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Abstract: The guilt by association (GBA) principle is used in severgesvised and
non-supervised methods to functionally annotate uncharaed genes from transcrip-
tomic data or from other information source. However, thesghods do not distinguish
between genes which have or have not intra-species honmedojlle show here that
functional annotation and intra-species homology are ragilg dependent. We empha-
size that applying any GBA method not accounting for thismfof homology has two
opposite effects: it leads to over-estimating the methatbpaance on the genes with
no intra-species homologues, and to losing the benefit oblagy on the other genes.
Bias and benefit are measured on P. falciparum and Yeast, gederal scheme to prop-
erly apply the GBA principle is given. All together, this had improves over previous
standard applications of the GBA principle.

Keywords: Protein Function Prediction, Guilt By Association, Honmyp Transcrip-
tome, Gene Ontology,. falciparum Yeast.

1 Introduction

A common principle known aguilt by association(GBA) states that genes with similar transcrip-
tomic profile are likely to share common functional roles,[16]. The GBA principle has been used
to help with gene functional annotation in several orgasi§®3, 14, 21, 24]. In most of these works,
authors proceed in a non-supervised way: given a selecteg @f genes of similar transcriptomic
profiles —e.g.obtained from a clustering algorithm [10, 15, 13]—, a stai#d test is applied to reveal
over-represented types of functions among the charaetedenes, thus providing functional clues
for the uncharacterized ones. For each potential type atifum, the proportion of annotations in the
set of selected genes is compared with that of a referendgemtrally the complete set of genes
on the microarray). Recently, several methods and softwvave been published to help with such
analysis [8, 4, 20, 1, 2, 5, 18, 17].

A few other methods [6, 19] use the GBA principle in a supadisramework: first, using the
transcriptome of the genes already characterized, a piedfctinction is built by a supervised learn-
ing algorithm; next this predictor is used to propose oneeverl type of functions to the unchar-
acterized genes. Moreover, a cross-validation (CV) praees run on the characterized genes. This
procedure allows estimating the confidence level of theiptieds with uncharacterized genes.

The GBA principle also apply to non-transcriptomic data. &ample, interactome has been used
for this purpose, since it has been suggested that protehsiiare common interactors are likely to
share common functions [7, 22, 9].



However, these approaches do not distinguish between gefmel have, or have not, intra-
species homologues. Homology is a well known source of lniaké protein structure (secondary
and tertiary) prediction community. On the one hand, ptedicthe structure of a protein that has
an homologue of known structure is by far more easy than wleehamologue is known, since
homologous proteins are likely to share the same struc@nethe other hand, assessing a protein
structure prediction method on a dataset that containshmstiologous and non-homologous proteins
leads to optimistically biased performance estimate. Merghow that intra-species homologies also
affect the functional annotation methods based on GBA. igesl and non-supervised methods are
differently affected. For both types, the impact is evatdabn two organisms, and a method to deal
with intra-species homologies is proposed. As we shall fsg®tion prediction may benefit or get
worse, depending on the presence or absence of intra-sgemigologies.

2 Data, definitions, notations

The study is based on two organisrRsfalciparumandsS. cerevisiaeThe transcriptomic data come
from Le Roch et al. [14] and Gasch et al. [11], respectivelgn& functions are described by GO
terms, and the annotations are those relative td@ibkgical Proces®ntology published on the GO

websité. Only genes with precise enough annotations are usedenes that are only annotated with
GO terms of high ¥ 0.3) prior probability are not considered here. We define thergiobability

of a term as the number of characterized genes that are #&hdig this term, divided by the total

number of characterized genes of the organism.

In the following, two geneg; and g; are considered as homologous if the E-value associated
with the bl ast P alignment ofg; over g; or of g; over g; is smaller thanl0~!%. The homology
relation is denoted by the symbpl This is a symmetric relation,e. we haveg; || g; = g; || 9.

We use the closure of this relationize: g; || g; andg; || g» = ¢i || gv— and compute that way
clusters (cliques) of homologous genes. Co-expressiomfiaat in a similar way: two genes are
considered as co-expressed if the Pearson correlatioficdeef of their profile is larger tha®.8.The
Table 1 summarizes some statistics about the number ofatkdred and non-characterized genes
that possess homologous or co-expressed characterized, getthe two datasets.

