
HAL Id: lirmm-00112938
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00112938

Submitted on 30 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy Sets Defined on a Hierarchical Domain
Rallou Thomopoulos, Patrice Buche, Ollivier Haemmerlé

To cite this version:
Rallou Thomopoulos, Patrice Buche, Ollivier Haemmerlé. Fuzzy Sets Defined on a Hierarchical
Domain. IEEE Transactions on Knowledge and Data Engineering, 2006, 18 (10), pp.1397-1410.
�10.1109/TKDE.2006.161�. �lirmm-00112938�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00112938
https://hal.archives-ouvertes.fr


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Thomopoulos, R., Buche, P., Haemmerle, O. (2006). Fuzzy sets defined on a hierarchical domain.

IEEE Transactions on Knowledge and Data Engineering, 18 (10), 1397-1410.  DOI : 10.1109/TKDE.2006.161

Fuzzy Sets Defined on a Hierarchical Domain
Rallou Thomopoulos1,2, Patrice Buche3, and Ollivier Haemmerlé4

Abstract— This paper presents a new type of fuzzy sets,
called “Hierarchical Fuzzy Sets”, that apply when the
considered domain of values is not “flat”, but contains
values that are more specific than others according to the
“kind of” relation. We study the properties of such fuzzy
sets, that can be defined in a short way on a part of
the hierarchy, or exhaustively (by their “closure”) on the
whole hierarchy. We show that hierarchical fuzzy sets form
equivalence classes in regard to their closures and that each
class has a particular representative called “minimal fuzzy
set”. We propose a use of this minimal fuzzy set for query
enlargement purposes and thus present a methodology for
hierarchical fuzzy set generalization. We finally present an
experimental evaluation of the theoretical results described
in the paper, in a practical application.

Index Terms— Fuzzy set; Uncertainty, “fuzzy” and
probabilistic reasoning; Object hierarchies; Relaxation;
Knowledge retrieval.

I. I NTRODUCTION

In classic querying systems, the queries sent by
the users are all-or-nothing queries: a value belongs
to the users’ selection criteria or does not. In soft
querying [1], the users have the possibility to ex-
press preferences in their selection criteria. In this
context, fuzzy sets, which are more generally used
to represent concepts whose borders are not strictly
delimited, can be used to define flexible selection
criteria, by associating a preference degree with
every candidate value. As a parallel issue, classic
databases contain precise data, which are not ex-
pected to be ill-known. In possibilistic databases [2],
an ill-known datum is represented by a possibility
distribution, which associates a possibility degree
with every candidate value (with the hypothesis that
only one of these values is the effective one).
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These two approaches, fuzzy sets [3] and possi-
bility theory [4], constitute a homogeneous formal-
ism in two different uses. In both uses, an order
relation is defined on a domain of values. In this
paper, we consider the case when the candidate
values of a selection criterion in the first use, or
of an ill-known datum in the second use, are not
“flat” domain values but are elements of a hierarchy,
partially ordered by the “kind of” relation: some of
the values are more specific than others.

Contrary to a fuzzy set defined on a “flat” domain
of values, in our case the assumption of indepen-
dency of the values is not true. Therefore two
order relations - the preference/possibility order
relation, and the “kind of” partial order relation -
must be put in adequacy. Some of the questions
we had to answer were: Does the preference or
possibility degree associated with a given value
have implications on the degrees associated with
the other values of the hierarchy, particularly more
specific or more general ones ? What would be
the meaning of two comparable values (with the
meaning of the “kind of” relation) associated with
different preference or possibility degrees ? Can the
hierarchical structure be used to enlarge the users’
queries in case of empty answers, while respecting
the preference order defined by the users in their
selection criteria ?

Previous approaches close to our work are those
regarding similar questions in non-fuzzy contexts.
In particular, the propagation of preference or pos-
sibility degrees in a hierarchy that we propose is in
adequacy with the object model, in which a query
on a given class is also addressed to the subclasses
of this class. Concerning query enlargement, several
works such as [5], [6] use a lattice of concepts to
generalize unsolvable queries.

In the bibliography concerning the introduction of
fuzzy methods, several issues have been dealt with
but are quite distant from our concern. We can note
two main categories of papers, especially in recent
research:

• the use of linguistic labels in ontologies. In
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studies about possibilistic ontologies [7], each
term of an ontology is considered as a linguistic
label and has an associated fuzzy description.
Fuzzy pattern matching between different on-
tologies is then computed using these fuzzy
descriptions. This approach is related to those
concerning the introduction of fuzzy attribute
values in the object model [8];

• the use of fuzzy relations between the terms
of a thesaurus. Studies about fuzzy thesauri
have discussed different natures of relations
between concepts, where relations are gradual
and moderated by degrees. Fuzzy thesauri have
been considered for instance in [9], [10]. In this
approach, a query composed of a set of terms
is enlarged to similar terms thanks to fuzzy
pseudo-thesauri. Similarity is based on the co-
occurrence frequency of terms in a given set of
documents.

However in our context the terms of the hierarchy
and the relations between terms are not fuzzy.

The present work was applied in the framework
of a French national project dedicated to micro-
biological risk assessment in foods. The examples
given in the paper come from this case study. As
a first step of the project, scientific data from pre-
dictive microbiology were gathered and a querying
system was built in order to explore them. The data
have two characteristics:

• they are not abundant enough to answer ev-
ery query, thus there is a need for preference
expression (for instance, the users may ask
for milk as a first choice or yoghourt as a
second choice) in order to make the querying
more flexible, as well as for query enlargement
(including other dairy products for example) in
case of empty or insufficient answers;

• they include ill-known information. For in-
stance, in some kinds of human diseases, the
bacteriumEscherichia coliis suspected to be
responsible, but other bacteria likeShigellaare
not excluded.

The food products, like milk or yoghourt, are part
of a hierarchy of substrates, in which, for instance,
Whole milk is a kind of Milk, which is a kind of
Milk product, etc. In the same way, the bacteria
Escherichia coliandShigellaare part of a hierarchy
of micro-organisms.

The methods presented in the paper have been

implemented in several representation formalisms:
the conceptual graph model, the relational model
and XML, and some parts (the definition of hi-
erarchical fuzzy sets more specifically) have been
published as they constitute extensions or special
uses of these formalisms (see respectively [11] -
[12], [13] and [14]). Our goal in this article is
to provide a complete theoretical study, including
generalization mechanisms – which has never been
presented before – apart from the context of a
specific data model.

In the following, we firstly remind in Section II
the basics of fuzzy sets. In Section III, we develop
the notion of hierarchical fuzzy set. In Section IV,
we propose a complementary solution to the lack of
answers to a query, based on the generalization of a
hierarchical fuzzy set. In Section V, we present an
experimental evaluation of the proposed methods.

II. PRELIMINARY NOTIONS

In this section, we briefly present fuzzy sets,
that will be used in the following to represent the
required values in a flexible query or the possible
values in an ill-known datum. We also introduce
comparisons between fuzzy sets that will be used
to compare an ill-known datum to a flexible query.

A. Fuzzy Sets

Fuzzy sets [3] were introduced to represent con-
cepts that are not strictly delimited, like “young” or
“far” for instance. Unlike the case of a classic set,
an element may belong partially to a fuzzy set.

Definition 1: a fuzzy set A on a domainX is
defined by a membership functionµA from X to
[0, 1] that associates the degree to whichx belongs
to A with each elementx of X .

