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Laurent Bréhélin and Olivier Gascuel

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier , UMR CNRS 5506,
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Abstract: The guilt by association (GBA) principle is used in several supervised and
non-supervised methods to functionally annotate uncharacterized genes from transcrip-
tomic data or from other information source. However, thesemethods do not distinguish
between genes which have or have not intra-species homologues. We show here that
functional annotation and intra-species homology are strongly dependent. We empha-
size that applying any GBA method not accounting for this form of homology has two
opposite effects: it leads to over-estimating the method performance on the genes with
no intra-species homologues, and to losing the benefit of homology on the other genes.
Bias and benefit are measured on P. falciparum and Yeast, and ageneral scheme to prop-
erly apply the GBA principle is given. All together, this method improves over previous
standard applications of the GBA principle.

Keywords: Protein Function Prediction, Guilt By Association, Homology, Transcrip-
tome, Gene Ontology,P. falciparum, Yeast.

1 Introduction

A common principle known asguilt by association(GBA) states that genes with similar transcrip-
tomic profile are likely to share common functional roles [10, 16]. The GBA principle has been used
to help with gene functional annotation in several organisms [23, 14, 21, 24]. In most of these works,
authors proceed in a non-supervised way: given a selected group of genes of similar transcriptomic
profiles —e.g.obtained from a clustering algorithm [10, 15, 13]—, a statistical test is applied to reveal
over-represented types of functions among the characterized genes, thus providing functional clues
for the uncharacterized ones. For each potential type of function, the proportion of annotations in the
set of selected genes is compared with that of a reference set(generally the complete set of genes
on the microarray). Recently, several methods and softwarehave been published to help with such
analysis [8, 4, 20, 1, 2, 5, 18, 17].

A few other methods [6, 19] use the GBA principle in a supervised framework: first, using the
transcriptome of the genes already characterized, a prediction function is built by a supervised learn-
ing algorithm; next this predictor is used to propose one or several type of functions to the unchar-
acterized genes. Moreover, a cross-validation (CV) procedure is run on the characterized genes. This
procedure allows estimating the confidence level of the predictions with uncharacterized genes.

The GBA principle also apply to non-transcriptomic data. For example, interactome has been used
for this purpose, since it has been suggested that proteins that share common interactors are likely to
share common functions [7, 22, 9].



However, these approaches do not distinguish between geneswhich have, or have not, intra-
species homologues. Homology is a well known source of bias in the protein structure (secondary
and tertiary) prediction community. On the one hand, predicting the structure of a protein that has
an homologue of known structure is by far more easy than when no homologue is known, since
homologous proteins are likely to share the same structure.On the other hand, assessing a protein
structure prediction method on a dataset that contains bothhomologous and non-homologous proteins
leads to optimistically biased performance estimate. Herewe show that intra-species homologies also
affect the functional annotation methods based on GBA. Supervised and non-supervised methods are
differently affected. For both types, the impact is evaluated on two organisms, and a method to deal
with intra-species homologies is proposed. As we shall see,function prediction may benefit or get
worse, depending on the presence or absence of intra-species homologies.

2 Data, definitions, notations

The study is based on two organisms:P. falciparumandS. cerevisiae. The transcriptomic data come
from Le Roch et al. [14] and Gasch et al. [11], respectively. Gene functions are described by GO
terms, and the annotations are those relative to theBiological Processontology published on the GO
website1. Only genes with precise enough annotations are used,i.e.genes that are only annotated with
GO terms of high (> 0.3) prior probability are not considered here. We define the prior probability
of a term as the number of characterized genes that are annotated by this term, divided by the total
number of characterized genes of the organism.

