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The probability density function is a fundamental concept in statistics. Spec-
ifying the density function f of a random variable X on Ω gives a natural
description of the distribution of X on the universe Ω. When it cannot be
specified, an estimate of this density may be performed by using a sample of
n observations independent and identically distributed (X1, ..., Xn) of X .

Histogram is the oldest and most widely used density estimator for pre-
sentation and exploration of observed univariate data. The construction of a
histogram consists in partitioning a given reference interval Ω into p bins Ak

and in counting the number Acck of observations belonging to each cell Ak.
If all the Ak have the same width h, the histogram is said to be uniform or
regular. Let 1lAk

be the characteristic function of Ak, we have

Acck =

n∑

i=1

1lAk
(Xi). (1)

By hypothesizing the density of the data observed in each cell to be uni-
form, an estimate f̂hist(x) of the underlying probability density function f(x)
at any point x of Ak can be computed by:

f̂hist(x) =
Acck

nh
. (2)

The popularity of the histogram technique is not only due to its simplicity
(no particular skills are needed to manipulate this tool) but also to the fact
that the piece of information provided by a histogram is more than a rough
representation of the density underlying the data. In fact, a histogram displays
the number of data (or observations) of a finite data set that belong to a given
class i.e. in complete agreement with the concept summarized by the label
associated with each bin of the partition thanks to the quantity Acck.

However, the histogram density estimator has some weaknesses. The ap-
proximation given by expression (2) is a discontinuous function. The choice of
both reference interval and number of cells (i.e. bin width) have quite an effect
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on the estimated density. The apriorism needed to set those values makes it
a tool whose robustness and reliability are too low to be used for statistical
estimation.

In the last five years, it has been suggested by some authors that replacing
the binary partition by a fuzzy partition will reduce the effect of arbitrari-
ness of partitioning. This solution has been studied as a practical tool for
Chi-squared tests [Run04], estimation of conditional probabilities in a learn-
ing context [VDB01], or estimation of percentiles [SCA00] and modes [SC02].
Fuzzy partitioning has received considerable attention in the literature espe-
cially in the field of control and decision theory. Recently, some authors have
proposed to explore the universal approximation properties of fuzzy systems
to solve system of equations [Per06, Per04, Wan98, HKAS03, Lee02].

In a first part, we will formally present the fuzzy partition as proposed
in [Per06]. In section 2, a histogram based upon this previous notion will be
defined, that will be called a fuzzy histogram. In a last section, some estimators
of probability density functions will be shown, before concluding.

1 Fuzzy partitions

1.1 Preliminary

In histogram technique, the accumulation process (see expression (1)) is linked
to the ability to decide whether the element x belongs to a subset Ak of Ω,
the universe, or not. This decision is tantamount to the question whether it
is true that x ∈ Ak or not (this is a binary question). However, in many
practical cases, this question cannot be precisely answered : there exists a
vagueness in the ”frontiers” of Ak. A reasonable solution consists in using a
scale whose elements would express various degrees of truth of x ∈ Ak, and Ak

becomes a fuzzy subset of Ω. Let L be this scale of truth values. We usually
put L = [0, 1].

1.2 Strong Uniform Fuzzy Partition of the Universe

Here we will take an interval Ω = [a, b] (real) as the universe. Then,

Definition 1. Let m1 < m2 < ... < mp be p fixed nodes of the uni-
verse, such that m1 = a and mp = b, and p ≥ 3. We say that the set of
the p fuzzy subsets A1,A2,...,Ap, identified with their membership functions
µA1

(x),µA2
(x),...,µAp

(x) defined on the universe, form a strong uniform fuzzy
partition of the universe, if they fulfil the following conditions :

for k = 1, ..., p

1. µAk
(mk) = 1 (mk belongs to what is called the core of Ak),

2. if x /∈ [mk−1, mk+1], µAk
(x) = 0 (because of the notation we should add :

m0 = m1 = a and mp = mp+1 = b),
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3. µAk
(x) is continuous,

4. µAk
(x) monotonically increases on [mk−1, mk] and µAk

(x) monotonically
decreases on [mk, mk+1],

5. ∀x ∈ Ω, ∃k, such that µAk
(x) > 0 (every element of the universe is treated

in this partition).
6. for all x ∈ Ω,

∑p
k=1 µAk

(x) = 1
7. for k 6= p, hk = mk+1 − mk = h = constant, so, mk = a + (k − 1)h,
8. for k 6= 1 and k 6= p, ∀x ∈ [0, h] µAk

(mk − x) = µAk
(mk + x) (µAk

is
symmetric around mk),

9. for k 6= 1 and k 6= p, ∀x ∈ [mk, mk+1], µAk
(x) = µAk−1

(x − h) and
µAk+1

(x) = µAk
(x − h) (all the µAk

, for k = 2, ..., p − 1 have the same
shape, with a translation of h. And as for µA1

and µAp
, they have the same

shape, but truncated, with supports twice smaller than the other ones).

