible.
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Example 2 We define the PMNS with p = 23, n = 3, ρ = 2, E(X) = X3−X+1 (α = −1, β =

1). We easily check that γ = 13 is a root of E in Z23, and E is irreducible in Z[X]. We represent

the elements of Z23 as polynomials of degree at most 2, with coefficients in {−1, 0, 1}.

0 1 2 3 4 5 6 7

0 1 −γ − γ2 1− γ − γ2 −1 + γ − γ2 γ − γ2 1 + γ − γ2 −1 + γ2

8 9 10 11 12 13 14 15

γ2 1 + γ2 −γ 1− γ −1 + γ γ 1 + γ −γ2

16 17 18 19 20 21 22 23

1− γ2 −1− γ + γ2 −γ + γ2 1− γ + γ2 −1 + γ + γ2 γ + γ2 1 + γ + γ2

Table 2: The elements of Z23 in the PMNS(23, 3, 13, 2,X3 −X + 1)

5 PMNS arithmetic

In this section, we propose algorithms for the classical operations in GF (p), namely addition

and multiplication modulo p, when the operands are represented in a PMNS. We give solutions

for the conversion from binary to PMNS, and back. For simplicity, we assume ρ = 2k, and all

the operands are represented in B = PMNS(p, n, γ, 2k, E), with E = Xn + αX + β.

At this point, it is important to understand that the value k we shall consider here, depends

on the way we implement the coefficient reduction. From Theorem 2, we know that every integer

a < p can be represented in a PMNS with coefficients |ai| ≤ (|α| + |β|) p1/n, i.e., of size at most

⌈

log2 (|α|+ |β|) +
1

n
log2(p)

⌉

bits. (11)

Algorithms designed for common problems in the lattice’s world, such as CV P∞, can be used to

reach this bound (see [12] for details). However, they are unpractical from an arithmetic point

of view. The algorithms we propose in Section 6 can be seen as approximation algorithms for

our specific lattices. For each proposed solution, we evaluate the size of the resulting coefficients.

This gives us the size that we must consider for the coefficients in the definition of a PMNS; i.e.,

the value of k.
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5.1 Addition, subtraction

Let a, b be two integers less than p, given in their PMNS representation. We want to compute the

sum s = a+ b mod p. Because of the polynomial nature of the PMNS representation, additions

can be carried out independently, in parallel, on each coefficients. Let A,B ∈ Z[X] be the

polynomial representations of a and b respectively. We have A(γ) ≡ a (mod p), and B(γ) ≡ b

(mod p), and we compute C = A+B, such that

C(γ) ≡ A(γ) +B(γ) (mod p), (12)

or equivalently c ≡ a+ b (mod p).

Yet, the result of (12) is a polynomial of degree less than n, but whose coefficients ci can be

larger than ρ = 2k. It is clear however that ‖C‖∞ < 2k+1. In order to obtain c in a valid PMNS

form, we thus need to reduce its coefficients. We propose different approaches to this problem

in Section 6.

5.2 Multiplication

As for the addition, we use the polynomial forms of a and b to compute the product r = ab mod p.

The details are presented in Algorithm 1.

Algorithm 1 [PMNS Modular Multiplication]

Input: A = (a0, . . . , an−1)B, B = (b0, . . . , bn−1)B, with |ai|, |bi| < 2k

Output: R = (r0, ..., rn−1)B such that R(γ) ≡ ab mod p, with |ri| < 2k

1: Polynomial multiplication in Z[X]: C(X)← A(X)B(X)

2: Polynomial reduction: C ′(X)← C(X) mod E(X)

3: Coefficient reduction: R← CR(C ′)

Given A,B ∈ Z[X], with A(γ) ≡ a (mod p), and B(γ) ≡ b (mod p), we first evaluate the

product C = AB. Clearly, we have

C(γ) ≡ A(γ)B(γ) (mod p). (13)

Since degA,degB ≤ n − 1, their polynomial product C satisfies degC ≤ 2n − 2. Step 2 of

Algorithm 1 consists in the reduction modulo E, which reduces C to a polynomial of degree less

than n. Since E(γ) ≡ 0 (mod p), the polynomial C ′ = C mod E corresponds to the same value
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than C in B. In other words, there exists K ∈ Z[X] such that

