
HAL Id: lirmm-00113092
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00113092v1

Submitted on 10 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Optimizations of Hardware Multiplication by
Constant Matrices

Nicolas Boullis, Arnaud Tisserand

To cite this version:
Nicolas Boullis, Arnaud Tisserand. Some Optimizations of Hardware Multiplication by Constant
Matrices. IEEE Transactions on Computers, 2005, 54 (10), pp.1271-1282. �10.1109/TC.2005.168�.
�lirmm-00113092�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00113092v1
https://hal.archives-ouvertes.fr

Some Optimizations of Hardware Multiplication
by Constant Matrices

Nicolas Boullis and Arnaud Tisserand, Member, IEEE

Abstract—This paper presents some improvements on the optimization of hardware multiplication by constant matrices. We focus on

the automatic generation of circuits that involve constant matrix multiplication, i.e., multiplication of a vector by a constant matrix. The

proposed method, based on number recoding and dedicated common subexpression factorization algorithms, was implemented in a

VHDL generator. Our algorithms and generator have been extended to the case of some digital filters based on multiplication by a

constant matrix and delay operations. The obtained results on several applications have been implemented on FPGAs and compared

to previous solutions. Up to 40 percent area and speed savings are achieved.

Index Terms—Computer arithmetic, multiplication by constants, common subexpressions sharing, FIR filter.

�

1 INTRODUCTION

IMPORTANT optimizations of the speed, area, and power
consumption of circuits can be achieved by using dedicated

operators instead of general ones whenever possible. Multi-
plication by constant is a typical example. Indeed, if one
operand of the multiplication is constant, one can use some
shifts and additions/subtractions to perform the operation
instead of using a complete multiplier. This usually leads to
smaller, faster, and less power-consuming circuits.

Applications involving multiplication by constant are
common in digital signal processing, image processing,
control, and data communication. Finite impulse response
(FIR) filters, discrete cosine transform (DCT), and discrete
Fourier transform (DFT), for instance, are central operations
in high-throughput systems and they use a huge amount of
such operations. Their optimization widely impacts the
performance of the global system that uses them. In [1],
there is an analysis of the frequency of such operations.

The problem of the optimization of multiplication by
constant has been studied for a long time. For instance, the
famous recoding presented by Booth in [2] can simplify
both the multiplications by constants and the complete
multiplications. This recoding and the algorithm proposed
by Bernstein in [3] were widely used on processors without
a multiplication unit.

The main goal in this problem is the minimization of the
computation quantity. The multiplication by constant
problem seems to be simple, but its resolution is a hard
problem due to its combinatorial properties. This problem
can occur in more or less complex contexts. In the case of a
single multiplication of one variable by one small constant,
it may be possible to explore the whole parameter space.
But, in the case of the multiplication of several variables by

several constants, the space to explore is so huge that one
has to use heuristics.

A first solution proposed to optimize multiplication by
constant was the use of the constant recoding, such as
Booth’s. This solution just avoids long strings of consecutive
ones in the binary representation of the constant. Better
solutions are based on the factorization of common
subexpressions, simulated annealing, tree exploration,
pattern search methods, etc.

Our work deals with multiplication of constant matrix,
i.e., one useful form of the multiplication of several
variables by several constants. A lot of applications involve
such linear operations. This method is based on constants
recoding followed by some dedicated common subexpres-
sion factorization algorithms. We also extended our method
to the case of some digital filters. Our solution is able to
handle filters based on constant matrix multiplication and
delay operations (such as FIR filters). The proposed method
was implemented in a VHDL generator. The generated
results for several applications have been implemented on
Xilinx FPGAs (field programmable gate arrays) and
compared to other solutions. Some significant improve-
ments have been obtained: up to 40 percent area saving in
the DCT case and from 20 percent up to 30 percent in the
case of some FIR filters, for instance.

This paper is an extended version of the paper [4]
presented at the 16th IEEE Symposium on Computer
Arithmetic (ARITH16) in June 2003. It is organized as
follows: The problem is presented in Section 2. In Section 3,
some related works are presented. Our algorithm is
presented in Section 4. The developed generator and the
target architectures are discussed in Section 5. The results of
the implementation of some applications and their compar-
ison to other solutions are presented in Section 6. Finally,
the specific case of digital filters is presented in Section 7.

2 PROBLEM DEFINITION

In this paper and in the related works, the central problem
is the substitution of complete multipliers by an optimized

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005 1271

. The authors are with the Arénaire Project (CNRS-ENSL-INRIA-UCBL)
LIP, �EEcole Normale Supérieure de Lyon, 46 allée d’Italie, F-69364 Lyon,
France. E-mail: {nicolas.boullis, arnaud.tisserand}@ens-lyon.fr.

Manuscript received 24 Nov. 2003; revised 24 Mar. 2005; accepted 6 Apr.
2005; published online 16 Aug. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0225-1103.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

sequence of shifts and additions and/or subtractions. We
focus on integers, but all the results can be easily extended
to other fixed-point representations.

All the values are represented using a standard unsigned
radix-2 notation or two’s complement unless it is specified.
The notation x � k denotes the k-bit left shift of the
variable x (i.e., x� 2k). As we look at hardware implemen-
tations, we assume that shift is just routing and that
addition and subtraction have the same area and speed cost.

As an example, let us compute p as the product of the input
variable x by the constant c ¼ 111463 ¼ 110110011011001112.
The simplest algorithm uses the distributive property of
multiplication. There is one addition of x (after some
potential shift) for each one in the binary representation of
c. In the case c ¼ 111463, it leads to 10 additions:

111463x ¼ ðx � 16Þ þ ðx � 15Þ þ ðx � 13Þ þ ðx � 12Þ
þ ðx � 9Þ þ ðx � 8Þ þ ðx � 6Þ þ ðx � 5Þ
þ ðx � 2Þ þ ðx � 1Þ þ x:

The central point in this problem is the minimization of
the total number of operations. It can be significantly
reduced by using a recoding of the constant and/or
subexpression elimination and sharing. The theoretical
complexity of this problem still seems to be unknown.