In the following, two genesgi and gj are considered as homologous if the E-value associated
with the blastP alignment ofgi over gj or of gj over gi is smaller than10−10. The homology
relation is denoted by the symbol‖. This is a symmetric relation,i.e. we havegi ‖ gj ⇒ gj ‖ gi.
We use the closure of this relation —i.e. gi ‖ gj andgj ‖ gk ⇒ gi ‖ gk— and compute that way
clusters (cliques) of homologous genes. Co-expression is defined in a similar way: two genes are
considered as co-expressed if the Pearson correlation coefficient of their profile is larger than0.8.The
Table 1 summarizes some statistics about the number of characterized and non-characterized genes
that possess homologous or co-expressed characterized genes, in the two datasets.

We denote asXi the set of GO terms associated with a characterized genegi. Letgi andgj be two
genes annotated in GO. We consider thatgi andgj have similar functions if they share several GO
terms. We define thesharing scoreof two sets of termsX andY as

SXY = 1/2
|X ∩ Y|

|X|
+ 1/2

|X ∩ Y|

|Y|
. (1)

Hence, set pairs that share many terms have sharing score around 1, while set pairs with very different
terms have sharing score near 0. Next, we define thefunctional similarity(FS) of two genesgi andgj

as the sharing score ofXi andXj.

3 Intra-species homologies and functional annotations arestrongly dependent

We computed the FS histograms of the co-expressed and homologous pairs of the two datasets. Figure
1 summarizes the results. For comparison purpose, we also computed the FS histograms of randomly
composed pairs. The three distributions are very different. For both organisms, homologous gene pairs

1 http://www.geneontology.org/



all hom. co-ex. co-ex. hom.
#C. #N. #C #N #C #N #C #N

P. falciparum 1266 3893 670 (53) 996 (26) 1177 (93) 3551 (91) 306 (24) 188 (5)
S. cerevisiae 4209 1943 2009 (48) 339 (17) 1091(26) 372 (19) 214 (5) 23 (1)

Table 1. Number of characterized (#C) and non-characterized (#N) genes in the complete set of genes (col-
umn all), and in the sets of genes with: (i) at least one characterized homologue (column hom.); (ii) at least
one characterized co-expressed gene (column co-ex.); (iii) at least one characterized co-expressed homologue
(column co-ex. hom.). Bold numbers indicate the proportion(in percent) of the complete set of characterized
or non-characterized genes represented by each number. Forexample, 53% of characterized genes have at least
one characterized homologue inP. falciparum.
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Figure 1. FS histograms (in percent) of random pairs (black), co-expressed pairs (grey), and homologous pairs
(light grey), inP. falciparum(left) andS. cerevisiae(right).
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Figure 2. FS histograms (in percent) of co-expressed pairs which are homologous (light grey) or non-
homologous (grey), and of random pairs (black), inP. falciparum(left) andS. cerevisiae(right).



have much higher probability to share the same GO terms than randomly paired genes. This is also
true for co-expressed genes, but to a lesser extent. The phenomenon is even more acute when com-
puting the FS of the co-expressed pairs and differentiatingthe homologous from the non-homologous
pairs (see Figure 2). From these histograms we see that homologous co-expressed genes share almost
always the same annotations. This could be seen as surprising as homologous genes within the same
species are paralogues and are commonly thought to differ interms of function. But GO annotations
just draw large functional categories, and genes with high FS values can still differ when looking into
the details of their functions. However, for non-homologous co-expressed genes, the situation is much
less favorable; they differ just slightly from random pairsand function prediction from transcriptome
only is expected to be an hard task.

This study shows that, as for protein structure prediction,it is important to differentiate between
homologous and non-homologous genes when predicting functional annotations with the GBA princi-
ple. Genes that possess an homologous characterized gene are more easy to annotate and hence should
be addressed with a specific procedure to fully benefit from this feature. Such a procedure is presented
in the last section of the paper. Moreover, the need of processing separately genes with and without
characterized homologues is reinforced by the difference in the proportions of genes that possess
characterized homologues, in the set of characterized genes and in the set of non-characterized genes
(see Table 1). Indeed, while around 50% of characterized genes possess a characterized homologue
(both for theP. falciparumandS. cerevisiaedatasets), this proportion falls around 20-25% for the un-
characterized genes. While this disproportion is not surprising —it comes from the fact that genomic
similarity is widely used in the standard functional annotation procedures— it bias the performance
estimate of the supervised and non-supervised methods, andthus induces erroneous annotations. The
following sections detail this point in the two frameworks.