C ′(γ) = C(γ)−K(γ)E(γ) ≡ C(γ) (mod p),

with degC ′ < degE = n. Note that the special form of E(X) = Xn + αX + β nicely simplifies

the reduction modulo E. As shown in Fig. 2, we first compute the product C = (c0, . . . , c2n−2)B

(see Fig. 2(a)), and we reduce the terms of order ≥ n using the congruence Xn ≡ −αX − β

(mod E) (see Fig. 2(b)).

c2n−2c2c1c0

(a) The polynomial C = AB

< (|α| + |β|)22k

c′
0

c′
1

c′
n−1

a)

b)

c)

d)

< 22k

< |β|22k

< (1 + |α|)22k

(b) The polynomial C
′ = C mod E

Figure 2: Reduction modulo E(X) = Xn + αX + β

If A,B have coefficients such that |ai|, |bi| < 2k, then, we can see in Fig. 2(b) that the

coefficients of the polynomial C ′ reduced modulo E, satisfy

|c′i| < n (|α|+ |β|) 22k, ∀i = 0, . . . , n− 1, (14)

To be a little more precise, we can remark that |c′i| < ((n− 1)|α| + (n− 2)|β| + 2) 22k; this upper

bound being given by c′1. As for the addition, the final step in the multiplication algorithm will

consist in a coefficient reduction that we shall detail in Section 6.
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5.3 Conversions

We briefly propose methods for the conversions from binary to PMNS, and from PMNS to

binary, that can easily be implemented at low memory cost.

5.3.1 Binary to PMNS

Given the integer 0 ≤ a < p, we want to define a polynomial A with coefficients less than 2k,

which satisfy A(γ) ≡ a (mod p). We first represent a in radix 2k as in (1):

a =

n−1
∑

i=0

di (2
k)

i
, with 0 ≤ di < 2k. (15)

Our approach requires the precomputation of n values Ti, corresponding to the polynomial

representations of 2ki for i = 0, . . . , n− 1. We have

Ti(γ) ≡ 2ki (mod p), for i = 0, . . . , n− 1.

We store those polynomials in a reduced form; i.e., with coefficients less than (|α| + |β|)2k. In

the polynomial form, Equation (15) rewrites

A =
n−1
∑

i=0

di Ti, with 0 ≤ di < 2k.

A satisfies ‖A‖∞ < n(|α| + |β|)22k, and can be reduced using one of the coefficient reduction

algorithms presented in Section 6.

5.3.2 PMNS to binary

Given the polynomial A, we want to recover the corresponding integer a = A(γ) (mod p). In

the PMNS representation, we have

A(γ) =

n−1
∑

i=0

ai γ
i.

We use n precomputed integers gi, corresponding to powers of γ:

gi = γi mod p, for i = 0, . . . , n− 1.

Hence, a can be computed by

a =

n−1
∑

i=0

ai gi mod p.
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6 Coefficient reduction techniques

In this section, we propose two different approaches for the coefficient reduction. The first

one, presented in Section 6.1 is inspired by Barrett modular reduction over the integers. In

Section 6.2, we present solutions using lookup tables.

6.1 Reduction using a Barrett-like algorithm

To simplify the notations, we shall use the symbol ∗ to denote the multiplication of two poly-

nomials modulo E: A ∗ B = AB mod E. Algorithm 2 bellow is inspired by Barrett modular

reduction algorithm [6, 1].

Given C = (c0, . . . , cn−1)B with coefficients |ci| < n (|α|+ |β|) 22k, we want to construct R

such that R(γ) ≡ C(γ) (mod p), with coefficients less than 2k. If M is a well chosen polynomial,

such thatM(γ) ≡ 0 (mod p) (or equivalently, the corresponding vector m belong to L), then, we

know that adding to C any multiple of M do not change the value of C. We propose a Barrett-

like algorithm to compute a polynomial Q such that R = C − Q ∗ M satisfies ‖R‖∞ < 2k.

Roughly speaking, we compute Q and C ∗ M−1, with nearby integer coefficients, such that

R = C −Q ∗M has small coefficients. To make the analogy with Barrett’s reduction algorithm

over the integers, the polynomial Q can be seen as an approximation of the quotient C/M .