Depending on the target application, this problem can
occur at different levels of complexity. It starts with the
multiplication of one variable by one constant. After, the
multiple constant multiplication (MCM) problem appears
with the multiplication of one variable by several constants
[5]. In this present work, we deal with a more general
version of this problem with the multiplication of one
variable vector by one constant matrix: the constant matrix
multiplication. We also deal with the case of some digital
filters that involve multiplication by a constant matrix and
delay operations.

3 RELATED WORKS

There are at least four types of methods to address the
multiplication by constant problem:

. direct recoding methods,

. evolutionary methods,

. cost-function-based search methods, and

. pattern search methods.

3.1 Direct Recoding Methods

The recoding of the multiplier operand is very frequently
used in multipliers. The famous Booth’s recoding [2]
replaces long strings of ones by values with more zeros.
The modified Booth recoding is often used in variable
multipliers because it reduces the area of the operators. See
[6] or [7] for the use of Booth or modified Booth recodings
for multiplication. But, the Booth recoding is generally not
used in constant multipliers because the number of nonzero
digits of the recoded operand is not minimal.

A minimal recoding ensures that the number of nonzero
digits in the recoded value is as small as possible. In the radix-
2 signed digit (SD) representation, the digits belong to the set
f�11 ¼ �1; 0; 1g. A number is said to be in the canonical signed

digit (CSD) format if no two nonzero digits are consecutive;
such a code is minimal. Using a minimal recoding, such as
CSD, on an n-bit unsigned value, the number of nonzero
digits is bounded by ðnþ 1Þ=2 and it tends asymptotically to
an average value of n=3þ 1=9, as shown in [8]. For our
example, using CSD recoding we have: 111463 ¼
110110011011001112 ¼ 100�110�110100�110�110100�112 and the pro-
duct p ¼ c� x is reduced to seven additions/subtractions:

111463x ¼ ðx � 17Þ � ðx � 14Þ � ðx � 12Þ þ ðx � 10Þ
� ðx � 7Þ � ðx � 5Þ þ ðx � 3Þ � x:

The KCM algorithm [9] was specifically designed for
LUT-based FPGAs (LUT means look-up table). It decom-
poses the binary representation of the variable into 4-bit
chunks (a radix-16 representation). Each partial product,
deduced by the product of the constant by one radix-16
digit of the variable, is read in a small multiplication table.
Those tables are addressed by one radix-16 digit, which
perfectly fulfills the 4-input LUT resources of the target
FPGAs. There is a more general version of this decomposi-
tion problem with distributed arithmetic. For instance, in
[10], distributed arithmetic was used on a 16-point DCT
operator with an area saving of 17 percent compared to the
direct implementation of the whole computation.

There are some recent works on the use of high-radix
recoding. For instance, in [11], the authors implement some
FIR filters using a radix-8 representation with punctured
coefficients. Those coefficients are represented using digits in
the set f0;�1;�2;�4g instead of the set f0;�1;�2;�3;�4g.
This is a lossy representation, so they have to deal with
some additional accuracy requirements. In our case, we
want to study this problem for a lossless representation, but
this approach seems to be interesting for future research.

The recoding of the constants using sum of power of two
(SOPOT) values is a standard method. In this method, the
theoretical coefficients are quantified to values that can be
expressed using a small number of nonzero bits (compared
to the whole word length). This method is often used in
signal processing filters, see [12] and [13] for recent filter
applications.

Another recoding solution was proposed with the use of
multiple-radix representations and especially with the
double-base number system (DBNS) [14]. In this solution,
the authors use both radices 2 and 3 simultaneously, i.e., the
values are expressed by a ¼

P
i;j ai;j2

i3j with ai;j 2 f0; 1g.
This multiple-radix representation, sometimes useful in
some analog circuits, does not seem to be efficient in the
multiplication by constant problem in digital circuits. In
[15], multiple-radix or mixed-radix representations have
been used in the implementation of FIR multirate con-
verters. A small area gain is reported using this kind of
representation.

3.2 Evolutionary Methods

Some evolutionary methods, such as evolutionary graph
generation [16], have been proposed to generate arithmetic
circuits and especially for constant multipliers. These
methods based on genetic algorithms seem to provide very
poor results. For instance, in [16], the results are slightly
better than the straightforward CSD encoding, which is

1272 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

very far from the best known results. Furthermore, it seems
that these methods are limited to the problem of multi-
plication by a few constants and have never been used to
produce more complex circuits.

3.3 Cost-Function-Based Search Methods

The algorithm presented by Bernstein in [3] allows some
intermediate values that are used only once in recoding
methods to be reused. A more detailed and corrected version
of this algorithm can be found in [17]. The algorithm, based on
a tree exploration, defines three kinds of operations:
tiþ1 ¼ ðti � kÞ, tiþ1 ¼ ðti � xÞ, and tiþ1 ¼ ððti � kÞ � tiÞ. A
cost can be specified for each operation according to the target
technology. The cost function used to guide the exploration is
the sum of the costs of all the involved operations. This
algorithm only shares some common subexpressions. For our
example, p ¼ c� x with c ¼ 111463, this algorithm gives a 5-
addition solution:

t1 ¼ ðððx � 3Þ � xÞ � 2Þ � x;

t2 ¼ t1 � 7þ t1;

p ¼ ðððt2 � 2Þ þ xÞ � 3Þ � x:

There are some other cost-function-based search meth-
ods such as simulated annealing. In [18], this technique was
used to produce multiplication by a small set of constants.
The same multiplier is used for a small set of different
coefficients. This problem is different from ours.

In [19], a greedy algorithm is used to determine a
solution with a low total operation cost. A 28 percent
average area saving is achieved on some controllers and
elliptic filters. This solution seems to be limited due to local
attraction of the greedy algorithm.