4 Bias in non-supervised methods

Let C be a cluster of co-expressed genes. If several characterized homologues are present inC, then
a GO termt that annotates this group is likely to appear over-represented compared to the reference
set. However, this over-representation does not constitute a functional clue for most of the unchar-
acterized genes, since the majority of these ones are not homologous to the group of characterized
homologues. Actually, what the statistical test reveals isless the over-representation oft than the
over-representation of a class of homologous genes inC.

Assume that the uncharacterized genes with characterized homologues have been processed sep-
arately. The last section of this paper details how this can be done, but note that only 20-25% of the
uncharacterized genes are involved. We are now interested in the functional annotations of all the
other uncharacterized genes. How can we apply the statistical test without bias? A simple solution
involves selecting among the characterized genes and removing all but one gene for each class of
homology in both theC cluster and the reference set, before running the statistical test. That way,
characterized genes withinC are no more homologous, just as the uncharacterized genes weaim to
predict.

In order to evaluate the bias induced by the intra-species homologies when annotating the genes
without characterized homologues, we apply the above correction procedure to the two datasets, and
compared the results with those achieved without correction. We used the GOSTAT2 software of
Beissbarth and Speed [2] for the tests. More precisely, we used the GOSTAT2 version, with the False

2 http://gostat.wehi.edu.au/



Discovery Rate procedure of Benjamini [3] to correct for multiple testing. Given two sets of genes,
GOSTAT2 compares the proportions of every potential GO term in the two sets, and outputs the terms
that are statistically over-represented in the first one. For theP. falciparumdataset, we used the gene
clustering computed in Le Roch et al. [14]. In this paper, authors used a k-means algorithm [15, 13]
to partition the genes in 15 clusters. First, we ran GOSTAT2 on each of these clusters versus the
complete set of genes, and we counted the number of GO terms that are statistically over-represented
with a p-value lower than 0.01. Next, in each cluster, we keeponly one representative of each class
of characterized homologues. The same procedure was applied to the complete data set too, and we
re-ran GOSTAT2 on these modified clusters. For theS. cerevisiaedataset, the same entire procedure
was run on a clustering of 15 classes achieved with the k-means procedure implemented in the R
package3. Results are summarized in Table 2.

Intra-species homologies appears to highly bias the numberof terms that are statistically over-
represented. Actually, they are responsible for around 48%and 23% of the total number of over-
represented terms in theP. falciparumandS. cerevisiaedatasets, respectively. Thus, an appropriate
procedure to apply the GBA principle in the non-supervised framework appears to be of great use to
avoid a large proportion of false positives.

P. falciparum S. cerevisiae
#G #G∗ #T #T∗ #G #G∗ #T #T∗

cluster 1 70 42 18 0 565 507 58 49
cluster 2 75 68 0 0 183 132 66 66
cluster 3 85 79 0 0 287 260 65 68
cluster 4 65 50 0 0 383 348 59 52
cluster 5 64 53 0 0 48 43 0 0
cluster 6 133 126 41 29 165 143 37 25
cluster 7 75 67 17 17 313 286 16 16
cluster 8 84 77 0 0 568 478 15 3
cluster 9 64 64 0 0 183 160 25 5
cluster 10 152 133 0 0 551 481 42 37
cluster 11 78 64 15 0 121 108 48 24
cluster 12 160 144 0 0 683 570 3 1
cluster 13 114 93 0 0 591 531 86 66
cluster 14 92 77 2 0 224 196 77 66
cluster 15 72 58 10 8 688 642 36 12

total 1383 1195 103 54 5553 4885 633 490

Table 2. Bias in non-supervised methods. Columns #G and #G∗ denote the number of characterized genes in
each cluster before and after removing the homologous genes, respectively. Columns #T and #T∗ denote the
number of over-expressed GO term find by GOSTAT2 in each cluster before and after removing the homologous
genes, respectively.

