N

HAL

open science

Fuzzy Sets Defined on a Hierarchical Domain

Rallou Thomopoulos, Patrice Buche, Ollivier Haemmerlé

» To cite this version:

Rallou Thomopoulos, Patrice Buche, Ollivier Haemmerlé.
Domain. IEEE Transactions on Knowledge and Data Engineering, 2006, 18 (10), pp.1397-1410.

10.1109/TKDE.2006.161 . lirmm-00112938

HAL Id: lirmm-00112938
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00112938
Submitted on 30 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Fuzzy Sets Defined on a Hierarchical


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00112938
https://hal.archives-ouvertes.fr

Fuzzy Sets Defined on a Hierarchical Domain

Rallou Thomopoulds?, Patrice Buch& and Ollivier Haemmeé*

Abstract— This paper presents a new type of fuzzy sets, These two approaches, fuzzy sets [3] and possi-
called “Hierarchical Fuzzy Sets”, that apply when the bility theory [4], constitute a homogeneous formal-
considered domain of values is not “flat”, but contains jsm in two different uses. In both uses, an order
values that are more specific than others according to the relation is defined on a domain of values. In this
“kind of” relation. We study the properties of such fuzzy . ) .
sets, that can be defined in a short way on a part of paper, we con5|de_:r the_ Ca_se \_Nhen the candidate
the hierarchy, or exhaustive|y (by their “dosure") on the Va|ueS Of a Se|eCtI0n Crltel’lon 1q the fII’St USG, or
whole hierarchy. We show that hierarchical fuzzy sets form Of an ill-known datum in the second use, are not
equivalence classes in regard to their closures and that eélac “flat” domain values but are elements of a hierarchy,
class has a particular representative called “minimal fuzy partially ordered by the “kind of” relation: some of
set”. We propose a use of this minimal fuzzy set for query the values are more specific than others.

enlargement purposes and thus present a methodology for . el .
hierarchical fuzzy set generalization. We finally present a Contrary to a fuzzy set defined on a *flat” domain

experimental evaluation of the theoretical results desctied Of values, in our Case_the assumption of indepen-
in the paper, in a practical application. dency of the values is not true. Therefore two

| _ . . . order relations - the preference/possibility order
ndex Terms—Fuzzy set; Uncertainty, “fuzzy” and . ol " . .
probabilistic reasoning; Object hierarchies; Relaxation relation, and 'Fhe kind of” partial order relatlon_ -
Knowledge retrieval. must be put in adequacy. Some of the questions
we had to answer were: Does the preference or
possibility degree associated with a given value
l. INTRODUCTION have implications on the degrees associated with
In classic querying systems, the queries sent Bye other values of the hierarchy, particularly more
the users are all-or-nothing queries: a value belonggecific or more general ones ? What would be
to the users’ selection criteria or does not. In sdfte meaning of two comparable values (with the
querying [1], the users have the possibility to exeaning of the “kind of” relation) associated with
press preferences in their selection criteria. In thifferent preference or possibility degrees ? Can the
context, fuzzy sets, which are more generally usééerarchical structure be used to enlarge the users’
to represent concepts whose borders are not stridliyeries in case of empty answers, while respecting
delimited, can be used to define flexible selectidhe preference order defined by the users in their
criteria, by associating a preference degree wigiglection criteria ?
every candidate value. As a parallel issue, classicPrevious approaches close to our work are those
databases contain precise data, which are not &garding similar questions in non-fuzzy contexts.
pected to be ill-known. In possibilistic databases [2n particular, the propagation of preference or pos-
an ill-known datum is represented by a possibilit§ibility degrees in a hierarchy that we propose is in
distribution, which associates a possibility degredequacy with the object model, in which a query
with every candidate value (with the hypothesis thaf @ given class is also addressed to the subclasses
only one of these values is the effective one).  Of this class. Concerning query enlargement, several
works such as [5], [6] use a lattice of concepts to
' INRA, IATE Joint Research Uunit (bat. 31), 2 place P. Vialageneralize unsolvable queries.
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studies about possibilistic ontologies [7], eacimplemented in several representation formalisms:
term of an ontology is considered as a linguistithe conceptual graph model, the relational model
label and has an associated fuzzy descriptiand XML, and some parts (the definition of hi-
Fuzzy pattern matching between different orerarchical fuzzy sets more specifically) have been
tologies is then computed using these fuzzyublished as they constitute extensions or special
descriptions. This approach is related to thosises of these formalisms (see respectively [11] -
concerning the introduction of fuzzy attributg12], [13] and [14]). Our goal in this article is
values in the object model [8]; to provide a complete theoretical study, including
. the use of fuzzy relations between the terngeneralization mechanisms — which has never been
of a thesaurus. Studies about fuzzy thesaymiesented before — apart from the context of a
have discussed different natures of relatiorspecific data model.
between concepts, where relations are gradualn the following, we firstly remind in Section Il
and moderated by degrees. Fuzzy thesauri halie basics of fuzzy sets. In Section Ill, we develop
been considered for instance in [9], [10]. In thithe notion of hierarchical fuzzy set. In Section 1V,
approach, a query composed of a set of term& propose a complementary solution to the lack of
is enlarged to similar terms thanks to fuzzgnswers to a query, based on the generalization of a
pseudo-thesauri. Similarity is based on the cbierarchical fuzzy set. In Section V, we present an
occurrence frequency of terms in a given set ekperimental evaluation of the proposed methods.

documents.
However in our context the terms of the hierarchy Il. PRELIMINARY NOTIONS
and the relations between terms are not fuzzy. In this section, we briefly present fuzzy sets,

The present work was applied in the frameworkat will be used in the following to represent the
of a French national project dedicated to micraequired values in a flexible query or the possible
biological risk assessment in foods. The examplealues in an ill-kknown datum. We also introduce
given in the paper come from this case study. A®mparisons between fuzzy sets that will be used

a first step of the project, scientific data from pree compare an ill-known datum to a flexible query.
dictive microbiology were gathered and a querying

system was built in order to explore them. The daja Fuzzy Sets

have two characteristics: _
Fuzzy sets [3] were introduced to represent con-

- they are not abundant enough to answer ®epts that are not strictly delimited, like “young” or
ery query, thus there is a need for preferencg, - ¢4 instance. Unlike the case of a classic set,
expression (for instance, the users may agk element may belong partially to a fuzzy set.
for milk as a first choice or yoghourt as @ pefinjtion 1: a fuzzy set A on a domainX is
second choice) in order to make the queryingufined by a membership functign, from X to
more flexible, as well as for query enlargeme (t_)’ 1] that associates the degree to whichelongs
(including other de_liry pr_o_ducts for example) ilT[O A with each element: of X .
case of empty or insufficient answers; The domainX may be continuous or discrete. In

« they include ill-known information. For in- e paper, we only deal with discrete domains, as
stance, in some kinds of human diseases, fifher presented in Section I1l. Figure 1 illustrates
bacteriumEscherichia coliis suspected t0 bey,q examples already mentioned above. The fuzzy
responsible, but other bacteria lighigellaare - go1sproductPreferenceand ResponsibleBacterium
not excluded. are also denoted, respectively/Milk + 0.5/Yo-

The food products, like milk or yoghourt, are parghourt and1/Escherichia coli + 0.7/Shigellavhich
of a hierarchy of substrates, in which, for instancéhdicates the degree associated with each element.
Whole milkis a kind of Milk, which is a kind of These fuzzy sets are user-defined, during the choice
Milk product etc. In the same way, the bacteriaf the querying selection criteria, or during the entry
Escherichia coliandShigellaare part of a hierarchy of an ill-known datum.
of micro-organisms. We call support and kernel of a fuzzy setA