Condition 6 is known as the strength condition, which ensures a normal
weight of 1, to each element x of the universe in a strong fuzzy partition. In
the same way, conditions 7, 8 and 9 are the conditions for the uniformity of a
fuzzy partition.

Proposition 1. Let (Ak)k=1,...,p be a strong uniform fuzzy partition of the
universe, then
∃KA : [−1, 1] −→ [0, 1] pair, such that, µAk

(x) = KA(x−mk

h
)1l[mk−1,mk+1] and∫

KA(u)du = 1.

Proof. We can take KA(u) = µAk
(hu + mk), ∀k. The support of KA comes

from the ones of the µAk
, and the parity is deduced from a translation of the

symmetry of the µAk
. And, to end this proof,

∫ 1

−1 KA(u)du =
∫ 1

−1 µAk
(hu +

mk)du =
∫ mk+1

mk−1

1
h
µAk

(x)dx = 1.

Table 1. Strong uniform fuzzy partition examples

Crisp Triangular Cosine

µA1
(x) = 1l[m1,m1+ h

2
](x) (m2−x)

h
1l[m1,m2](x) 1

2
(cos(π(x−m1)

h
) + 1)1l[m1,m2](x)

(x−mk−1)

h
1l[mk−1,mk ](x)

µAk
(x) = 1l[mk−

h
2

,mk+ h
2
](x) + 1

2
(cos(π(x−mk)

h
) + 1)1l[mk−1,mk+1](x)

(mk+1−x)

h
1l[mk,mk+1](x)

µAp(x) = 1l[mp−

h
2

,mp](x)
(x−mp−1)

h
1l[mp−1,mp](x) 1

2
(cos(

π(x−mp)

h
) + 1)1l[mp−1,mp]

KA(x) = 1l[− 1
2

, 1
2
](x) (1 − |x|)1l[−1,1](x) 0.5(cos(πx) + 1)1l[−1,1](x)
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a: Cosine b: Triangular
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Fig. 1. Fuzzy partitions with Ω = [0, 1] and p = 5

2 A fuzzy-partition based histogram

The accumulated value Acck is the key feature of the histogram technique. It is
the number of observations in complete agreement with the label represented
by the restriction of the real line to the interval (or bin) Ak. Due to the
important arbitrariness of the partition, the histogram technique is known as
being very sensitive to the choice of both reference interval and number of
cells (or bin width). As mentioned before, the effect of this arbitrariness can
be reduced by replacing the crisp partition by a fuzzy partition of the real
line.

Let (Ak)k=1,...,p be a strong uniform fuzzy partition of Ω, the natural
extension of the expression (1) induces a distributed vote. The value of the
accumulator Acck associated to the fuzzy subset Ak is given by:

Acck =

n∑

i=1

µAk
(Xi). (3)

Then, those accumulators still represent a ”real” (generally not an integer)
number of observations in accordance with the label represented by the fuzzy
subset Ak. Moreover, the strength (Condition 6 of Definition 1) of the fuzzy
partition (Ak)k=1,...,p implies that the sum of the Acck equals to n,1 the num-
ber of observations. Note that the classical crisp-partition based histogram is
a particular case of the fuzzy-partition based histogram, when (Ak)k=1,...,p is
the crisp partition.

We propose to illustrate the softening property of the fuzzy histogram over
the crisp histogram. Figure 2.(a) displays a crisp histogram of 35 observations
drawn from a Gaussian process with mean µ = 0.3 and variance σ2 = 1.
Figure 2.(b) displays a fuzzy triangular partition based histogram of the same

1 indeed,
Pp

k=1 Acck =
Pp

k=1

Pn

i=1 µAk
(Xi) =

Pn

i=1

Pp

k=1 µAk
(Xi)

Pn

i=1 1 = n
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observations with the same reference interval position. We have translated
both crisp and fuzzy partitions by an amount of 30% of the bin width. As it
can be seen on Figure 2.(c), this translation has quite an effect on the crisp-
partition based histogram, while the fuzzy-partition based histogram plotted
on Figure 2.(d) still has the same general shape. The number of observations
is too small, regarding the number of fuzzy subsets (p = 8) of the partition,
to ensure that the convergence conditions are fulfilled (see theorem 1).

(a) crisp-partition based histograms (b) fuzzy-partition based histograms

(c) translated crisp-partition based histograms (d) translated fuzzy-partition based histograms
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Fig. 2. Effect of the translation on a crisp ((a) and (b)) and a fuzzy ((c) and (d))
histogram

3 Fuzzy histogram density estimators

Expression (2) can be used for both crisp and fuzzy histograms to estimate the
density underlying a set of observations. However, since Ak is a fuzzy subset,
this expression no longer holds for any x ∈ Ak, but normalized accumulators
Acck

nh
now have degrees of truth inherited from the fuzzy nature of Ak (see

the preliminary of the section 1). The value Acck

nh
is then more true at mk

than at any other point of Ω. Our proposal is to assign this value Acck

nh
to the
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estimated density at each node mk of the partition. Therefore, the estimated
density can be obtained, at any point x 6= mk, by interpolation.