5 Bias in supervised methods

In the supervised framework, the bias occurs in the procedure used to estimate the performance of
the predictor. This procedure involves randomly splittingthe characterized genes into alearning set

3 http://www.r-project.org/



and atest set. The learning set is used by the learning algorithm to build the prediction function,
while the test set is used next to estimate the proportion of mistakes of the predictor when applied to
new unseen genes. More precisely, the accuracy of the predictor is measured on each gene of the test
set, and all the accuracy measurements are averaged to estimate a global performance. Testing the
predictor on a set of genes that have not be used in the learning phase insures that the performance is
not optimistically biased [12]. Moreover, across-validation(CV) procedure that averages the results
of this procedure on several (e.g.dozens) different splits is used to provide better estimates.

However, the CV procedure described above does not take intra-species homologies into account:
genes in the test set can have homologous co-expressed genesin the learning set. In this case, it
is easier for the predictor to correctly annotate the genes.However, this appends more frequently
for the characterized genes than for the uncharacterized ones (see Table 1). Thus, the performance
estimated by CV is optimistically biased compared to the performance that can be expected on the
non-characterized genes.

As in the non-supervised framework, we suppose now that uncharacterized genes with character-
ized homologues have been processed separately, and that weare interested in the functional annota-
tion of all the other uncharacterized genes. How can we correct the CV in order to have an unbiased
estimate of the predictor performance on these genes? This can be done in two different ways. The
first one involves removing all the genes of the test set that have homologous genes in the learning
set; the second one involves removing all the genes in the learning set that have homologues in the
test set.

We computed the effect the bias has on a natural, GBA-based method. Of course the effect differs
according to the type of predictor, but our aim here is to illustrate that it can be important. The
predictor we chose is the following: Given an uncharacterized gene, it searches in the learning set the
gene that has the most similar expression profile —assessed with the Pearson correlation coefficient—
and gives to the uncharacterized gene the same annotations.This is a quite natural method. The
performance of the predictor was assessed by CV, using the sharing score of Formula (1) to measure
the accuracy between the set of predicted annotations and the real set of annotations of each tested
gene. We applied a variant of the CV known as theleave-one-outprocedure. This involves keeping
only one gene for the test and using all the remaining genes tolearn the prediction function. The
predictor is assessed on the test gene, and the procedure is resumed until each characterized gene
has been used as test. Table 3 summarizes the results achieved with and without corrections for the
homology bias.

The bias also has a significant effect on the supervised methods. The impact seems to be lower
than in the non-supervised framework. However, the resultsachieved on theP. falciparumdataset
show that it is important to apply an appropriate CV procedure to avoid over-estimating the perfor-
mance of the predictor.

6 A general scheme to properly exploit homology

As shown in the above sections, intra-species homology optimistically bias the performance of the
methods used to annotate the genes without characterized homologues. On these genes, the actual
performance of the methods is lower than expected. On the other hand, intra-species homologies can
be exploited to obtain better predictions on the genes with characterized homologues.

In order to account for both the bias and the benefit induced byhomology, a solution involves
splitting the non-characterized genes into three different sets: set #1 contains the genes that possess



no correction correction #1 correction #2 random

P. falciparum 50.4% 43.7% 44.4% 36.8%
S. cerevisiae 43.2% 41.8% 41.3% 34.2%

Table 3. Bias in supervised methods. Accuracy estimated by a CV without correction, with the corrected CV
that removes the homologues in the learning set (correction#1), and with the corrected CV that removes the
homologues in the test set (correction #2). For comparison purpose, the accuracy achieved by the predictor that
uses a randomly selected gene in the learning set is also reported.