The methods presented in the paper have beespectively the setsupport(A) = {z € X |



which it is certain thatD is compatible with

ProductPreferences ResponsibleBacterium
@, and is defined by
‘T @ 017 o ° N(Q; D) = infmexmax(,uQ(x)., 11— ,uD(.x)).
05 o ' Although a fuzzy set representing possible values
o : . o : : in an ill-known datum and a fuzzy set expressing the
Milk  Yoghourt Escherichia coli ~ Shigella user’s interests in a query are different concerns, we

must note, firstly, that they share the same definition
Fig. 1. The fuzzy set®roductPreferencesnd ResponsibleBac- domain (which will be a common hierarchy in the

terium following), and secondly, that their comparisons
have been widely studied in the literature [1], [4],
[15], [17].
pa(z) > 0} andkernel(A) = {x € X | pa(z) =
1}.
In the following, we focus on two different com- lIl. HIERARCHICAL FUZZY SETS

parisons between fuzzy sets: the inclusion relation,The notion of hierarchical fuzzy set rose from
that we use to determine in a binary way whethggr need to express fuzzy values in the case where
an ill-known datum is an answer to a flexible quenhese values are part of taxonomies, as for food
or not, and fuzzy pattern matching, which allows tgroducts or micro-organisms for example. In our
determine in a graduate way whether an ill-knowfiyst approach, presented in Section IlI-A, such a

datum somehow answers a flexible query. fuzzy set is created directly by the user and defined
on a part of the hierarchy. In our second approach,
B. Comparisons between fuzzy sets for reasons explained in Section I1I-B, we extend the

fuzzy set to the whole hierarchy, thus obtaining the
bet ¢ ¢ ¢ odt (i Qosureof the fuzzy set. Section 1lI-C defines how
etween fuzzy Sets, a fuzzy (in our case, an we extend the comparisons between classic fuzzy

|f|||-kpbt7wn datum% !f mcludt()ad '?}B (;n Ol,:.r Ca.se"‘ba_sets to hierarchical fuzzy sets. In Section IlI-D, we
ex1|1 e query) i IS membership function 1S _eshow that hierarchical fuzzy sets having the same
low” the membership function aB. More formally:

Definition 2: Let A and B be two fuzzy sets closure lead to equivalence classes and that each
: X . . : class has one particular representative which is said
defined on a domaiX. A is included inB (denoted P P

: ) . : -~ to beminimal
A C B) if and only if their membership functions
14 andpup satisfy the condition:
Vo e X, pa(z) < pp(x). A. Presentation

Two scalar measures are classically used in fuzzyThe definition domains of the fuzzy sets that we
pattern matching [15] to evaluate the compatibilityefine below are subsets of hierarchies composed of
between an ill-known datum and a flexible querylements partially ordered by the “kind of” relation.
() a possibility degree of matching [4]; (i) aAn elementelt is more general than an elemeit
necessity degree of matching [16]. (denoteckit’ < elt), if elt’ is a predecessor eft in

Definition 3: Let ) and D be two fuzzy sets de-the partial order induced by the “kind of” relation
fined on a domainX and representing respectivelyf the hierarchy. An example of such a hierarchy is
a flexible query and an ill-known datum: given in Figure 2. A hierarchical fuzzy set is then

« the possibility degree of matching betweén defined as follows.

and D, denotedII(Q; D), is an “optimistic” Definition 4: A hierarchical fuzzy setis a fuzzy
degree of overlapping that measures the maset whose definition domain is a subset of the
imum compatibility betweer) and D, and is elements of a finite hierarchy partially ordered by
defined by the “kind of” relation.

II(Q; D) = supyexmin(pg(z), up(x)); For example, the fuzzy se®roductPreferences

« the necessity degree of matching betwe&gn and ResponsibleBacteriumepresented in Figure 1

and D, denotedN(Q; D), is a “pessimistic” conform to Definition 4. Their definition domains
degree of inclusion that estimates the extent &we subsets of the hierarchy given in Figure 2.

In the most commonly used inclusion relatio



Substrate Micro-organism

Meat  Milk product  Vegetable Escherichia coli Shigella Listeria

Cheese Yoghourt Milk

like meat or vegetable, even if the degree 0
has not explicitly been associated with these
products. One may also assume that any kind
of skim milk (sterilized, pasteurized, raw skim

Listeria
/ \\ o monocytogenes
. Skim milk
Whole milk | Half skim milk

Pasteurized mil Condensed milk Sweetened milk

milk for example) interests the user with the
degree 1,

. the second one is operational. The problem
rising from Definition 4 is that two different
fuzzy sets on the same hierarchy do not neces-
sarily have the same definition domain, which
means they cannot be compared using the clas-

We can note that no restriction has been imposed SIC comparison operations of fuzzy set theory
concerning the elements that compose the definition (S€€ Definitions 2, 3). For exampl@/Skim
domain of a hierarchical fuzzy set. In particular, the ~ Milk + 0.5/Milk and 1/Milk + 0.2/Condensed
user may associate a given degdegith an element milk are defined on two different subsets of
elt and another degre€ with an elementit’ more the hierarchy of Figure 2 and thus are not
specific thanelt. ' < d represents a semantic of _ comparable. _
restriction forelt’ compared toelt, whereasd’ > These remark§ led us to introduce th(—_: co_ncept
d represents a semantic of reinforcement fr of closure of a hierarchical fuzzy set, which is a
compared tcelt. devel_oped _form defined on the_whole_ hierarchy.

For example, if there is particular interest in skirftuitively, in the closure of a hierarchical fuzzy
milk because the user studies the properties of IG&t the “kind of” relation is taken into account by
fat products, but also wants to retrieve complemeRropagating the degree associated with an element
tary information about other kinds of milk, thesd® its sub-elements (more specific elements) in the
preferences can be expressed using for instance f#rarchy. For instance, in a query, if the user is
following fuzzy set: 1/Skim milk + 0.5/Milk In mterested in the eIemerM]l_Ik, we conslder that all
this example, the elemer@kim milkhas a greater Kinds of Milk — Whole milk Skim milk Pasteur-
degree than the more general elemstilk, which ized mlllg etc. — are of interest. On the opposite,
corresponds to a semantic of reinforcementSkim We consider that the super-elements (more general
milk compared taMlilk. On the contrary, if the user is€/eéments) oMilk in the hierarchy -Milk product
interested in all kinds of milk, but to a lesser extergubstrate...— are too general to be relevant for the
in Condensed milkbecause of its smaller wateMSE€rs query.

content, the preferences can be expressed using thB€finition 5: Let I be a hierarchical fuzzy set
following fuzzy set:1/Milk + 0.2/Condensed milk d&fined on a subsé? of the elements of a hierarchy

In this case, the elemerondensed milkhas a - |t membership function is denoted.. The
smaller degree than the more general elendik, closure of F, denotedclos(F'), is a hierarchical

which corresponds to a semantic of restriction fd¢Z2y Set defined on the whole set of elements of
Condensed milkompared taMilk. H and its membership function.,sr) is defined
as follows.