The domainX may be continuous or discrete. In
this paper, we only deal with discrete domains, as
further presented in Section III. Figure 1 illustrates
two examples already mentioned above. The fuzzy
setsProductPreferencesand ResponsibleBacterium
are also denoted, respectively,1/Milk + 0.5/Yo-
ghourt, and1/Escherichia coli + 0.7/Shigella, which
indicates the degree associated with each element.
These fuzzy sets are user-defined, during the choice
of the querying selection criteria, or during the entry
of an ill-known datum.

We call support and kernel of a fuzzy setA
respectively the setssupport(A) = {x ∈ X |
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ResponsibleBacterium

0

1

Escherichia coli Shigella

0,7

ProductPreferences

0

1

Milk Yoghourt

0,5

Fig. 1. The fuzzy setsProductPreferencesand ResponsibleBac-
terium

µA(x) > 0} and kernel(A) = {x ∈ X | µA(x) =
1}.

In the following, we focus on two different com-
parisons between fuzzy sets: the inclusion relation,
that we use to determine in a binary way whether
an ill-known datum is an answer to a flexible query
or not, and fuzzy pattern matching, which allows to
determine in a graduate way whether an ill-known
datum somehow answers a flexible query.

B. Comparisons between fuzzy sets

In the most commonly used inclusion relation
between fuzzy sets, a fuzzy setA (in our case, an
ill-known datum) is included inB (in our case, a
flexible query) if its membership function is “be-
low” the membership function ofB. More formally:

Definition 2: Let A and B be two fuzzy sets
defined on a domainX. A is included inB (denoted
A ⊆ B) if and only if their membership functions
µA andµB satisfy the condition:

∀x ∈ X, µA(x) ≤ µB(x).

Two scalar measures are classically used in fuzzy
pattern matching [15] to evaluate the compatibility
between an ill-known datum and a flexible query:
(i) a possibility degree of matching [4]; (ii) a
necessity degree of matching [16].

Definition 3: Let Q andD be two fuzzy sets de-
fined on a domainX and representing respectively
a flexible query and an ill-known datum:

• the possibility degree of matching betweenQ
and D, denotedΠ(Q; D), is an “optimistic”
degree of overlapping that measures the max-
imum compatibility betweenQ and D, and is
defined by
Π(Q; D) = supx∈Xmin(µQ(x), µD(x));

• the necessity degree of matching betweenQ

and D, denotedN(Q; D), is a “pessimistic”
degree of inclusion that estimates the extent to

which it is certain thatD is compatible with
Q, and is defined by
N(Q; D) = infx∈Xmax(µQ(x), 1− µD(x)).

Although a fuzzy set representing possible values
in an ill-known datum and a fuzzy set expressing the
user’s interests in a query are different concerns, we
must note, firstly, that they share the same definition
domain (which will be a common hierarchy in the
following), and secondly, that their comparisons
have been widely studied in the literature [1], [4],
[15], [17].

III. H IERARCHICAL FUZZY SETS

The notion of hierarchical fuzzy set rose from
our need to express fuzzy values in the case where
these values are part of taxonomies, as for food
products or micro-organisms for example. In our
first approach, presented in Section III-A, such a
fuzzy set is created directly by the user and defined
on a part of the hierarchy. In our second approach,
for reasons explained in Section III-B, we extend the
fuzzy set to the whole hierarchy, thus obtaining the
closureof the fuzzy set. Section III-C defines how
we extend the comparisons between classic fuzzy
sets to hierarchical fuzzy sets. In Section III-D, we
show that hierarchical fuzzy sets having the same
closure lead to equivalence classes and that each
class has one particular representative which is said
to beminimal.

A. Presentation

The definition domains of the fuzzy sets that we
define below are subsets of hierarchies composed of
elements partially ordered by the “kind of” relation.
An elementelt is more general than an elementelt′

(denotedelt′ ≤ elt), if elt′ is a predecessor ofelt in
the partial order induced by the “kind of” relation
of the hierarchy. An example of such a hierarchy is
given in Figure 2. A hierarchical fuzzy set is then
defined as follows.

Definition 4: A hierarchical fuzzy set is a fuzzy
set whose definition domain is a subset of the
elements of a finite hierarchy partially ordered by
the “kind of” relation.

For example, the fuzzy setsProductPreferences
and ResponsibleBacteriumrepresented in Figure 1
conform to Definition 4. Their definition domains
are subsets of the hierarchy given in Figure 2.
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Milk

Whole milk

Milk product

Half skim milk
Skim milk

Condensed milk

Micro-organism

Escherichia coli Shigella Listeria

Yoghourt

Pasteurized milk

Substrate

Condensed whole milk

Sweetened condensed milk

Sweetened milk

Whole pasteurized milk

Cheese

Meat Vegetable

Listeria
monocytogenes

Fig. 2. Example of a hierarchy

We can note that no restriction has been imposed
concerning the elements that compose the definition
domain of a hierarchical fuzzy set. In particular, the
user may associate a given degreed with an element
elt and another degreed′ with an elementelt′ more
specific thanelt. d′ ≤ d represents a semantic of
restriction for elt′ compared toelt, whereasd′ ≥
d represents a semantic of reinforcement forelt′

compared toelt.
For example, if there is particular interest in skim

milk because the user studies the properties of low
fat products, but also wants to retrieve complemen-
tary information about other kinds of milk, these
preferences can be expressed using for instance the
following fuzzy set: 1/Skim milk + 0.5/Milk. In
this example, the elementSkim milkhas a greater
degree than the more general elementMilk, which
corresponds to a semantic of reinforcement forSkim
milk compared toMilk. On the contrary, if the user is
interested in all kinds of milk, but to a lesser extent
in Condensed milkbecause of its smaller water
content, the preferences can be expressed using the
following fuzzy set:1/Milk + 0.2/Condensed milk.
In this case, the elementCondensed milkhas a
smaller degree than the more general elementMilk,
which corresponds to a semantic of restriction for
Condensed milkcompared toMilk.

B. Closure of a hierarchical fuzzy set

We can make two remarks concerning the use of
hierarchical fuzzy sets:

• the first one is semantic. Let1/Skim milk +
0.5/Milk be an expression of preferences in a
query. We can note that this hierarchical fuzzy
set implicitly gives information about elements
of the hierarchy other thanSkim milkandMilk.
For instance, one can deduce that the user
does not expect results concerning products

like meat or vegetable, even if the degree 0
has not explicitly been associated with these
products. One may also assume that any kind
of skim milk (sterilized, pasteurized, raw skim
milk for example) interests the user with the
degree 1;

• the second one is operational. The problem
rising from Definition 4 is that two different
fuzzy sets on the same hierarchy do not neces-
sarily have the same definition domain, which
means they cannot be compared using the clas-
sic comparison operations of fuzzy set theory
(see Definitions 2, 3). For example,1/Skim
milk + 0.5/Milk and 1/Milk + 0.2/Condensed
milk are defined on two different subsets of
the hierarchy of Figure 2 and thus are not
comparable.

These remarks led us to introduce the concept
of closure of a hierarchical fuzzy set, which is a
developed form defined on the whole hierarchy.
Intuitively, in the closure of a hierarchical fuzzy
set, the “kind of” relation is taken into account by
propagating the degree associated with an element
to its sub-elements (more specific elements) in the
hierarchy. For instance, in a query, if the user is
interested in the elementMilk, we consider that all
kinds of Milk – Whole milk, Skim milk, Pasteur-
ized milk, etc. – are of interest. On the opposite,
we consider that the super-elements (more general
elements) ofMilk in the hierarchy –Milk product,
Substrate, ...– are too general to be relevant for the
user’s query.

Definition 5: Let F be a hierarchical fuzzy set
defined on a subsetD of the elements of a hierarchy
H. Its membership function is denotedµF . The
closure of F , denotedclos(F ), is a hierarchical
fuzzy set defined on the whole set of elements of
H and its membership functionµclos(F ) is defined
as follows.