In this paper, we propose to use, once again, the concept of strong uniform
fuzzy partition of p fuzzy subsets to provide an interpolation of those p points.

Proposition 2. An interpolant of a fuzzy histogram (of the points (mk, Acck

nh
))

is given by

f̂FH(x) =
1

nh

p∑

k=1

AcckKB(
x − mk

h
) (4)

where KB is defined as in proposition 1 for the strong uniform fuzzy partition
(Bk)k=1,...,p.

Proof. Conditions 1 and 6 of the definition 1 imply that µBk
(ml) = δkl

for k, l ∈ {1, ..., p}, where δkl is the Kronecker symbol, and, KB(ml−mk

h
) =

µBk
(ml). Then, f̂FH(ml) = Accl

nh
, for all l ∈ {1, ..., p}, which means that f̂FH

goes though the p points (mk, Acck

nh
).

Therefore, this interpolant (which is a density estimator) has the continuity
properties of the membership functions of the fuzzy partition (Bk)k=1,...,p,
except at the nodes mk, where the smoothness is not guaranteed. We can
now add a convergence property of the estimators given by expression (4). So,

let the error between the underlying density f(x) and the estimate f̂FH(x)

be measured by the mean squared error : MSE(x) , Ef [f̂FH(x) − f(x)]2.
We have proved Theorem 1 in a paper to be published [LS], which is in
some sense, the technical part of this paper. This proof is inspired from the
demonstrations of the consistency theorems of the kernel density estimator,
that are in [Tsy04].

Theorem 1. Let us suppose

1. f : Ω → [0, 1] is a density function such that f is bounded (∀x ∈ Ω,
f(x) ≤ fmax < +∞) and f ′, its derivative, is bounded (∀x ∈ Ω, |f ′(x)| ≤
f ′

max < +∞),

2. KA, as defined in proposition 1, verifies
∫ 1

−1
K2

A(u)du < +∞.

Then, for all x ∈ Ω,

h → 0 and nh → +∞ ⇒ MSE(x) → 0 (5)

This theorem gives a mathematical evidence that the fuzzy histogram is a
proper representation of the distribution of data, because a simple interpola-
tion of a normalized histogram converges (in MSE) to the underlying density.
It converges under classical conditions, which are, the reduction of the support
of the membership functions, or the growth of the number of fuzzy subsets
of the partition (h → 0 or p → +∞), and the growth of the mean number of
data in each accumulator (nh → +∞).
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However, the use of the membership functions of a fuzzy partition as in-
terpolation functions is not compulsory. Thus, well-known interpolation func-
tions could be used, e.g. the polynomial interpolation (with the Lagrange or
the Newton form), or the spline interpolation, which improves the smoothness
management at the nodes.
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Fig. 3. Density estimation by interpolation

Figure 3 shows four estimations of a bimodal gaussian distribution with
parameters (m1 = 4, σ2

1 = 4) and (m2 = −1, σ2
2 = 1

4 ), based upon a fuzzy

triangular histogram. The circles are the interpolation points (mk, Acck

nh
). The

dashed line is the crisp interpolation (see expression (2)). The solid line is the
estimator obtained by fuzzy triangular interpolation (see expression (4)). The
dotted line is a spline interpolation of the points (mk, Acck

nh
).

The estimations are obtained with n = 100 observations and p = 14
fuzzy subsets of the partition, which means that we are no longer in conver-
gence conditions. Table 2 gives the empirical L1 errors of interpolation, i.e.∫

Ω
|f̂FH(x) − f(x)|dx, obtained by repeating the experiment 100 times. This

error is noted mError ± 3 ∗ σError, where mError is the mean of the L1 error
over the 100 experiments and σError its standard deviation.

Note that, whatever the interpolation scheme, compared to crisp histogram
density estimators, the fuzzy histogram density estimators seem to be more
stable (which can be measured by means of the standard deviation) and closer
(in L1 distance) to the underlying density (in that particular case).

Table 2. L1 errors of interpolation

crisp accumulators fuzzy accumulators

crisp interpolation 0.028307 ± 0.014664 0.024957 ± 0.01166
triangular interpolation 0.021579 ± 0.014963 0.020807 ± 0.013539
cosine interpolation 0.022524 ± 0.014832 0.021103 ± 0.01327
spline interpolation 0.021813 ± 0.01577 0.020226 ± 0.0139
Lagrange interpolation 3.7349 ± 7.893 2.2537 ± 4.3761
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Another important remark, deduced from Table 2, is that the fuzzy in-
terpolants appear to be a good choice, because their error magnitudes are
equivalent to those of the spline interpolant, which is known as being an op-
timal tool.

4 Conclusion

In this paper, we have presented density estimators based upon a fuzzy his-
togram. This latter being nothing else but a generalization of the popular crisp
histogram, when replacing the crisp partition by a fuzzy partition. Those pro-
posed density estimators consist in interpolations of the nodes’ values of the
density obtained in the usual way : Acck

nh
.
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