For each elementelt of H, let E., =

Condensed whole milk

Whole pasteurized milk Sweetened condensed milk

Fig. 2. Example of a hierarchy

B. Closure of a hierarchical fuzzy set {elty,....elt,} be the set of the smallest super-
We can make two remarks concerning the use elements otit in D (in the broad sense, i.elt; >
hierarchical fuzzy sets: elt):

« the first one is semantic. Let/Skim milk + o if Eg is not empty, posry(elt) =
0.5/Milk be an expression of preferences in a mazi<;<,(pr(elt;));
query. We can note that this hierarchical fuzzy « otherwisei s (elt) = 0.
set implicitly gives information about elements In other words, the closure of a hierarchical fuzzy
of the hierarchy other thaBkim milkandMilk. setF' is built according to the following rules. For
For instance, one can deduce that the ussach elementit of H:
does not expect results concerning productsl) if elt belongs toF, thenelt keeps the same



2)

3)

4)

degree in the closure df (case wherdv,; =

{elt});

associating the maximum of these degrees with
in the closure is a choice that may be discussed. We

if elt has a unique smallest super-eleme&nt distinguish two cases:

in F, then the degree associated with; is
propagated taelt in the closure ofF (case
where £, = {elt, } with elt; > elt);

if elt has several smallest super-elements
{elty, ..., elt,} in F, with different degrees, a
choice has to be made concerning the degree
that will be associated withit in the closure.
The proposition made in Definition 5 consists
in choosing the maximum of the degrees
associated witkelty, ..., elt,. This choice is
discussed in the following;

all the other elements df, i.e. those that are
more general than, or not comparable with the
elements off", are considered as non-relevant.
The degree O is associated with them (case

if the hierarchical fuzzy set expresses prefer-
ences in a query, the choice of the maximum
allows us not to exclude any possible answer
(the possibility and the necessity degrees of
matching can be higher). In real cases, the
lack of answers to a query generally makes
this choice preferable, because it consists in
enlarging the query rather than restricting it.
This is actually the case in our project;

if the hierarchical fuzzy set represents an ill-
known datum, the choice of the maximum
allows us to preserve all the possible values
of the datum, but it also makes the datum
less specific. We chose this solution in order

where E;; = ().

Example 1:Figure 3 shows the closure of the

hierarchical fuzzy se0.8/Milk + 1/Whole milk +
0.3/Condensed milk

Subgtrate Micro-%rganism

M(e)at Milk péoduct Veggtable Escher(i)chia coli Shigella Lisgeria

Cheese Yoggourt Milk Listeria

0.8
0 \
/ N ~~—_"Skim milk
Whollemllk Halfsglgmllk 0.8

i i ned milk
Paste%r.léed mil Condeor%ed mil Sweetened mi

Condensed whole milk

Whole pas]t_eurized milk Sweetenedocgndensed milk

Fig. 3. Closure of a hierarchical fuzzy set

In the hierarchical fuzzy set of Figure 3, the user

has associated the degree 1 vikhole milkbut only

0.3 with Condensed milkThe maximum of these
two degrees is thus associated with their common

sub-elementCondensed whole milik the closure.
The case ofSweetened condensed mikk dif-

ferent: the user has associated the degree 0.8 with
Milk but has given a restriction on the more specific
elementCondensed milkdegree 0.3). ASweetened

condensed milks a kind of Condensed milkit

inherits the degree associated w@bndensed milk

that is 0.3.

In the case where an elemeiit of the hierarchy,
that does not appear in the initial hierarchical fuzzy
set, has several smallest super-elements that appear
in the hierarchical fuzzy set with different degrees,

Monoc&togenes

to homogenize the treatment of queries and
data. In a way, it also participates in enlarging
the query, as a less specific datum may share
more common values with the query (the pos-
sibility degree of matching can thus be higher,
although the necessity degree can decrease).

Computing the closurelos(F') of a fuzzy setF’
defined on a domaidom(F') C H has a complexity
in |H|.|dom(F)|?, provided that the comparison
of two elements of the hierarchy can be done in
constant time. Generally, the definition domain of
F is limited to a few elements, so that the actual
computing time remains moderate.

Complexity Analysis 1The steps of the comput-
ing are the following:

There arg|H|— |dom(F')|) elements inf that

do not appear inlom(F'). The degree that is
associated with them imlos(F") thus has to
be determined. For each elemedit of these

(|H| — |dom(F)|) elements, one must:

— compareelt with each of the|dom(F)|
elements ofF" (there are|dom(F’)| com-
parisons), so as to determine the super-
elements ofelt in dom(F'). We denoteS
the set of super-elementsdat in dom(F).

We have:|S| < |dom(F)|. We consider
that the comparison of two elements can
be done in constant time.

— among the|S| super-elements oélt in
dom(F'), determine the most specific ones.
Therefore, theS| super-elements must be
compared to one other. In the worst case,



they will all be compared by two, which 3) the necessity degree of matching betwéén

will require C2, = 5= comparisons. and I, N(Fy; Fy), is defined as
We denoteS the set of most specific super- N (clos(F1); clos(F3)). _ _
elements ofelt in |dom(F)|. We have: Example 2:T_he c_Iosures of_ the hlerarchlcal
S| < |dom(F)|; fuzzy sets1/Skim milk + 0.2/Milkand 1/Milk +

— among the degrees associated Finwith 0.5/Condensed millare represented in Figures 4
the|5" most Specific Super-e|ements@f’ and 5. Their Comparison shows thatSkim milk
choose the greatest one. This maximufh 0.2/Milk is included in1/Milk + 0.5/Condensed
calculus is done by Comparing the degré@llk because the memberShip function of the former

associated with one of thgS| elements associates lower degrees with every element of the

with the degrees of the othgtS| — 1), hierarchy.
and choosing the greater each time. There

Pasteurized mil

= . Substrate Micro-organism
are thus(|S| — 1) comparisons. 0 0
i Vegetable . S N
For each of the(|H| — |dom(F)|) elements "§* Rt ™% Fechefphia coll Shigea Lisgera
that do not appear inlom(F'), the number  Chgese Yoghoun “{';_'5\ Mongggetggenes
of comparisons that are computed is finally i wmnk
|S].(]S]—1) ol Whole milk | Half skim milk 1
(|dom(F)| + === 4 [S] — 1). 0.

) A 0(.:Zondensed mil Sweeteged milk
The total number of comparisons that is con 0.2

puted is thus: (|H| — [dom(F)|)(|dom(F)| +
W + |S] — 1), which is majored by

dom .(|dom —

(|H‘—|d0m(F)|)(1|d0m(F)|+| (F)mz & 1;"‘ Fig. 4. Closure of the hierarchical fuzzy sESkim milk + 0.2/Milk
|[dom(F)| = 1) = 5(|H| — |dom(F)])(|dom(F)]* + L -

3|dom(F)| — 2). is included in:

We can note that: Subgtrate Micro—%rganism

e if |[dom(F)| = |H|, that is, if F' is already @ wea ik product Vegetable
closure defined orf, there is of course no o ™
Cheese Yoghourt  Milk

. Listeria
operation to do; 0 0 1 S Monocyiogenes
o if |dom(F)| is small compared t¢H |, which M‘ mmilk
is generally the case (in the proje¢lom ()|  Pasteurized mi !
is limited to 5), computing the closure is thet Condtseq oe ik

”near in ‘H|, Whole pasteurized milk Sweetenedocsondensed milk
« otherwise, computing the closure is polyno- '

mial. As |dom(F)| and (|H| — |dom(F)|) are Fig. 5. Closure of the hierarchical fuzzy €éMilk + 0.5/Condensed
majored by|H|, the complexity is inO(|H|?). milk

Condensed whole milk
Whole pasteurized milk Sweetenedocgndensed milk

Escherichia coli Shigella Listeria
0 i 0

Condeonged mil Sweetened milk

C. Comparisons of hierarchical fuzzy sets D. Minimal fuzzy sets

The introduction of the concept of closure allows |5 Section 111-B, we saw that each hierarchical

all the fuzzy sets that are defined on a givefizzy set has an associated closure that is defined
hierarchy to have the same definition domain (th the whole hierarchy. We now focus on the fact
whole hierarchy) and thus to be compared using theat two different hierarchical fuzzy sets, defined on
classical comparisons and operations between fuzg¥ same hierarchy, can have the same closure, as
sets. in the following examples.