For each elementelt of H, let Eelt =
{elt1, . . . , eltn} be the set of the smallest super-
elements ofelt in D (in the broad sense, i.e.elti ≥
elt):

• if Eelt is not empty, µclos(F )(elt) =
max1≤i≤n(µF (elti));

• otherwiseµclos(F )(elt) = 0.
In other words, the closure of a hierarchical fuzzy

setF is built according to the following rules. For
each elementelt of H:

1) if elt belongs toF , thenelt keeps the same
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degree in the closure ofF (case whereEelt =
{elt});

2) if elt has a unique smallest super-elementelt1
in F , then the degree associated withelt1 is
propagated toelt in the closure ofF (case
whereEelt = {elt1} with elt1 > elt);

3) if elt has several smallest super-elements
{elt1, . . . , eltn} in F , with different degrees, a
choice has to be made concerning the degree
that will be associated withelt in the closure.
The proposition made in Definition 5 consists
in choosing the maximum of the degrees
associated withelt1, . . . , eltn. This choice is
discussed in the following;

4) all the other elements ofH, i.e. those that are
more general than, or not comparable with the
elements ofF , are considered as non-relevant.
The degree 0 is associated with them (case
whereEelt = ∅).

Example 1:Figure 3 shows the closure of the
hierarchical fuzzy set0.8/Milk + 1/Whole milk +
0.3/Condensed milk.

Milk
0.8

Whole milk
1

Milk product
0

Half skim milk
0.8

Skim milk
0.8

Condensed milk
0.3

Micro-organism
0

Escherichia coli
0

Shigella
0

Listeria
0

Yoghourt
0

Pasteurized milk
0.8

Substrate
0

Condensed whole milk
1

Sweetened condensed milk
0.3

Sweetened milk
0.8

Whole pasteurized milk
1

Cheese
0

Meat
0

Vegetable
0

Listeria
Monocytogenes

0

Fig. 3. Closure of a hierarchical fuzzy set

In the hierarchical fuzzy set of Figure 3, the user
has associated the degree 1 withWhole milkbut only
0.3 with Condensed milk. The maximum of these
two degrees is thus associated with their common
sub-elementCondensed whole milkin the closure.

The case ofSweetened condensed milkis dif-
ferent: the user has associated the degree 0.8 with
Milk but has given a restriction on the more specific
elementCondensed milk(degree 0.3). AsSweetened
condensed milkis a kind of Condensed milk, it
inherits the degree associated withCondensed milk,
that is 0.3.

In the case where an elementelt of the hierarchy,
that does not appear in the initial hierarchical fuzzy
set, has several smallest super-elements that appear
in the hierarchical fuzzy set with different degrees,

associating the maximum of these degrees withelt

in the closure is a choice that may be discussed. We
distinguish two cases:

• if the hierarchical fuzzy set expresses prefer-
ences in a query, the choice of the maximum
allows us not to exclude any possible answer
(the possibility and the necessity degrees of
matching can be higher). In real cases, the
lack of answers to a query generally makes
this choice preferable, because it consists in
enlarging the query rather than restricting it.
This is actually the case in our project;

• if the hierarchical fuzzy set represents an ill-
known datum, the choice of the maximum
allows us to preserve all the possible values
of the datum, but it also makes the datum
less specific. We chose this solution in order
to homogenize the treatment of queries and
data. In a way, it also participates in enlarging
the query, as a less specific datum may share
more common values with the query (the pos-
sibility degree of matching can thus be higher,
although the necessity degree can decrease).

Computing the closureclos(F ) of a fuzzy setF
defined on a domaindom(F ) ⊂ H has a complexity
in |H|.|dom(F )|2, provided that the comparison
of two elements of the hierarchy can be done in
constant time. Generally, the definition domain of
F is limited to a few elements, so that the actual
computing time remains moderate.

Complexity Analysis 1:The steps of the comput-
ing are the following:

There are(|H|−|dom(F )|) elements inH that
do not appear indom(F ). The degree that is
associated with them inclos(F ) thus has to
be determined. For each elementelt of these
(|H| − |dom(F )|) elements, one must:

– compareelt with each of the|dom(F )|
elements ofF (there are|dom(F )| com-
parisons), so as to determine the super-
elements ofelt in dom(F ). We denoteS
the set of super-elements ofelt in dom(F ).
We have:|S| ≤ |dom(F )|. We consider
that the comparison of two elements can
be done in constant time.

– among the|S| super-elements ofelt in
dom(F ), determine the most specific ones.
Therefore, the|S| super-elements must be
compared to one other. In the worst case,
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they will all be compared by two, which
will require C2

|S| = |S|(|S|−1)
2

comparisons.
We denotẽS the set of most specific super-
elements ofelt in |dom(F )|. We have:
|S̃| ≤ |dom(F )|;

– among the degrees associated, inF , with
the|S̃| most specific super-elements ofelt,
choose the greatest one. This maximum
calculus is done by comparing the degree
associated with one of the|S̃| elements
with the degrees of the other(|S̃| − 1),
and choosing the greater each time. There
are thus(|S̃| − 1) comparisons.

For each of the(|H| − |dom(F )|) elements
that do not appear indom(F ), the number
of comparisons that are computed is finally:
(|dom(F )|+ |S|.(|S|−1)

2
+ |S̃| − 1).

The total number of comparisons that is com-
puted is thus: (|H| − |dom(F )|)(|dom(F )| +
|S|.(|S|−1)

2
+ |S̃| − 1), which is majored by

(|H|− |dom(F )|)(|dom(F )|+ |dom(F )|.(|dom(F )|−1)
2

+
|dom(F )| − 1) = 1

2
(|H| − |dom(F )|)(|dom(F )|2 +

3|dom(F )| − 2).
We can note that:

• if |dom(F )| = |H|, that is, if F is already a
closure defined onH, there is of course no
operation to do;

• if |dom(F )| is small compared to|H|, which
is generally the case (in the project,|dom(F )|
is limited to 5), computing the closure is then
linear in |H|;

• otherwise, computing the closure is polyno-
mial. As |dom(F )| and (|H| − |dom(F )|) are
majored by|H|, the complexity is inO(|H|3).

C. Comparisons of hierarchical fuzzy sets

The introduction of the concept of closure allows
all the fuzzy sets that are defined on a given
hierarchy to have the same definition domain (the
whole hierarchy) and thus to be compared using the
classical comparisons and operations between fuzzy
sets.

Definition 6: Let F1 and F2 be two hierarchical
fuzzy sets defined on the same hierarchy. Then:

1) F1 ⊆ F2 if clos(F1) ⊆ clos(F2);
2) the possibility degree of matching betweenF1

andF2, Π(F1; F2), is defined as
Π(clos(F1); clos(F2));

3) the necessity degree of matching betweenF1

andF2, N(F1; F2), is defined as
N(clos(F1); clos(F2)).

Example 2:The closures of the hierarchical
fuzzy sets1/Skim milk + 0.2/Milkand 1/Milk +
0.5/Condensed milkare represented in Figures 4
and 5. Their comparison shows that1/Skim milk
+ 0.2/Milk is included in1/Milk + 0.5/Condensed
milk because the membership function of the former
associates lower degrees with every element of the
hierarchy.