3.4 Pattern Search Methods

Most of the pattern search methods are based on the
same general idea. The algorithm recursively builds a set
of constants to be optimized. This set is initialized with
the recoded initial constants (generally using the CSD
format). The different methods differ in the way they
match the common subexpressions and the way they
share and reuse them.

The multiple constant multiplication (MCM) solution
presented in [5] performs a tree exploration with selection
of matching parts of the SD representation of the constants.
This paper is the most cited one and it presents a lot of details
about the algorithm as well as about the comparisons.

In [20], the matches between constants are represented
using a graph. The exploration and some transformations of
this graph are used to produce a specific form of FIR filters
with a reduced number of adders/subtractors while
controlling the operator delay.

A solution based on an algebraic formulation of the
possible matches between constants is presented in [21].
Unfortunately, the authors use random filters for their tests
without specifying the coefficients. So, it is difficult to
compare their results to other solutions.

A recent work [22] proposes sharing digits in the
CSD representation of the coefficient matrix both in a
horizontal and in a vertical way. This solution allows circuits
to be designed with 10 percent fewer adders/subtracters

than the straightforward CSD horizontal subexpression

factorization.
In [23], a pattern search method is proposed. Some

optimizations on the result architecture are done such as the

transformation of multiple subtractions of the same value

into the negation of this value and several adders. This kind

of optimization can lead to significant improvement in

ASICs where subtractors are larger than adders. This is not

the case in our FPGAs.
In [24], a factorization method based on the selection of

the best pair of matching digits is used. This solution can be

easily extended to the selection of common parts of words

larger than two digits.
We will base our solution on extensions and improve-

ments of the algorithms presented in [25] and [26]. A

detailed description of this idea is presented below. One can

notice that, among all the abundant bibliography about the

multiplication by constant problem, there is no general

solution to the multiplication by constant matrix problem.

4 PROPOSED ALGORITHMS

4.1 Lefèvre’s Algorithm

In 2001, Lefèvre proposed a new algorithm to efficiently

multiply a variable integer by a given set of integer

constants [25]. As a special case, this algorithm was used

to multiply a variable by a single constant.

4.1.1 Definitions

The principle of the algorithm is to handle a list of constants

to be optimized and to find a “pattern” that appears several

times in the set of constants. The constants are recoded

using the CSD format in the very beginning. A pattern is a

sequence of digits in f�11; 0; 1g. The number of nonzero digits

in the pattern is called its weight.
A pattern P is said to occur in a constant C with a shift �

when, for each 1 in position k of P , there is a 1 in position

kþ � in C and, for each �11 in position k of P , there is a �11 in

position kþ � in C. And, a pattern is said to occur

negatively when there is a �11 in C for each 1 in P and a 1

in C for each �11 in P . This last point is one of the main

differences between the two papers, [25] and [26]. Lefèvre’s

algorithm allows us to use patterns negatively, which leads

to slightly better optimizations.
When two occurrences of the same pattern or of different

patterns match the same nonzero digit of the constant, the

two occurrences are said to conflict. For example, in the

number 51 ¼ 10�11010�112, the pattern 10�11 occurs positively

with shift 0, negatively with shift 2, and positively with shift

4. The first and third occurrences both conflict with the

second one. And, the pattern 10001 occurs negatively with

shift 0 and positively with shift 2. Those occurrences

overlap, but do not conflict. Moreover, every occurrence

of the 10�11 pattern conflicts with every occurrence of the

10001 pattern.

4.1.2 Description of the Algorithm

The principle of the algorithm can be described by the

pseudocode presented in Algorithm 1.

BOULLIS AND TISSERAND: SOME OPTIMIZATIONS OF HARDWARE MULTIPLICATION BY CONSTANT MATRICES 1273

Then, multiplication by each constant in the final set can be

implemented in the usual way: For each 1 (�11) in position p,

add (subtract) x shifted by p bits to the left. And then, by

rolling back the algorithm, each constant can be computed by

shifts and additions/subtractions, with roughly one addi-

tion/subtraction for each chosen occurrence of a pattern.
On our previous example p ¼ c� x, Lefèvre’s algorithm

gives a solution with only four additions:

t1 ¼ ðx � 3Þ � x;

t2 ¼ ðt1 � 2Þ � x;

p ¼ ðt2 � 12Þ þ ðt2 � 5Þ þ t1:

4.2 Extensions and Enhancements to Lefèvre’s
Algorithm

Mathematically speaking, Lefèvre’s algorithm deals with the

multiplication of a number by a constant vector. The first

thing to do is to extend it for the multiplication of a vector by a

constant matrix. This extension is rather straightforward: We

simply replace each constant with a constant vector. Patterns

are then replaced by vectors of patterns and shifts are

performed componentwise. With this algorithm, it is possible

to share all kinds of expressions.
For example, let us consider the computation of

y1 ¼ 5x1 þ 5x2 þ x3 and y2 ¼ 5x1 þ 5x2 þ 4x3. The algo-

rithm will first share the computation of 5x1 þ 5x2

between y1 and y2. After that, it will share x1 þ x2 in

ð5x1 þ 5x2Þ ¼ 4ðx1 þ x2Þ þ ðx1 þ x2Þ, effectively sharing the

multiplication by 5 between x1 and x2. This example shows

that the algorithm deals with both dimensions of the

constant matrix.
A detailed description of our extended algorithm is

given in the Appendix. This description, in C-like pseudo-

code, presents the overall behavior of our algorithm.
One point is kept unspecified in Lefèvre’s algorithm:

Which maximal pattern and which occurrences should we

choose? In his original implementation, Lefèvre simply

chose the first maximal pattern he found, with the first two

occurrences. This solution is probably not the best, so we

tried to find something better.
The first idea was to find all the maximal-weight patterns

with at least two nonconflicting occurrences and all their

occurrences. And then, we try to choose a set of patterns

and, for each pattern, a set of at least two occurrences such

that two chosen occurrences (of the same pattern or of

different patterns) do not conflict. The choice is performed

in order to maximize the gain in the weight of all the

constants; with a constant with weight w and i occurrences,

we gain ði� 1Þðw� 1Þ times its weight. As all the chosen

patterns have the same maximal weight, we want to

maximize the sum, for each pattern, of the number of

occurrences diminished by one.
We tried three different solutions for this. The first one,

called “random,” and which is the closest to the original

algorithm, is to recursively choose, at random, a pattern

with two nonconflicting occurrences and to remove every-

thing that conflicts with these occurrences. The second one,

called “graph-heuristic,” is to recursively choose a pattern

with a maximal set of nonconflicting occurrences and a

minimal set of conflicts with the other patterns and then

remove everything that conflicts with these occurrences.