It is important to understand that Algorithm 2 is correct as soon as m ∈ L. As we shall

see in the proof of Algorithm 2, the coefficients of the reduced polynomial R are proportional

to those of M . For this reason, we shall try to define M with coefficients as small as possible.

A solution to this problem is given by the LLL algorithm [14]. (See Section 7 for an example).

Algorithm 2 requires the precomputed value M̂ = b22k+l ∗M−1c. Since E is irreducible,

M−1 always exists. Yet, it has rational coefficients. The improper notation b·c used here for

M̂ , means that we take the nearest integer towards 0 of each coefficients of the polynomial

22k+lM−1 mod E. Thus, M̂ has integer coefficients. In general, if A ∈ Q[X] we denote

bAc = A+ Ψ, with ψi ∈ Q, |ψi| < 1.

Theorem 3 The Algorithm 2 is correct; i.e., it returns R such that R(γ) ≡ C(γ) (mod p) and

‖R‖∞ < 2k.
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Algorithm 2 [CR: Coefficient Reduction]

Precomputed: A polynomial M s.t. M(γ) ≡ 0 (mod p), and M̂ =
⌊

22k+l ∗M−1
⌋

,

with k = dlog2(‖M‖∞) + log2(4n(|α| + |β|))e, and l = d2 log2(n(|α| + |β|))e

Input: C = (c0, . . . , cn−1)B, with |ci| < n (|α|+ |β|) 22k

Output: R = (r0, . . . , rn−1)B such that R(γ) ≡ C(γ) mod p, with |ri| < 2k

1: Q←

⌊

⌊

C/2k−1
⌋

∗ M̂

2k+l+1

⌋

2: R← C −Q ∗M

Proof: Let us first prove that r is congruent to c modulo p. Since M(γ) ≡ E(γ) ≡ 0 (mod p),

then ∃K ∈ Z[X] such that

R(γ) = C(γ)− (Q(γ)M(γ) −K(γ)E(γ)) .

Thus, we have

R(γ) ≡ C(γ) (mod p). (16)

What remains to be proved is that the polynomial Q computed in step 1 actually yields R

with |ri| < 2k. In step 1, we compute

Q =

⌊

⌊

C/2k−1
⌋

∗ M̂

2k+l+1

⌋

. (17)

In order to evaluate the approximation errors on Q computed in step 1, we define three polyno-

mials Ψ1,Ψ2,Ψ3, with ‖Ψs‖∞ < 1, for s = 1, 2, 3. Equation (17) is equivalent to

Q =
(C/2k−1 −Ψ1) ∗ (22k+l ∗M−1 −Ψ2)

2k+l+1
−Ψ3,

which rewrites

Q = C ∗M−1 −
Ψ1 ∗ (22k+l ∗M−1) + Ψ2 ∗ (C/2k−1)−Ψ1 ∗Ψ2

2k+l+1
−Ψ3.
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Thus, step 2 gives

R = C −Q ∗M =

(

Ψ1 ∗ (22k+l ∗M−1) + Ψ2 ∗ (C/2k−1)−Ψ1 ∗Ψ2

2k+l+1
+ Ψ3

)

∗M

= 2k−1Ψ1 +

(

C ∗Ψ2

22k+l
−

Ψ1 ∗Ψ2

2k+l+1
+ Ψ3

)

∗M

= 2k−1Ψ1 +

(

Ψ2

2k+l+1
∗

(

C/2k−1 −Ψ1

)

+ Ψ3

)

∗M

= 2k−1Ψ1 +

(

Ψ2

2k+l+1
∗

⌊

C/2k−1
⌋

+ Ψ3

)

∗M

If we let Ĉ =
⌊

C/2k−1
⌋

, and C̃ =

(

Ψ2

2k+l+1
∗ Ĉ + Ψ3

)

, then we have

‖Ĉ‖∞ ≤
∥

∥

∥C/2k−1
∥

∥

∥

∞
< n (|α| + |β|) 2k+1,

and thus

‖C̃‖∞ <
n2 (|α|+ |β|)2 2k+1

2k+l+1
+ 1.

Since 2l ≥ n2(|α|+ |β|)2 by hypothesis, we get ‖C̃‖∞ < 2. From (14), it follows that

‖C̃ ∗M‖∞ < 2n (|α|+ |β|) ‖M‖∞;

and since, by hypothesis, 2k ≥ 4n(|α| + |β|)‖M‖∞, we have

‖C̃ ∗M‖∞ < 2k−1.