Definition 6: Let [ and F> be two hierarchical  Example 3: The  hierarchical fuzzy  sets

fuzzy sets defined on the same hierarchy. Then: Substrate = 1/Milk and Substrate = 1/Milk

1) Fy C Fy if clos(Fy) C clos(Fy); + 1/Skim milkhave the same closure: the degree
2) the possibility degree of matching between 1 is associated witiMilk and every more specific
and Fy, II(F; Fy), is defined as element, the degree O is associated with all the

I(clos(Fy); clos(Fy)); other elements of the hierarchy.



Example 4:The hierarchical fuzzy  setsconsequence on the closure: removiig from F
Substrate = 1/Milk + 0.8/Whole milk + will not impact the degree associated with itself
1/Pasteurized milkand Substratge = 1/Milk + in the closure, but it may impact the degrees of the
0.8/Whole milk + 1/Whole pasteurized millave sub-elements ofit in the closure. For instance, the

the same closure, represented in Figure 6. elementPasteurized milks deducible inSubstrate,
according to Definition 8. Removingy/Pasteurized
Substrate Micro-organism milk from Substrate would not modify the degree
Meal  Mik product Vegglable Escherichi@ Stigella Literia of Pasteurized milktself in the resulting closure, but
cn Milk ° I® itwould modify the degree of its sub-eleméaithole
eese Yoghourt 1 Listeria . . .
0 0 N, Monocytogenes pasteurized milkwhich would have the degree 0.8
R . - Skim milk . .
Wholemilk | Half skim milk 1 instead of 1). Thus, this remark leads us to the
Pasteufzed MK \condensea it S"e§1ed MK following definition of a minimal hierarchical fuzzy
Condensed whole milk set.
Whole pasjt_eurized milk 8 Sweetened flzondensed milk

Fig. 6. Common closure of the hierarchical fuzzy s8tghstrate

and Substrate Definition 9: In a given equivalence class (that

Such hi hical ts f val is, for a given closure”), a hierarchical fuzzy set
| uc !tehrarc |cat tuztf]y. sels orm €quUIValeNG& said to beminimal if its closure isC and if none
classes with respect 1o heir closures. of the elements of its domain is deducible (here

Defin_ition 7. Two hierarch_ical fuzzy sets) _and he term “minimal” does not have the meaning of
F,, defined on the same hierarchy, are said to bgrdinality)

equivalent (denotedF}, = F3) if and only if they
have the same closure.
Property 1: Let F; and F, be two equivalent

hierarchical fuzzy sets. Wit € dom(F)Ndom(Fy) ) )
then g, (elt) = g, (elt). The hierarchical fuzzy setsSubstrate and

Proof 1: According to the definition of the clo- SUPstrate are minimal (none of their elements is
sure of a hierarchical fuzzy set (Definition 5), deducible), contrary t&ubstrate and Substrate.

the closure of ' preserves the degrees that are
specified inF'. As F; and F; have the same closure
(by definition of the equivalence), an element that
belongs toF; and F, necessarily has the same We have proposed an algorithm and its proofs,
degree in bothl] given below, to calculate a minimal fuzzy set. The
We can note thaBubstrate contains the same el-proofs establish the following two properties.
ement asSubstrate with the same degree, and also
one more elementSkim milk with the degree 1).
The degree associated with this additional element is
the same as in the ClosureSﬂbStrat@. We say that Property 2: The Stopping condition is a|WayS
the elemenSkim milkis deduciblein Substrate.  reached.
Definition 8: Let F' be a hierarchical fuzzy set,
with dom(F) = {elty, ..., elt;, ..., elt, }, and F_; the
fuzzy set resulting from the restriction @f to the

domaindom(F) \ {elt;}. elt; is deduciblein F'if 50 3 The hierarchical fuzzy set obtained

Hetos(r_) (€lL;) = pip(elt;). . with this algorithm is minimal.
As a first intuition, we could say that removing

a deducible element from a hierarchical fuzzy set

allows one to eliminate redundant information. But

an element being deducible iA does not neces-

sarily mean that removing it frond” will have no Algorithm 1:



Calculation of a minimal fuzzy set mnl having a given
closure C
begin
mnl < 0
if (clos(mnl) = C)
then
stop (case where C' is the hierarchical fuzzy
set that associates the degree 0 with every
element of the hierarchy)
else
let lin be an order such that each element
of the hierarchy is examined after its super-
elements (that is, a linear extension of the
opposite order of that induced by the
“kind of” relation)
repeat
elt — next element according to lin

E (/ffclos(nm,l) (elt) 7& 27e] (elt))
then

mnl — mnl U {elt}
,Unm,l(elt) — UC (elt)

endif
end

Proof 2: Proof of Property 2
At the beginning of the algorithm, there are two
possible cases:

. either the stopping condition is already satis-
fied;

« or the stopping condition is not satisfied: then
the elements of the hierarchy start to be exam-
ined in the ordelin (each element is examined
after its super-elements). Let us process by
induction to show that, after the' element
is examined, every element: among the first
n elements that have already been examined
satisfies:/icios(mniy (elt) = po(elt). n € [1, N,
where N (range of the last element that is

2) the degreed associated withelt; in C' is

different from 0. In this caseglt; is added
to mnl with the degreed. We thus have

,uclos(mnl)(eltl) = Mc(eltl) =d.

After the first element is examined, this first element
elt; always satisfies the condition:

Helos(mnl) (€lt1) = Mc(eltl).

Let us suppose that, after the¢” element is

1)

2)

examined, each of the first elementselt,, ...,
€lti, ..
satisfies the conditionicismny) (elt;) = pc(elt;).
mnl associates a given degreewith the (n + 1)
elementelt, . Whenelt, ., is examined, there are
two possible cases:

., elt, which have already been examined

elt,+1 has the degree in C. We thus have
Petos(mni)(€ltni1) = po(elt,i1) = x. The
algorithm directly goes to the next element.
We still haveVi € [1,n], fcosamny)(elt;) =
uc(elt;) becausennl has not been changed;
the degred,, . ; associated withlt,, ., in C'is
different fromzx. In this case¢lt, . is added
to mnl with the degreel, ;. We thus have
,uclos(mnl)(elthrl) = MC(elthrl) = dn+1- This
time, mnl has been changed by addicg, . ;.
Compared to eacklt; (i € [1,n]), elt,1

is either more specific, or not comparable,
but elt,,,; cannot be a super-element @ft;,
because of the orddin. Therefore, adding
elt,+1 In mnl does not change the degrees
that are associated witlit,, . . ., elt;, ..., elt,

in the closure ofmnl. Indeed, the degree
associated withelt; in the closure ofmnl
only depends on the super-elements (in the
broad sense) ofit; in mnl, according to the
definition of the closure (Definition 5). We
thus still haveYi € [1,n], ficos@mn(elt;) =
pe(elt;).

examined before the algorithm stops) is at mogfter the (n + 1) element is examined, each
equal to the number of elements of the hieraglementelt among the firstn + 1 elements that
chy; N is smaller if the stopping condition ishave already been examined satisfies the condition:
reached before all the elements are examlnelglc.los(mnl)(elt) = pc(elt).
Forn = 1: Before the first element is examined, We finally obtain, at most after the last element
mnl is empty and its closure associates the degreethe hierarchy has been examined:

0 with all the elements of the hierarchy. Lelt,

Velt, peiosimni)(elt) = pc(elt), that is, the stopping

be the first element that is examined. There are twondition clos(mnl) = C. O

possible cases:
1) elt has the degree O i’. We thus have

Heclos(mnl) (eltl)
rithm directly goes to the next element;

Proof 3: Proof of Property 3

Let us process by induction to show that, for each
pc(elty) = 0. The algo- iteration of the algorithmynnl is minimal (with the
meaning of Definition 9).