And the third one, called “graph-optimal,” is to build all the

maximal sets of patterns and nonconflicting occurrences

and to choose the best one. This last solution can be very

computationally intensive.
We tried to compare those three solutions, by running

them several times for the same constant matrix: a huge

standard 8� 8 points 2D IDCT (inverse DCT) operator with

14-bit words. The results in Fig. 1 show that the “graph-

optimal” and “graph-heuristic” are roughly equivalent and

better than the “random,” with a tiny advantage to “graph-

optimal.” The time required to generate these results is less

than one minute for “graph-heuristic” and “random,” while

it can grow to hours for “graph-optimal.” Hence, we

generally choose the “graph-heuristic” solution so we can

perform lots of tries (thanks to its speed) and then choose

the best solution. Similar results have been obtained using

other applications.

4.3 Beyond the Mathematical Optimization

The improvements described above only deal with the

minimization of the total number of additions and subtrac-

tions. Translated to hardware, this is not enough. Some

additions and subtractions can be reordered without

changing their total number thanks to properties such as

associativity and commutativity.
First of all, one may want to have a small circuit. When

three numbers a, b, and c are added, the order in which they

are added influences the size of the adders. For example, if

a and b are narrow numbers, while c is wide, computing

ðaþ bÞ þ c leads to a smaller circuit than ðaþ cÞ þ b or

1274 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

Fig. 1. Heuristics influence distributions (from many optimizations of one

large 2D IDCT operator).

ðbþ cÞ þ a. Hence, for space optimization, it is generally
better to add the narrowest numbers first.

On the other hand, one may want to have a fast circuit.
The order in which three numbers are added also influences
the worst-case delay of the circuit. For example, if a and c
are available early while b is available late, the result is
available earlier if we compute ðaþ cÞ þ b than ðaþ bÞ þ c

or ðbþ cÞ þ a. Hence, for speed optimization, it is preferable
to add the earliest available values first.

Those optimizations are performed in two steps. At first,
we unconstrain the order of the operations as much as
possible. When a value is used only once, its computation is
merged into the value that uses it. For example, if we had
t1 ¼ ðx � 2Þ � x and t2 ¼ ðx � 6Þ � ðt1 � 2Þ þ x, it be-
comes t2 ¼ ðx � 6Þ � ðx � 4Þ þ ðx � 2Þ þ x. Similarly, if a
term is composed of only one term, its computation is also
merged into any value that uses it. This part is done by a
traversal of the dataflow graph that represents the
computation.

After removing all those useless constraints, we want to
set new constraints that meet our goal of high speed or low
area. In the data-flow graph, this is done by splitting nodes
with more than two terms. We do this with a hierarchical
traversal of the graph: A node is only considered after all its
ancestors. This is possible because our dataflow graphs are
acyclic. When we meet a node with more that two terms
during the traversal, we extract two of its terms to make a
new node, as illustrated in Fig. 2. We consider all the pairs
of terms of the node. Each such pair can be assembled to a
new intermediate value. It is possible to symbolically
compute each corresponding value and deduce how wide
the corresponding adder would be. And, as we are using a
hierarchical traversal, we can also compute when each of
those values would be available.

If we want to optimize for area, we select a pair from
among those that require the smaller adder. On the other
hand, if we want to optimize for speed, we select it from
among those that would be available the earliest. Then, the
corresponding new node is generated and replaces the two

former terms: Now, there is one fewer term. We iterate that
extraction of two terms until the considered node has only
two terms.

Back to our example in Fig. 2, there are three possibilities
that use 3225x, 871x, or 114663x as new intermediate
values. Obviously, computing 871x requires a smaller adder
than the other two; that solution would be the chosen one
for area optimization. About speed, all three intermediate
values would be available after three adder steps (from the
input x), so they are equivalent. This simple example shows
that the postoptimizations lead to significant improve-
ments. In Section 6, a larger example (based on an IDCT
operator) confirms these improvements using postoptimi-
zations (see Table 5).

When we try to optimize for area, if several possibilities
are equivalent, we choose among them with the speed
criterion, so the circuit is not uselessly slow. The opposite is,
of course, true as well.

Moreover, the algorithmic optimization is not enough.
We need to generate some real circuits. Hence, we decided
to generate some VHDL code. Although it may work for
any target, our VHDL code generator is currently optimized
for Xilinx FPGAs. So, additions and subtractions are
performed using the dedicated fast carry-propagate adders
and subtractors. The generator is able to produce VHDL
code for fully parallel circuits or for digit-serial circuits with
radix 2n for any n. Only parallel architectures are available
when delays are involved (e.g., filters).

5 IMPLEMENTATION

Our implementation is mainly in two parts. The first part
performs the mathematical optimization, with our extended
and enhanced version of Lefèvre’s algorithm. This part was
written in C++ and is approximately 1,500 lines long. This
part is not a program by itself, but a collection of simple
classes that can be easily interfaced with any C++ program.
Hence, it would be easy, for example, to interface this with a
program that computes coefficients for FIR filters. Then, the
user would simply choose the type of filter and the required
frequencies and attenuations and the program would
compute the coefficients and generate some efficient VHDL
code for it.