Finally, since R = 2k−1Ψ1 + C̃ ∗M and ‖Ψ1‖∞ < 1, the coefficient of R satisfy |ri| < 2k for

i = 0, . . . , n− 1. This concludes the proof. �

Corollary 1 (Modular Multiplication Stability) Let M be such that ‖M‖∞ = p1/n. If k ≥
⌈

log2(4n (|α|+ |β|)) + log2(p
1/n)

⌉

, then, there exits a modular multiplication algorithm which,

given two polynomials A,B with coefficients |ai|, |bi| < 2k, returns R such that R(γ) ≡ A(γ)B(γ)

(mod p), and |ri| < 2k.

Proof: From Theorem 1, we can always find a vector m ∈ L such that ‖m‖∞ ≤ p1/n. We use

Algorithm 2 for the coefficient reduction part of Algorithm 1. �
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6.2 Reduction using lookup tables

An alternative solution to the previous algorithm is to perform the coefficient reduction using

lookup tables. Algorithm 3, presented bellow, is used to reduce the coefficients of a given

polynomial by a single bit. Algorithm 4 in Section 6.2.3 performs several iterations of this

algorithm to get a complete coefficient reduction.

Let C ∈ Z[X] be a polynomial of degree less than n, with coefficients |ci| < 2k+1. We want to

define a polynomial C ′ which satisfies C ′(γ) ≡ C(γ) (mod p), and |c′i| < 2k. We can decompose

C into two polynomials L and H, such that

C = L+ 2k−1H, with |li| < 2k−1 and |hi| < 22. (18)

Figure 3 shows the decomposition (18).

L

c0 c1 cn−1

2k−1

20

2k

H

Figure 3: The decomposition of C into its lower part L, and higher part H

A polynomial H ′ satisfying |h′i| < 2k−1 is deduced from lookup tables or registers, and

possibly some small computations, such that the result C ′ = L + H ′ has coefficients less than

2k.

Algorithm 3 [TCR: Table-based Coefficient Reduction]

Input: C = (c0, . . . , cn−1)B, with |ci| < 2k+1

Output: C ′ = (c′0, ..., c
′
n−1)B such that c′ ≡ c (mod p), and |c′i| < 2k for i = 0, . . . , n − 1

1: C = L+ 2k−1H

2: H ′ ← TREAD[H]

3: C ′ ← L+H ′

In the next two paragraphs, we propose two approaches, called horizontal and vertical, for

the implementation of step 2 of Algorithm 3. As in Section 6.1, we shall define k according

to the parameters p, n, α, β, such that the coefficient reduction algorithms return a polynomial

with coefficients less than 2k.

16



6.2.1 Horizontal approach

Let H1,H2 be such that H = H1 + 2H2, with |h1,i|, |h2,i| ≤ 1. Step 2 of Algorithm 3 can be

rewritten as

H ′ ← TAB1[H1] + TAB2[H2], (19)

where TAB1[H1] and TAB2[H2] return H ′
1 = 2k−1H1, and H ′

2 = 2kH2 respectively. H ′
1 and H ′

2

must be stored in a reduced form, with |h′1,i|, |h
′
2,i| < 2k−2, such that |h′i| < 2k−1.

From Theorem 2, there exists H ′
1, H

′
2 such that ‖H ′

j‖∞ ≤ (|α|+ |β|) p1/n, for j = 1, 2. Since

we add two such polynomials, the horizontal approach requires (|α| + |β|) p1/n < 2k−2. Thus,

taking

k ≥ d2 + τe , (20)

where

τ = log2 (|α| + |β|) +
1

n
log2(p) (21)

is the bound given by Theorem 2, ensures |h′i| < 2k−1, and thus |c′i| < 2k.

Since h1,i, h2,i ∈ {−1, 0, 1}, each table has to store 3n − 1 (there is no need to store the null

polynomial) polynomials with n coefficients of size τ (in absolute value), plus 1 bit for their sign.

The cost in memory for the horizontal approach is thus

|TAB1|+ |TAB2| = 2(3n − 1)× n(τ + 1) bits,

with τ defined in (21).