At the beginningmnl is empty and thus minimal.

Let us suppose that mnl
{elty, ... elt;, ... elty} is minimal

after

elt thus belongs todom(F;) or to dom(F3),

but not to both, and it has no super-element that
the satisfies this condition: every super-elementebif

k" iteration of the algorithm: each elemenfecessarily belongs eitherdom(F:) anddom(Fy),
elt; in mnl is non-deducible (Definition 9). At Or neither todom(F;) nor to dom(Fs).

the (k + 1) iteration, the algorithm adds to Let F: be the hierarchical fuzzy sef{ or I3)
mnl the next elementelt,.,; of the hierarchy Whose domain containgi. The other one is denoted

(in the order lin) which does not have thefy. There are two possible cases:

same degree in the closure ofnl as in C
(Uclos(mnl)(eltszrl) 7é ,uc(eltkﬂ)), that is, which
is not deducible inmnl (Definition 8). mnl is
modified by addinglt;, . We may thus wonder if
the elementslt; (i € [1, k]) are still non-deducible
in mnl. Because of the ordekin, elt,.; cannot
be a super-element ofit; (i € [1,k]). Therefore,
adding elt;,, in mnl brings no change in the
degrees associated withlty, ..., elt;, ..., elty in
the closure ofmnl. Indeed, the degree associated
with elt; in the closure ofmnl only depends on
the super-elements (in the broad sensekiof in
mnl, according to the definition of the closure
(Definition 5). The elementslt; (i € [1,k]) are
thus still non-deducible imnl. After the (k + 1)
iteration of the algorithmimnl is minimal because
all its elements are non-deducible.

Property 4: The minimal fuzzy set isinique for
a given closure.

Proof 4: Let F; and F, be two minimal fuzzy
sets, with I} Fy and F} # F,. Note that we
cannot havedom(F;) = dom(F3), otherwise F}
and F» would not be different (Property 1). Let
elt be one of themost generalelements (with
the meaning of the “kind of” relation) that belong
to (dom(Fy) U dom(Fy)) \ (dom(Fy) N dom(Fy)).
Figure 7 shows the possible localization«f and
its super-elements.

« dom(Fy)Ndom(Fy) contains no super-element
of elt. As dom/(F,) contains neitheelt nor any
of its super-elements, we hay@los(py)(elt) =
0. On the contrary, agom(F,) containselt, we
have tios(r,) (elt) = pp, (elt) which is neces-
sarily different from 0, otherwisé’, would not
be minimal becauselt would be deducible in
F,. As F; and F, do not have the same closure,
they are not equivalent, which contradicts our
hypothesis;

« dom(Fy) N dom(F,) contains one or more
super-elements ofelt. Let S, be the
set of these super-elements and.;
{elty,...;elt;, ..., elt,} the set of most spe-
cific one(s) among them (with the meaning
of the “kind of” relation). For eachelt; <
Ee:, we have pp (elt)) L, (elt;) ac-
cording to Property 1. Asdom(F,) does
not containelt but containsS.;, we have
:uclos(Fy)(elt) = maxlgjgn(,qu(eltj)) accord-
ing to Definition 5. On the contrary, as
dom(F,) containselt, we haveyiq,s(r,)(elt) =
ur, (elt) which is necessarily different from
maxi1<j<n(ir,(elt;)), otherwiseF, would not
be minimal becauselt would be deducible in
F,. As I; and F; do not have the same exten-
sion, they are not equivalent, which contradicts
our hypothesis.]

Example 5:Let C' be the closure represented in

Figure 6. The minimal fuzzy setnl is obtained as

whole

follows:

Initially, mnl is empty. Its closure is the hierarchi-

hierarchy cal fuzzy set that associates the degree 0 with each

element of the hierarchy. We test if this closure is
C. The answer is no, as not all the elements have
the degree O irC. We thus traverse the hierarchy
using an order such that each element is examined
after its super-elements.

We first examine, for instanc&ubstratelt has the
same degree 0 in the closure ofnl and in C.

We continue withMeat Milk product Vegetable
Cheeseand Yoghourt which also have the same

m possible localization oélt
D possible localization of super-elementsedtf

Fig. 7. Possible localization ofit and its super-elements



degree in the closure ofinl as inC. s (Jdom(mnl)|? + 3|dom(mnl)| — 2);
Then we examinéMilk. It has the degree 0 in the « addingelt to mnl (if fciosmns) (€lt) # pe(elt))
closure ofmnl, whereas its degree is 1 0. Milk is is done in constant time.
thus added tonnl, with the degree 1. The closure of For the whole hierarchﬂ, the Comp|exity is thus
mnl is now the hierarchical fuzzy set that associat@gerior to: L H|(|dom(mnl)[? + 3|dom(mnl)| —2).
the degree 1 witiMilk and with the sub-elements |f |7om (mni)| is small compared toH |, comput-
of Milk, and O with all the other elements of theng the minimal fuzzy set is thus linear j#/|. In the
hierarChy, which is different fronC. We thus g0 extreme case Wheﬂdom(mnlﬂ — |H" we obtain:
on traversing the hierarchy. H|HP + 3|H?> — 2|H|). Computing the minimal
Pasteurized milkhas the same degree 1 in th@,zzy set is then polynomial i/ |.
closure ofmnl and inC'. We thus continue.
Whole milkhas the degree 1 in the closurerahl
but the degree 0.8 i@'. Whole milkis thus added to
mnl, with the degree 0.8. The closuremhl is now
the hierarchical fuzzy set that associates the degreén this section, we propose a complementary
0.8 with Whole milkand with the sub-elements ofsolution to the lack of answers to a query, used when
Whole milk(Whole pasteurized milkndCondensed the user wants to retrieve complementary answers
whole milR, the degree 1 with the other milksl{lk, close to his initial query. The hierarchical fuzzy
Pasteurized milkCondensed milketc.) and O with set that represents the user’s preferences is replaced
the other elements of the hierarchy, which is stily a more general one, with the meaning of the
different fromC'. We go on traversing the hierarchyinclusion relation extended to hierarchical fuzzy
We examineCondensed milkthenHalf skim milk sets.
Sweetened milland Skim milk which all have the Different approaches have been proposed in the
same degree 1 in the closurexhl as inC. literature in order to introduce tolerance in the
Whole pasteurized milkas the degree 0.8 in thequerying. In [18], a fuzzy operator based on proxim-
closure ofmnl but the degree 1 id'. It is added to ity relation is proposed to weaken fuzzy predicates
mnl with the degree 1. The closure ofn/ is now in a query, but it concerns numerical domains and
the hierarchical fuzzy set that associates the degoaanot be applied to predicates defined on a hierar-
0.8 withWhole milkand its sub-elemer@ondensed chically organized domain. Tolerant fuzzy pattern
whole milk the degree 1 with all the other milks ananatching [15] uses a similarity relation between
0 with the rest of the hierarchy, which is equal tterms to enlarge the preferences, but it does not take
C'. The algorithm stops. into account the case of hierarchically organized
We finally obtainmnl = 1/Milk + 0.8/Whole milk domains. For instance, terms may be added to
+ 1/Whole pasteurized milkwhich corresponds tothe support of the fuzzy set in the enlargement
Substrate4 mechanism, but more specific terms than these
Computing the minimal fuzzy setn! of a given ones may stay outside of it, which is a major
closureC defined on a hierarchy/ has a complex- drawback for hierarchical domains. Other measures
ity in |H|.|dom(mnl)|?. have been introduced to evaluate how close to each
Complexity Analysis 2Computing the minimal other two fuzzy graphical representations are [19]
fuzzy set requires to examine each elemeénof I7, or taking into account preexistent similarity rela-
using an ordetin that conforms to Algorithm 1, to tions [20], [21]. In studies concerning information
determine ificiosmni,) (elt) = pc(elt) (wheremnl; retrieval non-limited to exact answers (see [22]-
is the current state of calculus ofnl) and addelt [24]), searching for approximate answers has been
to mnl; if this equality is not satisfied: managed in two ways: modifying the datum so that
o determining if fiqosmni (€lt) = pc(elt) re- it may satisfy the query, or modifying the query
quires to calculate the closure ofinl; for so that it may be satisfied by the datum. Our work
the elementelt only (see Complexity Anal- conforms to the latter approach, however we are
ysis 1). As the number of elements innl; in the context of a database application, and not
is always majored bydom(mnl)|, the com- a corpus of textual documents which is a different
plexity of this operation is always inferior to:concern.