After the mathematical optimization, everything is
implemented as plug-ins. Hence, there are, for example,
plug-ins that optimize the order of the additions and
subtractions or plug-ins that generate the output VHDL
code. This structure with plug-ins makes the whole thing
very modular. Hence, if someone wants, for example, to
generate some Verilog code or some assembly language
code for a DSP, it is sufficient to write a new output plug-in.
Then, if someone wants to get pipelined circuits, a new
pipelining plug-in can be written and it can then be used
with any output plug-in. Those plug-ins are also written in
C++. The collection of plug-ins is currently approximately
2,500 lines long.

The plug-ins communicate between themselves and with
the main program with simple interfaces that describe the
circuit as a data-flow graph. In this representation, vertices
represent mathematical values. Hence, there are vertices for
input values, for output values, and also for intermediate

BOULLIS AND TISSERAND: SOME OPTIMIZATIONS OF HARDWARE MULTIPLICATION BY CONSTANT MATRICES 1275

Fig. 2. Postoptimization of the multiplication by 111463 for area target.

values. Then, there is an edge, from vertex x to vertex y,

tagged with ðshift; sign; delayÞ, if x shifted shift bits to the

left and a delay of delay clock cycles is a positive or negative

part (according to sign) of y. The delay part is used for filters

or pipelined circuits. This representation has the quality of

being independent of the desired output.
Let us give a simple example of how this can be used and

what is generated. As a simple example, we will consider

building a constant multiplier by 111463. The correspond-

ing source code and generated VHDL are presented in Fig. 3

and Fig. 4, respectively.

6 RESULTS AND COMPARISONS

The syntheses of this section have been performed using

Xilinx ISE XST 4.2.03i tools for a Virtex XCV200-5 FPGA.

The operators are not pipelined. The area is measured in
number of slices (two LUTs with 4 address bits per slice in
Virtex devices). The required area compared to the
2,352 available slices in an XVC200 device is also reported
in parentheses. The delay is expressed in nanoseconds. The
number of additions/subtractions and the number of
FA cells are computed by our generator (see the two last
lines of Fig. 4); the number of FA cells is only an estimation
(assuming the use of carry ripple adders).

Only a few papers give enough elements to compare to
our solutions. In [5] and [24], there are useful values for the
DCT application. Table 1 presents the number of additions/
subtractions for the 1D 8-point DCT for several word sizes.
Our generator improves the previous results from 17 per-
cent to 44 percent. Table 2 gives the synthesis results for the
corresponding generated operators.

We performed some other comparisons on some error-
correcting codes from [5] and [24]: the 8� 8 Hadamard
matrix transform, ð16; 11Þ Reed-Muller, ð15; 7Þ BCH, and
ð24; 12; 8Þ Golay codes. The comparison with the previous
works in [5] and [24] is presented in Table 3 and the
corresponding synthesis results are presented in Table 4.
These results show that, for very simple operators such as a
small BCH code, some improvements are still possible. In
the case of the 8� 8 Hadamard matrix transform, we
obtained the same results as in the previous work [5].

Table 5 presents the synthesis results of the same IDCT
operator with the three possible postoptimizations of our
generator: none, area, or speed. The operator is a 1D 8-point
IDCT for 14-bit constants and 8-bit inputs. From the same
initial additions/subtractions number, the optimizations
presented in Section 4.3 lead to significant improvements,
40 percent for the speed optimization for instance. The
generation time for all these operators is around a few
seconds on a standard desktop computer.

In Section 4.3, we explained that our generator can
produce digit-parallel as well as digit-serial circuits using
different output plug-ins. Table 6 presents the synthesis
results of a 1D 8-point IDCT operator for several solutions:
digit-parallel and radix-2, 4, 8, 16, 64, and 256 digit-serial
versions. Digit-serial implementations lead to small area

1276 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

Fig. 3. Multiplication by 111463 optimization source code.

Fig. 4. Multiplication by 111463 generated VHDL.

TABLE 1
Number of Additions/Subtractions Comparison

for Some 1D 8-Point DCT Operators

TABLE 2
Synthesis Results of

Some 1D 8-Point DCT Generated Operators

and short cycle time operators. But, in order to fairly
compare digit-serial versus digit-parallel solution, we
should compare with the pipelined parallel operator.

In [27], an algorithm for designing multiplication by
matrix operators is presented. The proposed algorithm has
been tested on n� n matrices with random 8-bit integer
coefficients. In Fig. 5, we compare our generator with the
results from [27] (only values for n between 2 and 6 are
reported in [27]). Our complete results on random matrices
with 8-bit integer coefficients are reported in Table 7. The
average number of additions and subtractions and its
standard deviation have been evaluated on 100 random
matrices for each size. The reported generation time is the
average value for the generation time of one matrix. Our
results show slightly better performances.

7 EXTENSION TO DIGITAL FILTERS

Digital filters are a very specific case of multiplication by a
constant matrix. They are linear combinations of the input,
delayed several times:

y½t� ¼
Xn

i¼0

aix½t� i�;

where x½i� is the ith value of the sampled signal x.
Such filters are generally implemented using one of two

different kinds of architectures. The first one delays the
input to compute all the x½t� i� and then computes their
linear combination (the multiplication by the constant
matrix). The second one computes all the aix½t� i� and
then delays them and adds them to form the result as

depicted in Fig. 6. In signal processing, the first form of the
filter is called the direct form, while the second one is called
the transposed form. We call the gray part of Fig. 6 the
multiplication block (MB).

These implementation solutions consider the computa-
tions to be independent and do not allow sharing results
between consecutive computations. We extended our algo-
rithm to be able to apply such optimizations. As an example,
let us consider the following trivial low-pass FIR filter:

y½t� ¼ x½t� þ 5x½t� 1� þ 5x½t� 2� þ x½t� 3�:

The direct form of the filter leads to three delay units to
compute the x½t� i� and then five additions to compute y½t�
(Fig. 7A). This can be reduced to three delay units and four
additions by using the symmetry of the coefficients (Fig. 7B).
The transposed form leads to one addition to compute the
values x½t� and 5x½t� and then three delay units and three
additions to compute y½t�, which gives a total of three delay
units and four additions (Fig. 7C).