6.2.2 Vertical approach

From the decomposition (18), we have hi ∈ {−3, . . . , 3}, for i = 0, . . . , n − 1. We can use three

registers REG[hi], hi = 1, 2, 3, to store three reduced polynomials which correspond to |hi| 2
k−1,

namely 2k−1, 2 2k−1, and 3 2k−1. Note that there is no need to the polynomials which correspond

to 0 and the negative values of hi (we simply flip the signs of the polynomials stored for |hi| if

necessary). Step 2 of Algorithm 3 rewrites

H ′ ←
n−1
∑

i=0

(

REG[hi]X
i
)

mod E. (22)

In order to get C ′ in step 3 with coefficients less than 2k, we need |h′i| < 2k−1. Since

we perform n additions, plus a reduction modulo E of reduced polynomials to get H ′ (the

17



multiplications by the powers of X reduce to shifts on the coefficients), we need log2(n) +

log2(|α| + |β|) extra bits. We can take

k ≥ d1 + log2(n) + log2 (|α|+ |β|) + τe , (23)

with τ defined in (21).

We need to store three polynomials with n coefficients of size τ (in absolute value), plus 1

bit for their sign. The memory cost of the vertical approach is thus

|REG| = 3× n(τ + 1) bits.

6.2.3 Complete coefficient reduction using look-up table

Generic Algorithm 3 presented at the beginning of this section admits many implementation

options. In Sections 6.2.1,and 6.2.2, we proposed two different solutions to reduce the coefficients

of a given polynomial C from k + 1 bits to k bits.

For completeness, we propose a straightforward algorithm that can reduce the coefficients of

any given polynomial C to a polynomial with coefficient less than 2k. We simply reduce one-

by-one the bits of the coefficients of C, by performing several iterations of a single bit reduction

algorithm, until we reach the desired size. Algorithm 4 bellow summarizes the computations.

Algorithm 4 [CTCR: Complete Table-based Coefficient Reduction]

Input: C = (c0, . . . , cn−1)B, with |ci| < 2k+t

Output: R = (r0, ..., rn−1)B such that r ≡ c (mod p), and |ri| < 2k

1: R← C

2: for i from t− 1 to 0 do

3: R = L+ 2iU with |li| < 2i and |ui| < 2k+1

4: R← L+ 2i TCR(U)

5: end for

6.3 Comparisons and complexity

Table 3 bellow summarizes the different approaches presented in this section for the coefficient

reduction. It gives the different bounds on k given by Theorem 2 and each of the proposed

algorithms.
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Algorithm lower bounds on k

Theorem 2 τ

Barrett log2(4n) + τ

Vertical approach log2(2n (|α|+ |β|)) + τ

Horizontal approach 2 + τ

Table 3: Bounds on k given by Theorem 2 and the different coefficient reduction algorithms

In Table 4, we also give the complexity (in numbers on elementary operations) and the

memory requirements (in bits) of the two table-based coefficient reduction techniques. Let

PA(k) define the number of additions required by a polynomial addition with coefficients of

size k. In Table 4, we have counted one full polynomial addition for the operation in step 4 of

Cost Vertical Horizontal

Memory (in bits) 3× n(k − log2(n (|α|+ |β|))) 2(3n − 1)× n(k − 1)

# op. TCR (n+ 2)PA(k) 2PA(k)

# op. CTCR t(n+ 3)PA(k) 3t PA(k)

Table 4: Complexity, in memory and number of operations, of the horizontal and vertical

coefficient reduction algorithms

Algorithm 4. Note yet, that we only perform this addition when TCR(U) and L do not have

the same sign. And even in this case, it reduces to the subtraction of a k-bit number by the

one-bit integer 1.

In Table 5, we give some numerical examples assuming (|α| + |β|) ≤ 2. We give the number

of bits of the largest numbers (size of p) we can represent with n = 4, . . . , 8 for 32, and 64 bits

word-lengths. In comparison, we also give the number of words, the same numbers require in

classic binary representation. From Table 5, we clearly see that, given p, it is always possible

to chose n, and k such that the number of words required by the PMNS representation is the

same as the number of words required by the multiprecision representation.