V. GENERALIZATION OF A HIERARCHICAL
FUZZY SET



More than a unique solution, we propose a . elt, is a super-element of one ore more el-
methodology in order to generalize a hierarchical ements ofF,.,,. Thus it cannot be itself a
fuzzy set expressing preferences. smallest super-element efemn in dom(F,):

elty ¢ Eeem_g- Therefore we haver,, , =

Eeiem and Helos(Fy) (€l€m) = Hclos(F) (elem),

A. Elementary generalization of a hierarchical . elt, is not comparable with any element of

fuzzy set Eeem (OF Egern is empty). In this case:

The elementary generalization of a hierarchical — either elt, is not a super-element of
fuzzy set consists in creating, given a hierarchical elem. Then Eugem, = FEuen and
fuzzy set ', a more general hierarchical fuzzy Jictos(Fy) (E1€M) = fetos(r (elem);
set F,, with the meaning of the inclusion relation — or elt: is a super-element aflem. Then
defined in Section IlI-C. To obtaid}, an element Eetem.g = Eeem U {elt,} (elt, is neces-
elt, is added toF’, elt, being a super-element of sarily a smallest super-element efem
an elementelt € dom(F). We have defined this in dom(F,) because it is not comparable
operation to be as flexible as possible. with the elements of’,,.,,,). There are two

Definition 10: An elementary generalizationof possible cases:

a hierarchical fuzzy sdf is an operation that creates
from F' a hierarchical fuzzy set’, obtained as
follows.

Let elt be an element ofdom(F) and elt,
a super-element otlt, satisfying the condition:
Belt’ € dom(F) (elt, < elt’). That is to saygelt,

x If Foem IS €mpty,
Helos(r)(elem) = 0 and

Lelos(F,) (€lem) = pup, (elty) > 0;
% if Eeem IS NOt empty,

elos(r)(elem) =

[ e lem,,)) and
may neither be an element dém(F') nor be more T?wgige%l)’ pr(elemn))
specific than any element @bm/(F). _ ma;ﬁ(uF (elemy), .. ., i, (elemy)
F, is obtained by addinglt, to ' with a given g T ’

g : e _ pur, (elty))
degree denoted,. F is thus defined by: — maz(pp(elems), . .., urelemn)
{ dom(F,) = dom(F) U {elt,} i, (€lty))
,qu(eltg) = d,. > ,udOS(F)(elem).

We thus have for eacblem:
{%)clos(Fg) (elem) > Melos(F) (elem)- O ) ] ]
Example 6:Let ' be the following hierarchi-
al fuzzy set: F' = 1/Condensed whole milk +
.5/Cheese

Property 5: F, is more general thar¥, with
the meaning of the inclusion relation extended
hierarchical fuzzy sets.

Proof 5: We must show that, for each eleme

clem of the hierarchy, we havéyiao(r,)(elem) = £or 1y = Condensed whole milkelt, = Milk and

Helos(F)(elem)). d, = 0.2, we obtain:

Let B = {elemy, ... elem,} be the set of /» _ "y ~0 qensed whole milk + 0.5/Cheese +
smallest super-elements (in the broad sense) d%/Milk

elem in dom(F"). According to the definition of the

closure (Definition 5)i.,sr)(elem) only depends o

oNn Eem. Let Ege,_, be the set of smallest superB. Generalization rule

elements oklem in dom(F}). ficos(r,) (elem) only The elementary generalization defined above will

depends o, 4. We will show thatE,,.,, , is be used as a basis for the definition of a (non-

equal, either ta&,,.,,,, or to E,.., U{elt,}, and that elementary) generalization, obtained by applying

the inequality tios(r,) (elem) > peos(ry(elem) is to I several elementary generalizations: for each

satisfied in both cases. element of ', a set of more general elements may
As dom(F,) = dom(F) U {elt,} and thatelt, be added ta-.

cannot be a sub-element of an elementiof.( F) Therefore, several questions have to be decided:

(Definition 10), a fortiori elt, cannot be a sub-(i) in which order will the elements of’ be con-

element of an element df,.,, C dom(F). There sidered, as this order may affect the result ? (ii)

are thus two possible cases: which more general elements may be added’t@



(iif) how will the degree associated with each addedt has a more general elemetit, in gen(elt) that

element be determined ? satisfies the conditioBelt’ € dom(F') (elt, < elt’).
These questions arise from issues frequentlyExample 8:Let F' be the following hierarchical

found in literature about similarity, in differentfuzzy set:F' = 1/Whole milk + 0.5/Milk and st (elt)

contexts concerning non-fuzzy or non-hierarchictthe set of smallest super-elementsetf

values, or using additional knowledge as in linfhe elementWhole milkis not generalizable in

guistic issues. Questions (ii) and (iii) are linked" becausest(Whole milk)= {Milk}, and Milk is

to the notion of distance between concepts [25gkeady inF'.

[28]. Question (iii) also impacts the classificatioThe elementMilk is generalizable becausé(Milk)

of the results to be obtained [15]. Question (B {Milk product}, andMilk productis not in ' nor

concerns possible conflicts between element$’ofhas a super-element if.

having common super-elements added/tp with

an antagonism about the choice of the degreesd0 Elementary generalization according to a gen-

be associated with these super-elements. eralization rule
The notion of generalization rule formalizes these The elementarv generalization presented here is
elements. y 9 P

an operation that conforms to Definition 10, re-
stricted by a generalization rulg,.