If we allow sharing of intermediate results between
computations using our generator, we can first compute
z½t� ¼ x½t� þ x½t� 1�, which requires one delay unit and one
addition, and then compute y½t� ¼ z½t� þ 4z½t� 1� þ z½t� 2�,
which requires two delay units and two additions; this gives a
total of three delay units and three additions (Fig. 7D). It is, of
course, equivalent to first computing z0½t� ¼ x½t� þ 4x½t�
1� þ x½t� 2� and then y½t� ¼ z0½t� þ z0½t� 1�; this is the
architecture found by our generator (Fig. 7E). An extract
of the generated VHDL code corresponding to this last
architecture is shown in Fig. 8.

BOULLIS AND TISSERAND: SOME OPTIMIZATIONS OF HARDWARE MULTIPLICATION BY CONSTANT MATRICES 1277

TABLE 3
Number of Additions/Subtractions Comparison

for Some Error-Correction Benchmarks

TABLE 4
Synthesis Results for

Some Error-Correction Benchmarks

TABLE 5
Influence of the Generator Optimizations

on a 1D 8-Point IDCT Operator

TABLE 6
Synthesis Results for 1D 8-Point Digit-Parallel

and Digit-Serial IDCT Operators

Fig. 5. Comparison of the results from [27] with ours on n� n random

matrices with 8-bit integer coefficients.

Of course, this trivial example only shows that it may be

possible to reduce the computational cost of an FIR filter by

sharing some results between consecutive computations. It

is not supposed to establish a rule about how efficient it is;

this will be shown by implementing some real FIR filters.

For this new extension, we use the Z transform of the

FIR filter, which is very common in digital signal proces-

sing: FIR filters are represented by polynomials in Z�1. For

example, our (1, 5, 5, 1) FIR filter is represented by the

polynomial 1þ 5Z�1 þ 5Z�2 þ Z�3. In those polynomials,

multiplying a signal by Z�1 means delaying that signal by

one delay unit. Such a polynomial represents one single

FIR filter. But, as our algorithm is already able to deal with

several inputs and several outputs, we thought it would be

useful to be able to deal with filters with several inputs and

outputs. Such complex filters may be used, for example, to

implement a digital audio equalizer or a digital DTMF

(dual-tone-multi-frequency) decoder.
Therefore, an extension works by replacing the matrix of

constants by a matrix of polynomials in Z�1. Then, if we

perform the optimization exactly as before, no pattern is

shared between subsequent computations; this corresponds

to the direct form of the filter. To implement such sharings,

we must allow multiplication of the patterns by Z�1, just as

we allowed shifting them to the left. By doing so, the

introduced delays are not taken into account for the

optimization and only the number of additions/subtrac-

tions is optimized.
This generally results in a huge increase of the number of

registers, with little to no gain to the number of additions/

subtractions. This may be acceptable when programming

some DSP processors, but it is not for hardware implementa-

tions. To prevent that huge increase, it is possible to set a limit

to the number of multiplication of a pattern byZ�1. Thus, it is

possible to control the number of added registers.

1278 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

TABLE 7
Results for n� n Random Matrices with

8-Bit Integer Coefficients

Fig. 6. The transposed form of an FIR filter.

Fig. 7. FIR (1, 5, 5, 1) architectures.

Fig. 8. FIR (1, 5, 5, 1) generated VHDL (extract).

TABLE 8
Specifications of the Example Filters Presented in [28] and

Matlab Command Used to Generate the Coefficients
(Attenuation and Ripple Values Are Theoretical Values)

In [28], the optimization of low-pass FIR filters using
sum of power of two (SOPOT) coefficients is presented. The
method is demonstrated on two filters. The specifications of
these two filters are reported in Table 8. This table also
report the remez Matlab function call used to generate the
theoretical coefficients of the filters.

In Table 9, we compare the implementation results from
[28] with our method. For our generator input we use the
optimized SOPOT coefficients presented in [28] in order to
achieve the same stop-band attenuation and pass-band ripple
values. On the first example from [28], nine digits ({-1, 0, 1})
SOPOT coefficients are used with at most two nonzero digits
expect for large values where three digits are allowed. In the
second example, 14 bits SOPOT coefficients are used with at
most three (or four) nonzero digits. In Table 9, two values are
reported for the number of addition/subtraction: total for the
whole filter and MB only for the multiplication block of the
transposed form (see Fig. 6).

The normalized frequency response of the two filters

(theoretical, rounded, and generated filters) are reported in

Fig. 9.
We also implemented in FPGA some low-pass FIR

filters with specifications derived from [20]. The

corresponding results are presented in Table 11. The

specifications of those filters are presented in Table 10.

The coefficients have been generated using the remez

Matlab functions c1 ¼ remezð#tap; ½0fpfs1�; ½1100�Þ and

c2 ¼ roundðð2 ^ widthÞ � c1Þ. The values reported in

Table 10 represent the complete filter, while the

number of adders reported in [20] only represent the

multiplication block, an additional adder should added

for each tap of the filter.
For each filter from [20], we tried to implement it with a

delay limit (denoted by DL in the result tables) set to 0 (no

sharing between consecutive calculations), 1, 2, or 1 and

the resulting VHDL code was optimized for speed using

Xilinx ISE XST 5.2.03i tools for a Virtex-II 1000 FPGA

(XC2V1000-5) on 1.7 GHz Pentium4 PC with 1GB RAM. The

operators are not pipelined. The required area, compared to

the 5,120 available slices in a XC2V1000 device, is reported

in parentheses. We also report the delay of the operator and

BOULLIS AND TISSERAND: SOME OPTIMIZATIONS OF HARDWARE MULTIPLICATION BY CONSTANT MATRICES 1279

TABLE 9
Comparison of the Implementation of Low-Pass FIR Filters from [28]

Fig. 9. Frequency response of the filters compared with [28].