7 Examples

In this section, we propose examples which illustrate some of the algorithms proposed in the

previous sections. Given a prime number p, n > 4, and E a polynomial, we first define a PMNS,

and evaluates k using the chosen coefficient reduction algorithm. We convert two integers a, b
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k = 32 k = 64
n Algo

size of p # words Memory size of p # words Memory

(in bits) (in binary) (in bits) (in bits) (in binary) (in bits)

n = 4 T 124 4 - 252 4 -

B 108 4 - 236 4 -

V 108 4 348 236 4 732

H 116 4 19 840 244 4 40 320

n = 5 T 155 5 - 315 5 -

B 133 5 - 293 5 -

V 133 5 435 293 5 915

H 145 5 75 020 305 5 152 460

n = 6 T 186 6 - 378 6 -

B 158 5 - 350 6 -

V 158 5 522 350 6 1 098

H 174 6 270 816 366 6 550 368

n = 7 T 217 7 - 441 7 -

B 183 6 - 407 7 -

V 183 6 609 407 7 1 281

H 203 7 948 724 427 7 1 928 052

n = 8 T 248 8 - 504 8 -

B 208 7 - 464 8 -

V 208 7 672 464 8 1 440

H 232 8 3 253 760 488 8 6 612 480

Table 5: Number of bits of the largest numbers (size of p) we can represent with n ranging from

4 to 8, for words of 32, and 64 bits; and the number of words, the same numbers require in

classic binary representation
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into this PMNS. Then, we perform the multiplication a b mod p, using the PMNS modular mul-

tiplication presented in Algorithm 1, with both the Barrett-like (example 7.1) and the horizontal

approach (example ) solutions proposed in Sections 6.1, and 6.2.1 for the coefficient reduction.

Finally, we convert the result back in binary.

7.1 Example using the Barrett-like algorithm

Definition of the PMNS: Let us define p = 123456789120001, |p| = 47 bits. Also define

E(X) = X4 + 1 (n = 4, α = 0, β = 1). E is irreducible, and γ = 46988594033438 is a root of E

modulo p. Let the matrix A be defined as in (6)

A =













p 0 0 0

−γ 1 0 0

−γ2 0 1 0

−γ3 0 0 1













(24)

A is a basis of L = L(A). In order to find a vector m with small coefficients (in absolute value),

we use the LLL algorithm [14], which gives us the approximated reduced basis

LLL(A) =













−1332 −1562 3497 −9

1629 3191 −306 −297

−3191 306 297 1629

306 297 1629 3191













(25)

We remark that the first vector of LLL(A) has small enough coefficients for our purpose. We

thus define m = (−1332,−1562, 3497,−9), and its polynomial form M as

M(X) = −1332− 1562X + 3497X2 − 9X3.

Note that, although m is not the smallest vector (in the `∞-norm) in the lattice defined by

LLL(A), its largest coefficients has 12 bits; i.e, the minimum we can expect since dlog2(p)/ne =

12.

We shall perform the coefficient reduction using the Barrett-like algorithm presented in

Section 6.1. According to Algorithm 2, we define ρ = 2k with

k = d2 + log2(n) + log2(|α| + |β|) + log2(‖m‖∞)e = 16.

Precomputations: Again, using Algorithm 2, we define

l = d2 (log2(n) + log2 (|α|+ |β|))e = 4.
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We compute the polynomial M̂ ,
⌊

22k+l M−1 mod E
⌋

:

M̂ = 7576151 − 4562193X − 14505927X2 + 5084425X3 .

Binary to PMNS: Let a = 111111111111111, b = 22222222222222. The binary-to-PMNS

conversion algorithm presented in Section 5.3 gives the representations of a and b in B. We have

A = 33086 + 1902X − 1128X2 − 1343X3

B = 29052 − 1254X + 1352X2 − 2988X3

It is easy to check that a = A(γ) mod p, and b = B(γ) mod p.

Modular multiplication: We use Algorithm 1 for the multiplication modulo E, and Algo-

rithm 2 (Barrett-like algorithm) for the coefficient reduction. We have

C(X) = A(X)B(X) = 961214472 + 13767060X + 9576508X2 − 133891788X3

− 5524110X4 + 1554728X5 + 4012884X6

C ′(X) = C(X) mod E(X) = 966738582 + 12212332X + 5563624X2 − 133891788X3

Q(X) = −115192 − 94199X − 195576X2 + 83334X3

R(X) = 53649 − 11458X − 6028X2 − 3437X3

We remark that the coefficients of R satisfy |ri| < 2k = 216 = 65536.