characterized co-expressed homologues; set #2 contains the remaining genes that possess character-
ized homologues; set #3 contains all the other genes. Genes in sets #1 and #2 can then be annotated
with the following supervised methods:

– Genes in set #1 are annotated with the same GO terms as their closer (assessed with the Pearson
correlation coefficient) characterized co-expressed homologue; note that this is actually a form of
GBA approach;

– Genes in set #2 are annotated with the same GO terms as their closer (assessed with theblastP
E-value) characterized homologue;

Performances of these predictors are evaluated by CV on the characterized genes. This involves using
the same rules to split these genese into three sets, and running two independent CVs on the first
and second set. Next, genes in set #3 can be annotated using one of the corrected supervised or
non-supervised GBA method described above. For example, the supervised method described in the
previous section can be used.

We applied this general scheme to theP. falciparumandS. cerevisiaedatasets. Results are summa-
rized in Table 4. This table also reports the proportion of characterized and non-characterized genes
that belong to each set. By extrapolating the results achieved on the characterized genes, we can hy-
pothesize that: (1) a small proportion (1-5%) of non-characterized genes can be annotated with very
high confidence (∼ 88% accuracy); (2) a larger part (∼20%) can be annotated with quite good confi-
dence (70-80% accuracy); (3) annotations of the other genes(70-80%) is more awkward. We can also
compute the global performance of the method by the formula Acc = p1 ·Acc1+p2 ·Acc2+p3 ·Acc3,
wherepn and Accn denote the proportion of uncharacterized genes and the accuracy associated with
set#n, respectively. We get Acc= 53.8% and47.4% for theP. falciparumandS. cerevisiaedatasets,
respectively. These values are higher than the uncorrected(and optimistic) values shown in Table 3,
corresponding to the standard application of GBA not accounting for homology.

set #1 set #2 set #3
%C %N Acc %C %N Acc %C %N Acc

P. falciparum 24.2% 4.9% 87.5% 29.6% 22.1% 79.7% 46.2% 72.9% 43.7%
S. cerevisiae 5.1% 1.2% 88.0% 42.6% 17.4% 71.0% 52.3% 81.4% 41.8%

Table 4. Proportion of characterized (columns %C) and non-characterized (columns %N) genes in each set
—for example, 24.2% of the total number of characterized genes are in set #1—, and performance of the
associated predictor (columns Acc).



7 Discussion

Although this study is based on particular organisms, data,annotation systems, and GBA method, its
conclusions should hold to any application of the GBA principle for functional annotation, as soon as
we have more homologies within the characterized genes thanbetween the non-characterized and the
characterized genes. For example, it should apply to the GBAmethods based on other information
sources than transcriptomic data.

The general scheme we proposed (Section 6) could be improvedin a number of ways:

– The three predictors we proposed in this scheme are over-simple and could be advantageously
replaced by more sophisticated approaches. Especially, itis likely that the performance on set #3
(genes with no characterized homologue) could be easily improved.

– Co-expression and homology are defined by fixed (and relatively standard) thresholds. The co-
expression threshold (0.8) was chosen to highlight the studied bias in the histograms of Figures 1
and 2. Other values could be tried and optimized to improve the accuracy of the general scheme.
However, this threshold is just used to define the first two sets but does not intervene in set #3
where we use the closest neighbor for transcriptome-based predictions; thus, the gains in accuracy
should not be very high.

– Selecting the homology threshold is more complex. Here again it could be appealing to try differ-
ent values to improve the accuracy of the general scheme. However, this would be problematic as
this threshold is the sole insurance against the bias we highlighted. The10−10 value is well suited
for the genomes we studied, as we observed that gene pairs with larger E-values are less likely to
share common GO terms and do not show the strong bias of Figures 1 and 2. Methods should then
be designed to adjust the homology threshold, aiming to increase prediction accuracy but also to
prevent against bias.

– Finally, an important direction for further research wouldbe to design methods to combine
the multiple, non-homology-based information sources (transcriptomic, proteomic, interactome,
etc.).
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