Milk
0.2

Whole milk
0.2

Half skim milk
0.2

Skim milk
1

Condensed milk
0.2

Pasteurized milk
0.2

Condensed whole milk
0.2

Sweetened condensed milk
0.2

Sweetened milk
0.2

Whole pasteurized milk
0.2

Milk product
0

Micro-organism
0

Escherichia coli
0

Shigella
0

Listeria
0

Yoghourt
0

Substrate
0

Cheese
0

Meat
0

Vegetable
0

Listeria
Monocytogenes

0

Fig. 4. Closure of the hierarchical fuzzy set1/Skim milk + 0.2/Milk

is included in:

Milk
1

Whole milk
1

Half skim milk
1

Skim milk
1

Condensed milk
0.5

Pasteurized milk
1

Condensed whole milk
0.5

Sweetened condensed milk
0.5

Sweetened milk
1

Whole pasteurized milk
1

Milk product
0

Micro-organism
0

Escherichia coli
0

Shigella
0

Listeria
0

Yoghourt
0

Substrate
0

Cheese
0

Meat
0

Vegetable
0

Listeria
Monocytogenes

0

Fig. 5. Closure of the hierarchical fuzzy set1/Milk + 0.5/Condensed
milk

D. Minimal fuzzy sets

In Section III-B, we saw that each hierarchical
fuzzy set has an associated closure that is defined
on the whole hierarchy. We now focus on the fact
that two different hierarchical fuzzy sets, defined on
the same hierarchy, can have the same closure, as
in the following examples.

Example 3:The hierarchical fuzzy sets
Substrate1 = 1/Milk and Substrate2 = 1/Milk
+ 1/Skim milk have the same closure: the degree
1 is associated withMilk and every more specific
element, the degree 0 is associated with all the
other elements of the hierarchy.
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Example 4:The hierarchical fuzzy sets
Substrate3 = 1/Milk + 0.8/Whole milk +
1/Pasteurized milkand Substrate4 = 1/Milk +
0.8/Whole milk + 1/Whole pasteurized milkhave
the same closure, represented in Figure 6.

Milk
1

Whole milk
0.8

Milk product
0

Half skim milk
1

Skim milk
1

Condensed milk
1

Micro-organism
0

Escherichia coli
0

Shigella
0

Listeria
0

Yoghourt
0

Pasteurized milk
1

Substrate
0

Condensed whole milk
0.8

Sweetened condensed milk
1

Sweetened milk
1

Whole pasteurized milk
1

Cheese
0

Meat
0

Vegetable
0

Listeria
Monocytogenes

0

Fig. 6. Common closure of the hierarchical fuzzy setsSubstrate3
and Substrate4

Such hierarchical fuzzy sets form equivalence
classes with respect to their closures.

Definition 7: Two hierarchical fuzzy setsF1 and
F2, defined on the same hierarchy, are said to be
equivalent (denotedF1 ≡ F2) if and only if they
have the same closure.

Property 1: Let F1 and F2 be two equivalent
hierarchical fuzzy sets. Ifelt ∈ dom(F1)∩dom(F2)
thenµF1

(elt) = µF2
(elt).

Proof 1: According to the definition of the clo-
sure of a hierarchical fuzzy setF (Definition 5),
the closure ofF preserves the degrees that are
specified inF . As F1 andF2 have the same closure
(by definition of the equivalence), an element that
belongs toF1 and F2 necessarily has the same
degree in both.

We can note thatSubstrate2 contains the same el-
ement asSubstrate1 with the same degree, and also
one more element (Skim milk, with the degree 1).
The degree associated with this additional element is
the same as in the closure ofSubstrate2. We say that
the elementSkim milkis deduciblein Substrate2.

Definition 8: Let F be a hierarchical fuzzy set,
with dom(F ) = {elt1, ..., eltj , ..., eltn}, andF−j the
fuzzy set resulting from the restriction ofF to the
domaindom(F ) \ {eltj}. eltj is deducible in F if
µclos(F

−j)(eltj) = µF (eltj).
As a first intuition, we could say that removing

a deducible element from a hierarchical fuzzy set
allows one to eliminate redundant information. But
an element being deducible inF does not neces-
sarily mean that removing it fromF will have no

consequence on the closure: removingelt from F

will not impact the degree associated withelt itself
in the closure, but it may impact the degrees of the
sub-elements ofelt in the closure. For instance, the
elementPasteurized milkis deducible inSubstrate3,
according to Definition 8. Removing1/Pasteurized
milk from Substrate3 would not modify the degree
of Pasteurized milkitself in the resulting closure, but
it would modify the degree of its sub-elementWhole
pasteurized milk(which would have the degree 0.8
instead of 1). Thus, this remark leads us to the
following definition of a minimal hierarchical fuzzy
set.

Definition 9: In a given equivalence class (that
is, for a given closureC), a hierarchical fuzzy set
is said to beminimal if its closure isC and if none
of the elements of its domain is deducible (here
the term “minimal” does not have the meaning of
cardinality).

The hierarchical fuzzy setsSubstrate1 and
Substrate4 are minimal (none of their elements is
deducible), contrary toSubstrate2 andSubstrate3.

We have proposed an algorithm and its proofs,
given below, to calculate a minimal fuzzy set. The
proofs establish the following two properties.

Property 2: The stopping condition is always
reached.

Property 3: The hierarchical fuzzy set obtained
with this algorithm is minimal.

Algorithm 1:
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Calculation of a minimal fuzzy set mnl having a given
closure C

begin
mnl ← ∅
if (clos(mnl) = C)
then

stop (case where C is the hierarchical fuzzy
set that associates the degree 0 with every
element of the hierarchy)

else
let lin be an order such that each element
of the hierarchy is examined after its super-
elements (that is, a linear extension of the
opposite order of that induced by the
“kind of” relation)
repeat

elt← next element according to lin

if (µclos(mnl)(elt) 6= µC(elt))
then

mnl← mnl ∪ {elt}
µmnl(elt)← µC(elt)

endif
until (clos(mnl) = C)

endif
end

Proof 2: Proof of Property 2
At the beginning of the algorithm, there are two

possible cases:

• either the stopping condition is already satis-
fied;

• or the stopping condition is not satisfied: then
the elements of the hierarchy start to be exam-
ined in the orderlin (each element is examined
after its super-elements). Let us process by
induction to show that, after thenth element
is examined, every elementelt among the first
n elements that have already been examined
satisfies:µclos(mnl)(elt) = µC(elt). n ∈ [1, N ],
where N (range of the last element that is
examined before the algorithm stops) is at most
equal to the number of elements of the hierar-
chy; N is smaller if the stopping condition is
reached before all the elements are examined.

For n = 1: Before the first element is examined,
mnl is empty and its closure associates the degree
0 with all the elements of the hierarchy. Letelt1
be the first element that is examined. There are two
possible cases:

1) elt has the degree 0 inC. We thus have
µclos(mnl)(elt1) = µC(elt1) = 0. The algo-
rithm directly goes to the next element;

2) the degreed associated withelt1 in C is
different from 0. In this case,elt1 is added
to mnl with the degreed. We thus have
µclos(mnl)(elt1) = µC(elt1) = d.

After the first element is examined, this first element
elt1 always satisfies the condition:
µclos(mnl)(elt1) = µC(elt1).

Let us suppose that, after thenth element is
examined, each of the firstn elementselt1, . . .,
elti, . . ., eltn which have already been examined
satisfies the condition:µclos(mnl)(elti) = µC(elti).
mnl associates a given degreex with the (n + 1)th

elementeltn+1. Wheneltn+1 is examined, there are
two possible cases:

1) eltn+1 has the degreex in C. We thus have
µclos(mnl)(eltn+1) = µC(eltn+1) = x. The
algorithm directly goes to the next element.
We still have∀i ∈ [1, n], µclos(mnl)(elti) =
µC(elti) becausemnl has not been changed;

2) the degreedn+1 associated witheltn+1 in C is
different fromx. In this case,eltn+1 is added
to mnl with the degreedn+1. We thus have
µclos(mnl)(eltn+1) = µC(eltn+1) = dn+1. This
time,mnl has been changed by addingeltn+1.
Compared to eachelti (i ∈ [1, n]), eltn+1

is either more specific, or not comparable,
but eltn+1 cannot be a super-element ofelti,
because of the orderlin. Therefore, adding
eltn+1 in mnl does not change the degrees
that are associated withelt1, . . . , elti, . . . , eltn
in the closure ofmnl. Indeed, the degree
associated withelti in the closure ofmnl
only depends on the super-elements (in the
broad sense) ofelti in mnl, according to the
definition of the closure (Definition 5). We
thus still have∀i ∈ [1, n], µclos(mnl)(elti) =
µC(elti).