TABLE 10
Low-Pass FIR Filters Specifications from [20]

TABLE 11
FPGA Synthesis Results of the Low-Pass FIR Filters from [20]

its total synthesis time (including place and route optimiza-

tions) using high effort constraints.
In Table 11, one can see that the operator period is

generally reduced when increasing the delay limit (DL).
This effect is due to the additional registers that break long
paths in the circuit. This permits reorganization of the
schedule with a shorter critical path. But, when the number
of additional registers is too large, new long lines of routing
are involved in the circuit. This explains the larger delay
that sometimes occurs for large values of DL.

We did another experiment on an FIR filter from [22],
implemented both with 8 and 16 bits of accuracy. This
filter is based on the Parks-McClellan design of a low-
pass 26-tap FIR filter with pass-band and stop-band edges
at 0:2 and 0:25, respectively. The corresponding coeffi-
cients are presented in Table 12 (only the first 13 coeffi-
cients are reported because of the symmetry); those

coefficients can be computed using Matlab with the
command remezð25; ½00:20:251�; ½1100�Þ.

The comparison of our results with those from [22] is
presented in Table 13. Our solution leads to a reduction of
the operation count of about 25 percent for 8-bit coefficients
and 34 percent for 16-bit coefficients. The results of the
FPGA implementation of generated architectures are pre-
sented in Table 14.

Even with no sharing between consecutive computa-
tions, our algorithm already gives a very small number of
operations (less than two additions/subtractions per tap).
This gives little room for improvement. Hence, when the
delay limit rises, the number of operations does not shrink
much, while many registers are added to share intermediate
results. This explains why the size rises with the delay limit.
On the other hand, the delay is generally reduced, around
9 percent on average and up to 17 percent. This proves that
this sharing is still useful when speed is a main concern.

8 CONCLUSION

A new algorithm for the problem of multiplication by
constant was presented. We generalized the previous results
by dealing with the problem of the optimization of multi-
plication of one vector by one constant matrix. Our algorithm
is based on extensions and enhancements of previous
algorithms from [25] and [26]. Compared to the best previous
results, our solution leads to a significant drop in the total
number of additions/subtractions, up to 40 percent.

1280 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

TABLE 12
Parks-McClellan Filter Coefficients Specification

TABLE 13
Number of Additions/Subtractions Comparison

for the Parks-McClellan Filter

TABLE 14
Parks-McClellan Filters Synthesis Results

Fig. 10. Pseudocode of procedure optimize.

We implemented this algorithm in a VHDL generator.
Based on a simple mathematical description of the
computation, the generator produces an optimized VHDL
code for Xilinx FPGAs. At the moment, the generated
operators are nonpipelined parallel or digit-serial ones. We
will extend our generator to produce pipelined circuits to
reach higher clock frequencies.

We also extended our algorithm and generator to the
case of some digital filters. We are now able to handle filters
involving a multiplication by constant matrix and delay
operations (such as FIR filters). In the case of a 26-tap 16-bit
FIR filter, a 34 percent reduction of the operation count is
achieved, compared to recent results from [22]. These first
results on filter optimization are promising; we now plan to
work on the synthesis of filters in the near future.

We want to extend our algorithm and generator to
standard-cell-based ASICs. The way to implement the
adders/subtracters would widely impact the performance
of the complete operator. The optimization required for
low-power consumption may also change our solutions.

Another area to explore in the future is the use of lossy
representations, such as [11]. In a lot of applications, the
models include some approximations and the quantization

of the coefficients. It may be a good idea to allow small

perturbations of the coefficients.

APPENDIX

DETAILED ALGORITHMS

Figs. 10, 11, and 12 are C-like pseudocode versions of our

extended algorithm presented in Section 4. Procedure

optimize, Fig. 10, is the main entry point.

ACKNOWLEDGMENTS

The authors would like to thank the “Ministère Français de la

Recherche” (grant # 1048 CDR 1 “ACI jeunes chercheurs”) and

the Xilinx University Program for their support. They also

want to thank the anonymous reviewers. Their comments

and corrections were very useful in improving the paper.

REFERENCES

[1] D.J. Magenheimer, L. Peters, K.W. Pettis, and D. Zuras, “Integer
Multiplication and Division on the HP Precision Architecture,”
IEEE Trans. Computers, vol. 37, no. 8, pp. 980-990, Aug. 1988.

BOULLIS AND TISSERAND: SOME OPTIMIZATIONS OF HARDWARE MULTIPLICATION BY CONSTANT MATRICES 1281

Fig. 11. Pseudocode of function search_best_shares.

Fig. 12. Pseudocode of function eliminate_internal_conflicts.

[2] A.D. Booth, “A Signed Binary Multiplication Technique,” Quar-
terly J. Mechanical Applications of Math., vol. IV, no. 2, pp. 236-240,
1951.

[3] R. Bernstein, “Multiplication by Integer Constants,” Software—
Practice and Experience, vol. 16, no. 7, pp. 641-652, July 1986.

[4] N. Boullis and A. Tisserand, “Some Optimizations of Hardware
Multiplication by Constant Matrices,” Proc. 16th IEEE Symp.
Computer Arithmetic (ARITH 16), J. -C. Bajard and M. Schulte, eds.,
pp. 20-27, June 2003.

[5] M. Potkonjak, M.B. Srivastava, and A.P. Chandrakasan, “Multiple
Constant Multiplications: Efficient and Versatile Framework and
Algorithms for Exploring Common Subexpression Elimination,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 2, pp. 151-165, Feb. 1996.

[6] M.D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kauf-
mann, 2003.

[7] M.J. Flynn and S.F. Oberman, Advanced Computer Arithmetic
Design. Wiley-Interscience, 2001.

[8] R.I. Hartley, “Subexpression Sharing in Filters Using Canonic
Signed Digit Multipliers,” IEEE Trans. Circuits and Systems II:
Analog and Digital Signal Processing, vol. 43, no. 10, pp. 677-688,
Oct. 1996.

[9] K.D. Chapman, “Fast Integer Multipliers Fit in FPGAs,” EDN
Magazine, May 1994.