PMNS to binary: Finally, we can convert the resultR in binary using the algorithm proposed

in Section 5.3. We obtain r = 76459417066083, and we easily check that this is the correct result

r = a b mod p.

7.2 Example using the table-based horizontal approach

Definition of the PMNS: Let us define p = 123456789120001, |p| = 47 bits. Also define

E(X) = X4 + 1 (n = 4, α = 0, β = 1). E is irreducible in Z, and γ = 46988594033438 is a root

of E modulo p. Let the matrix A be defined as in (6)

A =













p 0 0 0

−γ 1 0 0

−γ2 0 1 0

−γ3 0 0 1













(26)
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A is a basis of L = L(A). In order to find a vector m with small coefficients (in absolute value),

we use the LLL algorithm [14], which gives us the approximated reduced basis

LLL(A) =













−1332 −1562 3497 −9

1629 3191 −306 −297

−3191 306 297 1629

306 297 1629 3191













(27)

We remark that the first vector of LLL(A) has small enough coefficients for our purpose. We

thus define m = (−1332,−1562, 3497,−9), and its polynomial form M as

M(X) = −1332− 1562X + 3497X2 − 9X3.

Note that, although m is not the smallest vector (in the `∞ norm) in the lattice defined by

LLL(A), its largest coefficients has 12 bits; i.e, the minimum we can expect since dlog2(p)/ne =

12.

We shall perform the coefficient reduction using the Full Table-Based Coefficient Algorithm 4,

and the horizontal approach for TCR (see Algorithm 3). According to (20), we define ρ = 2k

with

k =
⌈

2 + log2 (|α|+ |β|) + log2(p
1/n)

⌉

= 14

Binary to PMNS: Let a = 111111111111111, b = 22222222222222. The polynomials A,B,

bellow, are given by Algorithm 4 with inputs (a, 0, 0, 0) and (b, 0, 0, 0) respectively. We have

A = 4466 + 6362X − 6906X2 − 2934X3

B = −2835 − 1844X − 2252X2 − 7482X3

It is easy to check that a = A(γ) mod p, and b = B(γ) mod p.

Modular multiplication: We use Algorithm 1 for the multiplication modulo E, and Algo-

rithm 4 for the coefficient reduction. We have

C(X) = A(X)B(X) = −12661110 − 26271574X − 2210450X2 − 26689282X3

− 26637876X4 + 58278060X5 + 21952188X6 ,

and

C ′(X) = C(X) mod E(X) = 13976766 − 84549634X − 24162638X2 − 26689282X3 .
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Ri ri,0 ri,1 ri,2 ri,3

R13 13976766 −84549634 −24162638 −26689282

R12 14488766 −24305666 −20345166 −32534274

R11 13759678 −9254914 −620878 −17989378

R10 4661438 −2222082 1705650 −1809154

R9 1237182 −2060802 1175730 −1774850

R8 1237182 −2060802 1175730 −1774850

R7 323390 −895874 −54222 −975362

R6 247870 −310274 −70670 −395842

R5 210110 −17474 −78894 −106082

R4 103102 −12434 −95454 −105010

R3 46214 −4626 −24166 −55938

R2 7958 −6282 −26850 −22402

R1 7130 −7624 −10082 −3274

R0 6095 −7557 −3394 −3589

Table 6: The iterations performed by the CTCR Algorithm 4

The iterations of Algorithm 4 are given in Table 6. We remark that the coefficients of R = R0

satisfy |ri| < 2k = 214 = 16384.

PMNS to binary: Finally, we can convert R in binary. We obtain r = 76459417066083, and

we easily check that this is the correct result r = a b mod p.

8 Conclusions

In this paper, we proposed a new representation for the ring of integers modulo p, called Poly-

nomial Modular Number Systems. In this system, integers are represented as polynomials a

predefined value γ, of degree less than n, and with coefficients bounded by (|α|+ |β|)p1/n, where

α, β are very small integers. Since p1/n is a minimum value, only a few extra bits are required for

each coefficient. Compared to the classic multiprecision representation, the polynomial nature

of PMNS allows for no-carry propagation, and improved polynomials algorithms. The solu-

tions presented in this paper must be seen as a first step in doing the arithmetic over this new

representation. Many improvements are still to come...
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