After the (n + 1)th element is examined, each
elementelt among the firstn + 1 elements that
have already been examined satisfies the condition:
µclos(mnl)(elt) = µC(elt).

We finally obtain, at most after the last element
of the hierarchy has been examined:
∀elt, µclos(mnl)(elt) = µC(elt), that is, the stopping
conditionclos(mnl) = C.

Proof 3: Proof of Property 3
Let us process by induction to show that, for each

iteration of the algorithm,mnl is minimal (with the
meaning of Definition 9).
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At the beginning,mnl is empty and thus minimal.
Let us suppose that mnl =

{elt1, . . . , elti, . . . , eltk} is minimal after the
kth iteration of the algorithm: each element
elti in mnl is non-deducible (Definition 9). At
the (k + 1)th iteration, the algorithm adds to
mnl the next elementeltk+1 of the hierarchy
(in the order lin) which does not have the
same degree in the closure ofmnl as in C
(µclos(mnl)(eltk+1) 6= µC(eltk+1)), that is, which
is not deducible inmnl (Definition 8). mnl is
modified by addingeltk+1. We may thus wonder if
the elementselti (i ∈ [1, k]) are still non-deducible
in mnl. Because of the orderlin, eltk+1 cannot
be a super-element ofelti (i ∈ [1, k]). Therefore,
adding eltk+1 in mnl brings no change in the
degrees associated withelt1, . . . , elti, . . . , eltk in
the closure ofmnl. Indeed, the degree associated
with elti in the closure ofmnl only depends on
the super-elements (in the broad sense) ofelti in
mnl, according to the definition of the closure
(Definition 5). The elementselti (i ∈ [1, k]) are
thus still non-deducible inmnl. After the (k + 1)th

iteration of the algorithm,mnl is minimal because
all its elements are non-deducible.

Property 4: The minimal fuzzy set isunique for
a given closure.

Proof 4: Let F1 and F2 be two minimal fuzzy
sets, withF1 ≡ F2 and F1 6= F2. Note that we
cannot havedom(F1) = dom(F2), otherwiseF1

and F2 would not be different (Property 1). Let
elt be one of themost generalelements (with
the meaning of the “kind of” relation) that belong
to (dom(F1) ∪ dom(F2)) \ (dom(F1) ∩ dom(F2)).
Figure 7 shows the possible localization ofelt and
its super-elements.

whole
hierarchy

possible localization of elt

possible localization of super-elements of elt

F1
F2

Fig. 7. Possible localization ofelt and its super-elements

elt thus belongs todom(F1) or to dom(F2),
but not to both, and it has no super-element that
satisfies this condition: every super-element ofelt
necessarily belongs either todom(F1) anddom(F2),
or neither todom(F1) nor to dom(F2).

Let Fx be the hierarchical fuzzy set (F1 or F2)
whose domain containselt. The other one is denoted
Fy. There are two possible cases:

• dom(F1)∩dom(F2) contains no super-element
of elt. As dom(Fy) contains neitherelt nor any
of its super-elements, we haveµclos(Fy)(elt) =
0. On the contrary, asdom(Fx) containselt, we
haveµclos(Fx)(elt) = µFx

(elt) which is neces-
sarily different from 0, otherwiseFx would not
be minimal becauseelt would be deducible in
Fx. As F1 andF2 do not have the same closure,
they are not equivalent, which contradicts our
hypothesis;

• dom(F1) ∩ dom(F2) contains one or more
super-elements ofelt. Let Selt be the
set of these super-elements andEelt =
{elt1, ..., eltj , ..., eltn} the set of most spe-
cific one(s) among them (with the meaning
of the “kind of” relation). For eacheltj ∈
Eelt, we have µF1

(eltj) = µF2
(eltj) ac-

cording to Property 1. Asdom(Fy) does
not contain elt but containsSelt, we have
µclos(Fy)(elt) = max1≤j≤n(µFy

(eltj)) accord-
ing to Definition 5. On the contrary, as
dom(Fx) containselt, we haveµclos(Fx)(elt) =
µFx

(elt) which is necessarily different from
max1≤j≤n(µFy

(eltj)), otherwiseFx would not
be minimal becauseelt would be deducible in
Fx. As F1 andF2 do not have the same exten-
sion, they are not equivalent, which contradicts
our hypothesis.

Example 5:Let C be the closure represented in
Figure 6. The minimal fuzzy setmnl is obtained as
follows:

Initially, mnl is empty. Its closure is the hierarchi-
cal fuzzy set that associates the degree 0 with each
element of the hierarchy. We test if this closure is
C. The answer is no, as not all the elements have
the degree 0 inC. We thus traverse the hierarchy
using an order such that each element is examined
after its super-elements.
We first examine, for instance,Substrate. It has the
same degree 0 in the closure ofmnl and in C.
We continue withMeat, Milk product, Vegetable,
Cheeseand Yoghourt, which also have the same
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degree in the closure ofmnl as inC.
Then we examineMilk. It has the degree 0 in the
closure ofmnl, whereas its degree is 1 inC. Milk is
thus added tomnl, with the degree 1. The closure of
mnl is now the hierarchical fuzzy set that associates
the degree 1 withMilk and with the sub-elements
of Milk, and 0 with all the other elements of the
hierarchy, which is different fromC. We thus go
on traversing the hierarchy.
Pasteurized milkhas the same degree 1 in the
closure ofmnl and inC. We thus continue.
Whole milkhas the degree 1 in the closure ofmnl
but the degree 0.8 inC. Whole milkis thus added to
mnl, with the degree 0.8. The closure ofmnl is now
the hierarchical fuzzy set that associates the degree
0.8 with Whole milkand with the sub-elements of
Whole milk(Whole pasteurized milkandCondensed
whole milk), the degree 1 with the other milks (Milk,
Pasteurized milk, Condensed milk, etc.) and 0 with
the other elements of the hierarchy, which is still
different fromC. We go on traversing the hierarchy.
We examineCondensed milk, thenHalf skim milk,
Sweetened milkand Skim milk, which all have the
same degree 1 in the closure ofmnl as inC.
Whole pasteurized milkhas the degree 0.8 in the
closure ofmnl but the degree 1 inC. It is added to
mnl with the degree 1. The closure ofmnl is now
the hierarchical fuzzy set that associates the degree
0.8 with Whole milkand its sub-elementCondensed
whole milk, the degree 1 with all the other milks and
0 with the rest of the hierarchy, which is equal to
C. The algorithm stops.

We finally obtainmnl = 1/Milk + 0.8/Whole milk
+ 1/Whole pasteurized milk, which corresponds to
Substrate4.

Computing the minimal fuzzy setmnl of a given
closureC defined on a hierarchyH has a complex-
ity in |H|.|dom(mnl)|2.