Definition 13: An elementary generalization
eéccording to a generalization rule R, is an el-
ementary generalization of a hierarchical fuzzy set

, such that:

« the elementlit € dom(F) is chosen as being
the first generalizable element 61, according
to the orderord. It is denotedelty;

« clt, is a smallest super-element eft, in
gen(elty);

Definition 11: A generalization rule R, is a 3-

tuple (ord, gen, calc), where:

« ord is a total traversal order through the el
ments of a hierarchical fuzzy sét, defined on
a hierarchyH,

« gen is an application that associates, with eac
elementelt in dom(F), a set of more general
elements inH,

« calc is an application that associates a degree
between 0 and 1 with each pdilt, elt,) such

thatelt € dom(F') andelt, € gen(elt). ) : _
Example 7: ) g ) « d, is defined byd, = calc(elty, elt,).

. ord may be, for instance, an order through Example 9:Let R, be the generalization rule

the elements of' by decreasing degrees. Thigroposed in Example 7 anfl the following hierar-

. 2 - chical fuzzy set:
choice allows one to generalize in priority th% — 1/Whole milk + 0.8/Half skim milk + 0.2/Yo-
elements ofF’ that have the higher degrees hourt ' '
that is, the elements for which the user h Il the elements of” are generalizable, and the first

expressed the higher preference; : X )
. geS(elt) may be ?or ingtance the set of smallo < according to the orderd (i.e. by decreasing

: . ) degrees) isVWhole milk The elementary generaliza-
est super-elements eft in the hierarchy; . , ) :
. . : tion of ' according toR, is thus the following
« calc may, for instance, associate witht, half

of the degree of the generalized elemefit hierarchical fuzzy set
the deg 9 e0 SRMET . = 1/Whole milk + 0.8/Half skim milk + 0.2/Yo-
This choice allows one to retrieve in priority .
e ghourt + 0.5/Milk
the values specified by the user.
Each element off" does not necessarily have a o _ _
more general element that may be added-tdor D. Generalization of a hierarchical fuzzy set, ac-
the generalization operation: as we saw previoustgrding to a generalization rule
in Section IV-A, this more general element must The (non-elementary) generalization®that we
satisfy a condition. Here we define the notion afefine here consists in applying successively several
generalizable element aof', according to a given elementary generalizations, according to a given
generalization rule. generalization rule, to theminimal fuzzy set that is
Definition 12: Let F' be a hierarchical fuzzy set.equivalent toF'. We chose to generalize the minimal
An elementelt of dom(F') is said to begeneraliz- fuzzy set, and not’ itself, because we consider that
able in F', according to a generalization rule,, if different equivalent fuzzy sets expressing the user’s



guery and bringing the same answers, should hdee each element eit of the hierar-
the same generalization that will bring the sanwhy, ri.osr,)(elt) > fieios(r)(elt).

additional answers. This is guaranteed by the useFor n = 0, we have:Velt, o5 (elt) =
of the minimal fuzzy set. elos(r)(€lt), becausel’ = Fy.
Definition 14: The generalization of a hierar- Let us suppose thatVelt_, Lelos(Fn) (€lt) >

chical fuzzy set F, according to a generalizationuicos)(elt). ~As  F,.1 is  obtained by
rule R,, is an operation that provides a hierarchican elementary  generalization ofF;,, we
fuzzy setF, obtained as follows: have: Velt, peos(r,)(€lt) > Heos(ra)(€lt)

. we call 0-degree generalization &, denoted (Proposition 5). Thereforevelt, iicios(r, .y (elt) >

F,, the minimal fuzzy set that is equivalent tdteat(r) (€l1). L L
FO. Y g Example 10:Let R, be the generalization rule

proposed in Example 7 ankl the following hierar-
chical fuzzy set:

— if there exists an element afom(£y) € - = 1pyhole milk + 1/Condensed whole milk +
dom(F,) generalizable inF, according 4 g/yaif skim milk + 0.2/Yoghourt
to R,, then F,,,, is obtained by an ele-

mentary generalization af},, according to
R4, in which elt, is the first element of
dom(Fy) C dom(F,), with the meaning
of the orderord, generalizable inf,;
— if not, the generalization of’ is the fuzzy
setF, = F,.
Property 6: The degreen such thatF, = F), is
finite.
Proof 6: Let GEN be the set of elements that
belong to the image, throughen, of the set of el-

. let F,, be the n-degree generalization bf

« Iy, the minimal fuzzy set that is equivalent to
F, is the following:
Fy = 1/Whole milk + 0.8/Half skim milk +
0.2/Yoghourt

. the first generalizable element df,, in the
orderord, is Whole milk whose generalization
providesFy:
F, = 1/Whole milk + 0.8/Half skim milk +
0.2/Yoghourt + 0.5/Milk

. the first element ofdom(F,) generalizable
in F} is Yoghourt whose generalization pro-

ements ofdom(Fp): GEN = Uetedom(ry) 9en(elt). vides Fy:

The elementelt; added toF;, to obtain £}, F, = 1/Whole milk + 0.8/Half skim milk +
belongs to the set: 0.2/Yoghourt + 0.5/Milk + 0.1/Milk product
E, = {elt’ € GEN |2elt € dom(F,) (elt' < elt)}. | there is no element afom(F,) generalizable
According to Definition 14,F, = F, is obtained in Fy, SOF, = Iy,
when E,, is empty.

The eIemenbltg“ added toF,,; to obtainF,, - V. EXPERIMENTAL EVALUATION OF THE
belongs to the sett,, .| = PROPOSED METHODS

{elt’ € GEN |Belt € dom(Fiq) (elt’ <elt)} = Since 1999, our team has been involved in the

{elt’ € GEN |Zelt € (dom(Fy,) U{eltg}) (elt’ < elt)} Sym’Previus national project, which brings together
C Ey. _ industrial and academic partners to build a tool
E,11 contains at least one less element tan  for the analysis of microbiological risks in food

elty, which does not satisfy the conditidilelt € products (http://www.symprevius.org).
(dom(F,) U {elty}) (elty < elt)}). We thus have: = e firstly describe the system architecture in
card(Epy1) < card(Ey,). As card(E,) is strictly section V-A. Section V-B proposes an experimental

decreasing withn, FE,, is empty forn at most eqt_JaI evaluation of the closure and generalization methods

thus finite.[]

Property 7: The fuzzy setf,, obtained by the o The system architecture
generalization off’, is more general thad’, with
the meaning of the inclusion relation extended t
hierarchical fuzzy sets.

Proof 7: Let us process by induction to sho
that, for eachn, we have: Yacronym for the French translation of Enlarged Queryingifing

The risk analysis tool includes a database query-
Rg system called MIEL+% available on the In-
V&ernet, that queries three databases: a relational



database which contains the stable part of the imhere clause is determined both by the view and

formation [13], a conceptual graph knowledge ba$gy the user’s selection criteria. If the user’s selection
which contains the weakly-structured part of theriteria contain hierarchical fuzzy sets, the closures
information [29], [30], and an XML base filledof these fuzzy sets are computed and taken into
with data semi-automatically extracted from thaccount in the SQL query.

Web [14], [31]. Figure 8 illustrates the system The MIEL++ system is written in Java language.

architecture. A MIEL++ query is executed using a three-tier

process architecture.

‘ MIEL++ graphical user interface ‘

Q“erieSﬁ ﬁanswers B. Evaluation of the closure and generalization
Hierarchy methods

Views
The evaluation was made in collaboration with

// ﬁﬁ \N microbiologist experts. The methodology we used to

evaluate the proposed methods followed five steps:

Global schema

of terms

XML P el . .