[10] S. Yu and E.E. Swartzlander, “DCT Implementation with
Distributed Arithmetic,” IEEE Trans. Computers, vol. 50, no. 9,
pp. 985-991, Sept. 2001.

[11] P. Boonyanant and S. Tantaratana, “FIR Filters with Punctured
Radix-8 Symmetric Coefficients: Design and Multiplier-Free
Realizations,” Circuits Systems Signal Processing, vol. 21, no. 4,
pp. 345-367, 2002.

[12] C.K.S. Pun, S.C. Chan, K.S. Yeung, and K.L. Ho, “On the Design
and Implementation of FIR and IIR Digital Filters with Variable
Frequency Characteristics,” IEEE Trans. Circuits and Systems II:
Analog and Digital Signal Processing, vol. 49, no. 11, pp. 689-703,
Nov. 2002.

[13] S.C. Chan and W.L.K.L. Ho, “Multiplierless Perfect Reconstruc-
tion Modulated Filter Banks with Sum-of-Powers-of-Two Coeffi-
cients,” Signal Processing Letters, IEE, vol. 8, no. 6, pp. 163-166,
2001.

[14] V.S. Dimitrov, G.A. Jullien, and W.C. Miller, “Theory and
Applications of the Double-Base Number System,” IEEE Trans.
Computers, vol. 48, no. 10, pp. 1098-1106, Oct. 1999.

[15] J. Li and S. Tantaratana, “Multiplier-Free Realizations for FIR
Multirate Converters Based on Mixed-Radix Number Representa-
tion,” IEEE Trans. Signal Processing, vol. 45, no. 4, pp. 880-890, Apr.
1997.

[16] N. Homma, T. Aoki, and T. Higuchi, “Evolutionary Graph
Generation System with Transmigration Capability and Its
Application to Arithmetic Circuit Synthesis,” IEE Proc., vol. 149,
no. 2, pp. 97-104, Apr. 2002.

[17] P. Briggs and T. Harvey, “Multiplication by Integer Constants,”
technical report, Rice Univ., 1994.

[18] M.F. Mellal and J.-M. Delosme, “Multiplier Optimization for Small
Sets Of Coefficients,” Proc. Int’l Workshop Logic and Architecture
Synthesis, pp. 13-22, Dec. 1997.

[19] H.T. Nguyen and A. Chatterjee, “Number-Splitting with Shift-
and-Add Decomposition for Power and Hardware Optimization
in Linear DSP Synthesis,” IEEE Trans. Very Large Scale Integration
(VLSI) Systems, vol. 8, no. 4, pp. 419-424, Aug. 2000.

[20] H.-J. Kang and I.-C. Park, “FIR Filter Synthesis Algorithms for
Minimizing the Delay and the Number of Adders,” IEEE Trans.
Circuits and Systems II: Analog and Digital Signal Processing, vol. 48,
no. 8, pp. 770-777, Aug. 2001.

[21] M. Martı́nez-Peiró, E.I. Boemo, and L. Wanhammar, “Design of
High-Speed Multiplierless Filters Using a Nonrecursive Signed
Common Subexpression Algorithm,” IEEE Trans. Circuits and
Systems II: Analog and Digital Signal Processing, vol. 49, no. 3,
pp. 196-203, Mar. 2002.

[22] A. Vinod, E.-K. Lai, A. Premkumar, and C. Lau, “FIR Filter
Implementation by Efficient Sharing of Horizontal and Vertical
Common Subexpresions,” Electronics Letters, vol. 39, no. 2, pp. 251-
253, Jan. 2003.

[23] A. Yurdakul and G. Dündar, “Fast and Efficient Algorithm for the
Multiplierless Realisation of Linear DSP Transforms,” IEE Proc.
Circuits, Devices, and Systems, vol. 149, no. 4, pp. 20-211, Aug. 2002.

[24] A. Matsuura, M. Yukishita, and A. Nagoya, “A Hierarchical
Clustering Method for the Multiple Constant Multiplication
Problem,” IEICE Trans. Fundamentals of Electronics, Comm., and
Computer Sciences, vol. E80-A, no. 10, pp. 1767-1773, Oct. 1997.

[25] V. Lefèvre, “Multiplication par une Constante,” Réseaux et
Systèmes Répartis, Calculateurs Parallèles, vol. 13, nos. 4-5, pp. 465-
484, 2001.

[26] R. Pa�ssko, P. Schaumont, V. Derudder, S. Vernalde, and D.
�DDura�ccková, “A New Algorithm for Elimination of Common
Subexpressions,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 1, pp. 58-68, Jan. 1999.

[27] A.G. Dempster, O. Gustafsson, and J.O. Coleman, “Towards an
Algorithm for Matrix Multiplier Blocks,” Proc. European Conf.
Circuit Theory Design, Sept. 2003.

[28] H. Samueli, “An Improved Search Algorithm for the Design of
Multiplierless FIR Filters with Power-of-Two Coefficients,” IEEE
Trans. Circuits and Systems, vol. 36, no. 7, pp. 1044-1047, July 1989.

Nicolas Boullis was a student at the �EEcole
Normale Supérieure de Lyon, where he learned
computer science. During his studies, he
showed some interest in various research topics
in computer science, such as multicast in active
networks, designing some arithmetic blocs for
FPGA, design of asynchronous dividers, and,
more recently, hardware multiplication by con-
stants, which is the topic of his PhD thesis
(which he will be defending in mid-2005). He

now works at the �EEcole Centrale de Paris as a system engineer.

Arnaud Tisserand received the MSc degree
and the PhD degree in computer science from
the �EEcole Normale Supérieure de Lyon, France,
in 1994 and 1997, respectively. He is with the
French National Institue for Research in Com-
puter Science and Control (INRIA) and the
Laboratoire de l’Informatique du Parallèlisme
(LIP) in Lyon, France. He teaches computer
architecture and VLSI design at the �EEcole
Normale Supérieure de Lyon, France. His

research interests include computer arithmetic, computer architecture,
and VLSI design. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1282 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