Complexity Analysis 2:Computing the minimal
fuzzy set requires to examine each elementelt of H,
using an orderlin that conforms to Algorithm 1, to
determine ifµclos(mnli)(elt) = µC(elt) (wheremnli
is the current state of calculus ofmnl) and addelt
to mnli if this equality is not satisfied:

• determining if µclos(mnli)(elt) = µC(elt) re-
quires to calculate the closure ofmnli for
the elementelt only (see Complexity Anal-
ysis 1). As the number of elements inmnli
is always majored by|dom(mnl)|, the com-
plexity of this operation is always inferior to:

1
2
(|dom(mnl)|2 + 3|dom(mnl)| − 2);

• addingelt to mnl (if µclos(mnli)(elt) 6= µC(elt))
is done in constant time.

For the whole hierarchyH, the complexity is thus
inferior to: 1

2
|H|(|dom(mnl)|2 +3|dom(mnl)|−2).

If |dom(mnl)| is small compared to|H|, comput-
ing the minimal fuzzy set is thus linear in|H|. In the
extreme case where|dom(mnl)| = |H|, we obtain:
1
2
(|H|3 + 3|H|2 − 2|H|). Computing the minimal

fuzzy set is then polynomial in|H|.

IV. GENERALIZATION OF A HIERARCHICAL

FUZZY SET

In this section, we propose a complementary
solution to the lack of answers to a query, used when
the user wants to retrieve complementary answers
close to his initial query. The hierarchical fuzzy
set that represents the user’s preferences is replaced
by a more general one, with the meaning of the
inclusion relation extended to hierarchical fuzzy
sets.

Different approaches have been proposed in the
literature in order to introduce tolerance in the
querying. In [18], a fuzzy operator based on proxim-
ity relation is proposed to weaken fuzzy predicates
in a query, but it concerns numerical domains and
cannot be applied to predicates defined on a hierar-
chically organized domain. Tolerant fuzzy pattern
matching [15] uses a similarity relation between
terms to enlarge the preferences, but it does not take
into account the case of hierarchically organized
domains. For instance, terms may be added to
the support of the fuzzy set in the enlargement
mechanism, but more specific terms than these
ones may stay outside of it, which is a major
drawback for hierarchical domains. Other measures
have been introduced to evaluate how close to each
other two fuzzy graphical representations are [19]
or taking into account preexistent similarity rela-
tions [20], [21]. In studies concerning information
retrieval non-limited to exact answers (see [22]–
[24]), searching for approximate answers has been
managed in two ways: modifying the datum so that
it may satisfy the query, or modifying the query
so that it may be satisfied by the datum. Our work
conforms to the latter approach, however we are
in the context of a database application, and not
a corpus of textual documents which is a different
concern.
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More than a unique solution, we propose a
methodology in order to generalize a hierarchical
fuzzy set expressing preferences.

A. Elementary generalization of a hierarchical
fuzzy set

The elementary generalization of a hierarchical
fuzzy set consists in creating, given a hierarchical
fuzzy set F , a more general hierarchical fuzzy
set Fg, with the meaning of the inclusion relation
defined in Section III-C. To obtainFg, an element
eltg is added toF , eltg being a super-element of
an elementelt ∈ dom(F ). We have defined this
operation to be as flexible as possible.

Definition 10: An elementary generalizationof
a hierarchical fuzzy setF is an operation that creates
from F a hierarchical fuzzy setFg obtained as
follows.
Let elt be an element ofdom(F ) and eltg
a super-element ofelt, satisfying the condition:
/∃elt′ ∈ dom(F ) (eltg ≤ elt′). That is to say,eltg
may neither be an element ofdom(F ) nor be more
specific than any element ofdom(F ).
Fg is obtained by addingeltg to F with a given
degree denoteddg. Fg is thus defined by:
{

dom(Fg) = dom(F ) ∪ {eltg}
µFg

(eltg) = dg.

Property 5: Fg is more general thanF , with
the meaning of the inclusion relation extended to
hierarchical fuzzy sets.

Proof 5: We must show that, for each element
elem of the hierarchy, we have:(µclos(Fg)(elem) ≥
µclos(F )(elem)).

Let Eelem = {elem1, . . . , elemn} be the set of
smallest super-elements (in the broad sense) of
elem in dom(F ). According to the definition of the
closure (Definition 5),µclos(F )(elem) only depends
on Eelem. Let Eelem g be the set of smallest super-
elements ofelem in dom(Fg). µclos(Fg)(elem) only
depends onEelem g. We will show thatEelem g is
equal, either toEelem, or to Eelem∪{eltg}, and that
the inequalityµclos(Fg)(elem) ≥ µclos(F )(elem) is
satisfied in both cases.

As dom(Fg) = dom(F ) ∪ {eltg} and thateltg
cannot be a sub-element of an element ofdom(F )
(Definition 10), a fortiori eltg cannot be a sub-
element of an element ofEelem ⊆ dom(F ). There
are thus two possible cases:

• eltg is a super-element of one ore more el-
ements ofEelem. Thus it cannot be itself a
smallest super-element ofelem in dom(Fg):
eltg 6∈ Eelem g. Therefore we haveEelem g =
Eelem andµclos(Fg)(elem) = µclos(F )(elem);

• eltg is not comparable with any element of
Eelem (or Eelem is empty). In this case:

– either eltg is not a super-element of
elem. Then Eelem g = Eelem and
µclos(Fg)(elem) = µclos(F )(elem);

– or eltg is a super-element ofelem. Then
Eelem g = Eelem ∪ {eltg} (eltg is neces-
sarily a smallest super-element ofelem

in dom(Fg) because it is not comparable
with the elements ofEelem). There are two
possible cases:
∗ if Eelem is empty,

µclos(F )(elem) = 0 and
µclos(Fg)(elem) = µFg

(eltg) ≥ 0;
∗ if Eelem is not empty,

µclos(F )(elem) =
max(µF (elem1), . . . , µT (elemn)) and
µclos(Fg)(elem)
= max(µFg

(elem1), . . . , µFg
(elemn),

µFg
(eltg))

= max(µF (elem1), . . . , µF (elemn),
µFg

(eltg))
≥ µclos(F )(elem).

We thus have for eachelem:
µclos(Fg)(elem) ≥ µclos(F )(elem).

Example 6:Let F be the following hierarchi-
cal fuzzy set: F = 1/Condensed whole milk +
0.5/Cheese.
For elt = Condensed whole milk, eltg = Milk and
dg = 0.2, we obtain:
Fg = 1/Condensed whole milk + 0.5/Cheese +
0.2/Milk.

B. Generalization rule

The elementary generalization defined above will
be used as a basis for the definition of a (non-
elementary) generalization, obtained by applying
to F several elementary generalizations: for each
element ofF , a set of more general elements may
be added toF .

Therefore, several questions have to be decided:
(i) in which order will the elements ofF be con-
sidered, as this order may affect the result ? (ii)
which more general elements may be added toF ?
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(iii) how will the degree associated with each added
element be determined ?

These questions arise from issues frequently
found in literature about similarity, in different
contexts concerning non-fuzzy or non-hierarchical
values, or using additional knowledge as in lin-
guistic issues. Questions (ii) and (iii) are linked
to the notion of distance between concepts [25]–
[28]. Question (iii) also impacts the classification
of the results to be obtained [15]. Question (i)
concerns possible conflicts between elements ofF

having common super-elements added toF , with
an antagonism about the choice of the degrees to
be associated with these super-elements.

The notion of generalization rule formalizes these
elements.

Definition 11: A generalization rule Rg is a 3-
tuple (ord, gen, calc), where:

• ord is a total traversal order through the ele-
ments of a hierarchical fuzzy setF , defined on
a hierarchyH;

• gen is an application that associates, with each
elementelt in dom(F ), a set of more general
elements inH;

• calc is an application that associates a degree
between 0 and 1 with each pair(elt, eltg) such
that elt ∈ dom(F ) andeltg ∈ gen(elt).