[ roBwmapper ] [ cGwrpper ] [ XML wrupper | 1) definition of the quantity and thematic repar-
soL UTuples Query || f Answer ey ﬂuf:?nﬂ;zt tition of the data accessed by the test queries,
query grap. graphs

so that the results are significant;

2) definition of the form of the test queries, so
that the results are interpretable;

3) definition of a set of test queries that satisfy
the previous points;

4) execution of the set of test queries;

The vocabulary used to represent the data in the®) analysis of the results.

three databases, as well as to express queriednidhe following we describe the procedure step by
the retrieval system, is organized into a hierarct§j€p-

of terms that corresponds to the taxonomies usedl) The significance conditions put on the test
by our biologist partners to represent classifications  queries were, firstly, that they cover at least
of microorganisms, food substrates and technolog- ten percent of the database entries, and sec-
ical processes. The formalisms used in the three ondly, that they cover all branches of the
databases, as well as the MIEL++ query language, hierarchy of terms.

have been extended to be able to represent respe@) The interpretability conditions were of two
tively ill-known data and flexible queries as fuzzy kinds:

sets defined on a hierarchical domain. « each test query should be executed in

conceptual

graph
base

relational
database

Fig. 8. The system global architecture

In the MIEL++ system, a query is composed of
a set of projection attributes and a set of selection
criteria of the form< attribute, value >, where
value can be a hierarchical fuzzy set (see [13] for
more details). It is expressed in a given view, which
corresponds to a virtual table that brings together
with sense all the attributes needed by the user.

The query expressed by the user through the
GUI is sent to the three databases, and therefore
translated into three different formalisms. In the
case of the relational subsystem for instance, which
gathers more than 10.000 data entries that corre-
spond to scientific data from about 700 publications
in predictive microbiology, it is translated into a
SQL query. Theselect clause is determined by the
view in which the user expresses the query. The

three forms: (i) as a standard query; (ii)
with the computing of the closures of
the selection criteria values; (iii) with the
computing of the closures of the general-
ized selection criteria values;

what we mean by “standard” query is
a query in which the selection criteria
values are not fuzzy, so that there is no
possible confusion in the interpretation of
the degrees associated with the results:
these degrees are due to the generalization
method used in form (iii) of the query, and
not to the user’s preferences in form (i) of
the query. Moreover in “standard” queries
the closures are not computede. the
sub-elements of the elements mentioned



TABLE |

in the selection criteria values are nOEVALUATIONOFTHE CLOSURE AND GENERALIZATION METHODS

taken into account.

3) Seven test queries were defined, with t

4)

5)

€ Selection Number | Number Number of Number of
foIIowing < attm'bute, value > criteria: criteria of exact | of exact answers answers
. answers | answers obtained obtained
« <Food product, 1/Shell-fisk; with obtained | with gener- | with gener-
« <Food product, 1/Cheese standard with alization alization
querying closure judged judged non-
. <Fc_)od pr(_)duct, _ 1/C_heese and pertinent pertinent
<Microorganism, 1/Listeria; (and noted | (and noted
« <Food product, 1/Egg; degree) degree)
Food product 0 4 66 0
» <Food product, 1/Potted meatand | 7 )
- . . . = 1/Shell-fish (degree 0.8)
<Microorganism, 1/Listeria; Food product 5 152 267 0
« <Food product, 1/Salad  and = 1/Cheese (degree 0.8)
<Microorganism, 1/Listeria; Food product | 0 53 87 0
= 1/Cheese, (degree 0.8)
« <Food product, 1/Fresh meat Microorganism
; H ; = 1/Listeria
DN
The param.eters used in the generalizati A sod product 5 = 5 =
method are: = 1/Egg (degree 0.8) | (degree 0.4
: : . to 0.2)
e ordis by_decreasmg degrees; Food produci =0 = n =
 genfelt) is the_ set Of smallest super; 1potted meat, (degree 0.8) | (degree 0.6
elements oklt in the hierarchy; Microorganism t0 0.4)
. calc associates withit, the degree ofit | = Ytistera
. . . . Food product 0 17 25 7
minus 0.2 (or O if the result is negative), - j/saaq. (degree 0.8 | (degree 0.6
The execution of the set of test queries gaye“oodansm 0 06) 100.2)
the results _presented in table 1. [ Food product 0 217 136 0
The analysis of the results led to the following= 1/Fresh meat (degree 0.8)

conclusions.
The closure results were considered as per-
tinent exact answers by the experts. They

provide 99 percent of the total number of

VI. CONCLUSION

exact answers. The evaluation results are th Whereas in classic fuzzy sets, a_lll the eI_ements are
excellent for tHe closure method. it thg same level ar_wd are associated Wlth a degree
Among the generalization results, the answe?Xpl.'C'tly d_eflned, this is not necessarily the case

that are judged pertinent by the experts (é h|_erarqh|c_al fuzzy sets because sever_al Ieve!s of
etail exist in the hierarchy, and the hierarchical

percent) have the higher matching degree“snks between the elements have to be taken into
that go from 0.8 to 0.6, whereas the answers. . nt
Lhaa\‘/te a(;i Jrl::}gge?harzon;)pefzrr(t)lrr;eng 6(23) gezrceg In our work, the hierarchical links are defined
€9 - 90 ) 2 "By the “kind of” relation. The membership of an
essential constatation is that the value 0.6 ca )
ement in a fuzzy set has consequences on the

X €
thus be considered as a threshold above Whlﬁ1embership of its sub-elements in this fuzzy set.
e thus define, as a first main contribution of this

results are classified as pertinent, and bel

which results are classified as non-pertinena er, the notion of hierarchical fuzzy set, that ma
by the experts. The evaluation results are thgsIO : y Seb y

aiso verv aood for the generalization method®t defined on a part of a hierarchy (for a given level
as: Y9 9 of detail) and the notion of closure of a hierarchical

fuzzy set, that is explicitly defined on the whole

« pertinent results can be clearly identifieljerarchy, using the links between the elements that
using their matching degrees; compose the hierarchy. Hierarchical fuzzy sets that

« generalization results bring a big amourfave the same closure define equivalence classes,

of complementary results (56 percent oind each class has a unique particular representative,
the total number of pertinent results).  called minimal fuzzy set.



Minimal fuzzy sets are used as a basis to defing]
the generalization of a hierarchical fuzzy set, which
is the second main contribution of this paper. The
methodology that we propose aims at enlarging thgj
preferences expressed by a user in a query and
represented as a hierarchical fuzzy set, in order W]
obtain pertinent complementary answers.

These results have been applied within the infor-
mation system of the Sym’Previus project, dedicate
to predictive microbiology. The Sym’Previus infor-
mation system has been in production since the be-
ginning of 2004 and may be consulted by users from
research or industry by means of a subscription. Ag;
shown in the last section of this paper, the plus-value
provided by the closure and generalization methods
has been quantified and represents an important Rayt
of the pertinent answers.

We expect these results to be useful in new
contexts: firstly, for flexible query answering in fory
malisms that do not originally handle a domain on-
tology; secondly, in other research fields that could
benefit from flexible generalization / specialization
methods, like knowledge discovery that hardly uses;
precision levels described by domain ontologies in
learning processes. [13]

We are now working on the optimization of the
algorithms that are used to compare hierarchical
fuzzy sets, which are currently based on the closures
of the hierarchical fuzzy sets. We are considering,
a solution based on the use of minimal fuzzy
sets. Another aspect of our current research, in the
continuation of this paper, concerns the introduction
of viewpoints in the considered hierarchies. An
important point will also be to extend our resultd!®!
in a meaningful way, to other sorts of relations.
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