Example 7:
• ord may be, for instance, an order through

the elements ofF by decreasing degrees. This
choice allows one to generalize in priority the
elements ofF that have the higher degrees,
that is, the elements for which the user has
expressed the higher preference;

• gen(elt) may be, for instance, the set of small-
est super-elements ofelt in the hierarchy;

• calc may, for instance, associate witheltg half
of the degree of the generalized elementelt.
This choice allows one to retrieve in priority
the values specified by the user.

Each element ofF does not necessarily have a
more general element that may be added toF for
the generalization operation: as we saw previously
in Section IV-A, this more general element must
satisfy a condition. Here we define the notion of
generalizable element ofF , according to a given
generalization rule.

Definition 12: Let F be a hierarchical fuzzy set.
An elementelt of dom(F ) is said to begeneraliz-
able in F , according to a generalization ruleRg, if

elt has a more general elementeltg in gen(elt) that
satisfies the condition: /∃elt′ ∈ dom(F ) (eltg ≤ elt′).

Example 8:Let F be the following hierarchical
fuzzy set:F = 1/Whole milk + 0.5/Milk, andst(elt)
the set of smallest super-elements ofelt.
The elementWhole milk is not generalizable in
F becausest(Whole milk)= {Milk}, and Milk is
already inF .
The elementMilk is generalizable becausest(Milk)
= {Milk product}, andMilk product is not inF nor
has a super-element inF .

C. Elementary generalization according to a gen-
eralization rule

The elementary generalization presented here is
an operation that conforms to Definition 10, re-
stricted by a generalization ruleRg.

Definition 13: An elementary generalization
according to a generalization rule Rg is an el-
ementary generalization of a hierarchical fuzzy set
F , such that:

• the elementelt ∈ dom(F ) is chosen as being
the first generalizable element ofF , according
to the orderord. It is denotedelt0;

• eltg is a smallest super-element ofelt0 in
gen(elt0);

• dg is defined by:dg = calc(elt0, eltg).
Example 9:Let Rg be the generalization rule

proposed in Example 7 andF the following hierar-
chical fuzzy set:
F = 1/Whole milk + 0.8/Half skim milk + 0.2/Yo-
ghourt.
All the elements ofF are generalizable, and the first
one according to the orderord (i.e. by decreasing
degrees) isWhole milk. The elementary generaliza-
tion of F according toRg is thus the following
hierarchical fuzzy set:
Fg = 1/Whole milk + 0.8/Half skim milk + 0.2/Yo-
ghourt + 0.5/Milk.

D. Generalization of a hierarchical fuzzy set, ac-
cording to a generalization rule

The (non-elementary) generalization ofF that we
define here consists in applying successively several
elementary generalizations, according to a given
generalization rule, to theminimal fuzzy set that is
equivalent toF . We chose to generalize the minimal
fuzzy set, and notF itself, because we consider that
different equivalent fuzzy sets expressing the user’s
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query and bringing the same answers, should have
the same generalization that will bring the same
additional answers. This is guaranteed by the use
of the minimal fuzzy set.

Definition 14: The generalization of a hierar-
chical fuzzy set F , according to a generalization
rule Rg, is an operation that provides a hierarchical
fuzzy setFg obtained as follows:

• we call 0-degree generalization ofF , denoted
F0, the minimal fuzzy set that is equivalent to
F ;

• let Fn be the n-degree generalization ofF :

– if there exists an element ofdom(F0) ⊆
dom(Fn) generalizable inFn according
to Rg, then Fn+1 is obtained by an ele-
mentary generalization ofFn according to
Rg, in which elt0 is the first element of
dom(F0) ⊆ dom(Fn), with the meaning
of the orderord, generalizable inFn;

– if not, the generalization ofF is the fuzzy
setFg = Fn.

Property 6: The degreen such thatFg = Fn is
finite.

Proof 6: Let GEN be the set of elements that
belong to the image, throughgen, of the set of el-
ements ofdom(F0): GEN =

⋃

elt∈dom(F0) gen(elt).
The elementeltng added toFn to obtain Fn+1

belongs to the set:
En = {elt′ ∈ GEN | /∃elt ∈ dom(Fn) (elt′ ≤ elt)}.
According to Definition 14,Fg = Fn is obtained
whenEn is empty.

The elementeltn+1
g added toFn+1 to obtainFn+2

belongs to the set:En+1 =
{elt′ ∈ GEN | /∃elt ∈ dom(Fn+1) (elt′ ≤ elt)} =
{elt′ ∈ GEN | /∃elt ∈ (dom(Fn) ∪ {eltng}) (elt′ ≤ elt)}

⊆ En.
En+1 contains at least one less element thanEn:

eltng , which does not satisfy the condition(/∃elt ∈
(dom(Fn) ∪ {eltng}) (eltng ≤ elt)}). We thus have:
card(En+1) < card(En). As card(En) is strictly
decreasing withn, En is empty forn at most equal
to card(E0). The degreen such thatFg = Fn is
thus finite.

Property 7: The fuzzy setFg, obtained by the
generalization ofF , is more general thanF , with
the meaning of the inclusion relation extended to
hierarchical fuzzy sets.

Proof 7: Let us process by induction to show
that, for eachn, we have:

for each element elt of the hierar-
chy, µclos(Fn)(elt) ≥ µclos(F )(elt).

For n = 0, we have: ∀elt, µclos(T0)(elt) =
µclos(F )(elt), becauseF ≡ F0.

Let us suppose that:∀elt, µclos(Fn)(elt) ≥
µclos(F )(elt). As Fn+1 is obtained by
an elementary generalization ofFn, we
have: ∀elt, µclos(Fn+1)(elt) ≥ µclos(Fn)(elt)
(Proposition 5). Therefore:∀elt, µclos(Fn+1)(elt) ≥
µext(F )(elt).

Example 10:Let Rg be the generalization rule
proposed in Example 7 andF the following hierar-
chical fuzzy set:
F = 1/Whole milk + 1/Condensed whole milk +
0.8/Half skim milk + 0.2/Yoghourt.

• F0, the minimal fuzzy set that is equivalent to
F , is the following:
F0 = 1/Whole milk + 0.8/Half skim milk +
0.2/Yoghourt;

• the first generalizable element ofF0, in the
orderord, is Whole milk, whose generalization
providesF1:
F1 = 1/Whole milk + 0.8/Half skim milk +
0.2/Yoghourt + 0.5/Milk;

• the first element ofdom(F0) generalizable
in F1 is Yoghourt, whose generalization pro-
videsF2:
F2 = 1/Whole milk + 0.8/Half skim milk +
0.2/Yoghourt + 0.5/Milk + 0.1/Milk product;

• there is no element ofdom(F0) generalizable
in F2, so Fg = F2.

V. EXPERIMENTAL EVALUATION OF THE

PROPOSED METHODS

Since 1999, our team has been involved in the
Sym’Previus national project, which brings together
industrial and academic partners to build a tool
for the analysis of microbiological risks in food
products (http://www.symprevius.org).

We firstly describe the system architecture in
Section V-A. Section V-B proposes an experimental
evaluation of the closure and generalization methods
presented in this paper.

A. The system architecture

The risk analysis tool includes a database query-
ing system called MIEL++1, available on the In-
ternet, that queries three databases: a relational

1acronym for the French translation of Enlarged Querying Engine
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database which contains the stable part of the in-
formation [13], a conceptual graph knowledge base
which contains the weakly-structured part of the
information [29], [30], and an XML base filled
with data semi-automatically extracted from the
Web [14], [31]. Figure 8 illustrates the system
architecture.

Fig. 8. The system global architecture

The vocabulary used to represent the data in the
three databases, as well as to express queries in
the retrieval system, is organized into a hierarchy
of terms that corresponds to the taxonomies used
by our biologist partners to represent classifications
of microorganisms, food substrates and technolog-
ical processes. The formalisms used in the three
databases, as well as the MIEL++ query language,
have been extended to be able to represent respec-
tively ill-known data and flexible queries as fuzzy
sets defined on a hierarchical domain.

In the MIEL++ system, a query is composed of
a set of projection attributes and a set of selection
criteria of the form< attribute, value >, where
value can be a hierarchical fuzzy set (see [13] for
more details). It is expressed in a given view, which
corresponds to a virtual table that brings together
with sense all the attributes needed by the user.

The query expressed by the user through the
GUI is sent to the three databases, and therefore
translated into three different formalisms. In the
case of the relational subsystem for instance, which
gathers more than 10.000 data entries that corre-
spond to scientific data from about 700 publications
in predictive microbiology, it is translated into a
SQL query. Theselect clause is determined by the
view in which the user expresses the query. The

where clause is determined both by the view and
by the user’s selection criteria. If the user’s selection
criteria contain hierarchical fuzzy sets, the closures
of these fuzzy sets are computed and taken into
account in the SQL query.

The MIEL++ system is written in Java language.
A MIEL++ query is executed using a three-tier
process architecture.

B. Evaluation of the closure and generalization
methods

The evaluation was made in collaboration with
microbiologist experts. The methodology we used to
evaluate the proposed methods followed five steps:

1) definition of the quantity and thematic repar-
tition of the data accessed by the test queries,
so that the results are significant;

2) definition of the form of the test queries, so
that the results are interpretable;

3) definition of a set of test queries that satisfy
the previous points;

4) execution of the set of test queries;
5) analysis of the results.

In the following we describe the procedure step by
step.

1) The significance conditions put on the test
queries were, firstly, that they cover at least
ten percent of the database entries, and sec-
ondly, that they cover all branches of the
hierarchy of terms.

2) The interpretability conditions were of two
kinds:

• each test query should be executed in
three forms: (i) as a standard query; (ii)
with the computing of the closures of
the selection criteria values; (iii) with the
computing of the closures of the general-
ized selection criteria values;

• what we mean by “standard” query is
a query in which the selection criteria
values are not fuzzy, so that there is no
possible confusion in the interpretation of
the degrees associated with the results:
these degrees are due to the generalization
method used in form (iii) of the query, and
not to the user’s preferences in form (i) of
the query. Moreover in “standard” queries
the closures are not computed,i.e. the
sub-elements of the elements mentioned
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in the selection criteria values are not
taken into account.

3) Seven test queries were defined, with the
following < attribute, value > criteria:

• <Food product, 1/Shell-fish>;
• <Food product, 1/Cheese>;
• <Food product, 1/Cheese> and

<Microorganism, 1/Listeria>;
• <Food product, 1/Egg>;
• <Food product, 1/Potted meat> and

<Microorganism, 1/Listeria>;
• <Food product, 1/Salad> and

<Microorganism, 1/Listeria>;
• <Food product, 1/Fresh meat>.

The parameters used in the generalization
method are:

• ord is by decreasing degrees;
• gen(elt) is the set of smallest super-

elements ofelt in the hierarchy;
• calc associates witheltg the degree ofelt

minus 0.2 (or 0 if the result is negative).

4) The execution of the set of test queries gave
the results presented in table I.

5) The analysis of the results led to the following
conclusions.
The closure results were considered as per-
tinent exact answers by the experts. They
provide 99 percent of the total number of
exact answers. The evaluation results are thus
excellent for the closure method.
Among the generalization results, the answers
that are judged pertinent by the experts (80
percent) have the higher matching degrees,
that go from 0.8 to 0.6, whereas the answers
that are judged non-pertinent (20 percent)
have degrees that go from 0.6 to 0.2. An
essential constatation is that the value 0.6 can
thus be considered as a threshold above which
results are classified as pertinent, and below
which results are classified as non-pertinent
by the experts. The evaluation results are thus
also very good for the generalization method,
as:

• pertinent results can be clearly identified
using their matching degrees;

• generalization results bring a big amount
of complementary results (56 percent of
the total number of pertinent results).

TABLE I

EVALUATION OF THE CLOSURE AND GENERALIZATION METHODS

Selection Number Number Number of Number of
criteria of exact of exact answers answers

answers answers obtained obtained
with obtained with gener- with gener-

standard with alization alization
querying closure judged judged non-

pertinent pertinent
(and noted (and noted

degree) degree)
Food product 0 4 66 0
= 1/Shell-fish (degree 0.8)
Food product 5 152 267 0
= 1/Cheese (degree 0.8)

Food product 0 53 87 0
= 1/Cheese, (degree 0.8)

Microorganism
= 1/Listeria

Food product 0 16 10 87
= 1/Egg (degree 0.8) (degree 0.4

to 0.2)
Food product = 0 33 44 63
1/Potted meat, (degree 0.8) (degree 0.6
Microorganism to 0.4)

= 1/Listeria
Food product 0 17 25 7

= 1/Salad, (degree 0.8 (degree 0.6
Microorganism to 0.6) to 0.2)

= 1/Listeria
Food product 0 217 136 0

= 1/Fresh meat (degree 0.8)

VI. CONCLUSION

Whereas in classic fuzzy sets, all the elements are
on the same level and are associated with a degree
explicitly defined, this is not necessarily the case
in hierarchical fuzzy sets because several levels of
detail exist in the hierarchy, and the hierarchical
links between the elements have to be taken into
account.

In our work, the hierarchical links are defined
by the “kind of” relation. The membership of an
element in a fuzzy set has consequences on the
membership of its sub-elements in this fuzzy set.
We thus define, as a first main contribution of this
paper, the notion of hierarchical fuzzy set, that may
be defined on a part of a hierarchy (for a given level
of detail) and the notion of closure of a hierarchical
fuzzy set, that is explicitly defined on the whole
hierarchy, using the links between the elements that
compose the hierarchy. Hierarchical fuzzy sets that
have the same closure define equivalence classes,
and each class has a unique particular representative,
called minimal fuzzy set.
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Minimal fuzzy sets are used as a basis to define
the generalization of a hierarchical fuzzy set, which
is the second main contribution of this paper. The
methodology that we propose aims at enlarging the
preferences expressed by a user in a query and
represented as a hierarchical fuzzy set, in order to
obtain pertinent complementary answers.

These results have been applied within the infor-
mation system of the Sym’Previus project, dedicated
to predictive microbiology. The Sym’Previus infor-
mation system has been in production since the be-
ginning of 2004 and may be consulted by users from
research or industry by means of a subscription. As
shown in the last section of this paper, the plus-value
provided by the closure and generalization methods
has been quantified and represents an important part
of the pertinent answers.

We expect these results to be useful in new
contexts: firstly, for flexible query answering in for-
malisms that do not originally handle a domain on-
tology; secondly, in other research fields that could
benefit from flexible generalization / specialization
methods, like knowledge discovery that hardly uses
precision levels described by domain ontologies in
learning processes.

We are now working on the optimization of the
algorithms that are used to compare hierarchical
fuzzy sets, which are currently based on the closures
of the hierarchical fuzzy sets. We are considering
a solution based on the use of minimal fuzzy
sets. Another aspect of our current research, in the
continuation of this paper, concerns the introduction
of viewpoints in the considered hierarchies. An
important point will also be to extend our results,
in a meaningful way, to other sorts of relations.
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