We denote aX; the set of GO terms associated with a characterized gehet g; andg; be two
genes annotated in GO. We consider tiiaaind g; have similar functions if they share several GO
terms. We define thgharing scoreof two sets of terms{ andY” as

XY

XY
X] '

Sxy =1/2 ¥

+1/2

(1)

Hence, set pairs that share many terms have sharing scaoredatpwhile set pairs with very different
terms have sharing score near 0. Next, we definéuhetional similarity(FS) of two geneg; andg;
as the sharing score &f; andX;.

3 Intra-species homologies and functional annotations arstrongly dependent

We computed the FS histograms of the co-expressed and hgousipairs of the two datasets. Figure
1 summarizes the results. For comparison purpose, we atsputed the FS histograms of randomly
composed pairs. The three distributions are very diffefemtboth organisms, homologous gene pairs

! http://www.geneontology.org/



all hom co-ex __co-ex. hom._
#C. #N. #C #N #C #N #C #N

P.falciparum 1266 3893  6703) 996(@6) 1177 03) 355101) 306 (4) 188()
S.cerevisiae 4209 1943  200948) 339(17)  1091@6) 372(19)  2146) 23 (1)

Table 1. Number of characterized (#C) and non-characterized (#Nggén the complete set of genes (col-
umn all), and in the sets of genes with: (i) at least one char@ed homologue (column hom.); (ii) at least
one characterized co-expressed gene (column co-ex). gt(ieast one characterized co-expressed homologue
(column co-ex. hom.). Bold numbers indicate the propor(iorpercent) of the complete set of characterized
or non-characterized genes represented by each numbexdople, 53% of characterized genes have at least
one characterized homologueRnfalciparum
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Figure 1. FS histograms (in percent) of random pairs (black), co-esged pairs (grey), and homologous pairs
(light grey), inP. falciparum(left) andS. cerevisiadright).
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Figure 2. FS histograms (in percent) of co-expressed pairs which amaologous (light grey) or non-
homologous (grey), and of random pairs (black)Rifialciparum(left) andS. cerevisiadright).



have much higher probability to share the same GO terms #ratomly paired genes. This is also
true for co-expressed genes, but to a lesser extent. The@pleson is even more acute when com-
puting the FS of the co-expressed pairs and differentiatisgiomologous from the non-homologous
pairs (see Figure 2). From these histograms we see that bhgma co-expressed genes share almost
always the same annotations. This could be seen as sugpaisihomologous genes within the same
species are paralogues and are commonly thought to difteriims of function. But GO annotations
just draw large functional categories, and genes with higlv&ues can still differ when looking into
the details of their functions. However, for non-homologi@go-expressed genes, the situation is much
less favorable; they differ just slightly from random padred function prediction from transcriptome
only is expected to be an hard task.

This study shows that, as for protein structure predictibis,important to differentiate between
homologous and non-homologous genes when predictingifumattannotations with the GBA princi-
ple. Genes that possess an homologous characterized ganer@reasy to annotate and hence should
be addressed with a specific procedure to fully benefit fragféature. Such a procedure is presented
in the last section of the paper. Moreover, the need of peitgseparately genes with and without
characterized homologues is reinforced by the differencthé proportions of genes that possess
characterized homologues, in the set of characterizedsgamin the set of non-characterized genes
(see Table 1). Indeed, while around 50% of characterizeéggpnssess a characterized homologue
(both for theP. falciparumandsS. cerevisiaelatasets), this proportion falls around 20-25% for the un-
characterized genes. While this disproportion is not $simy —it comes from the fact that genomic
similarity is widely used in the standard functional antiota procedures— it bias the performance
estimate of the supervised and non-supervised methodshasihduces erroneous annotations. The
following sections detail this point in the two framewaorks.

4 Bias in non-supervised methods

Let C' be a cluster of co-expressed genes. If several charactdr@aologues are presentdr then

a GO termt that annotates this group is likely to appear over-reptesecompared to the reference
set. However, this over-representation does not corstéutunctional clue for most of the unchar-
acterized genes, since the majority of these ones are nablbgous to the group of characterized
homologues. Actually, what the statistical test revealless the over-representation othan the
over-representation of a class of homologous genés in

Assume that the uncharacterized genes with character@®aolbgues have been processed sep-
arately. The last section of this paper details how this @addne, but note that only 20-25% of the
uncharacterized genes are involved. We are now interest#iteifunctional annotations of all the
other uncharacterized genes. How can we apply the statiséist without bias? A simple solution
involves selecting among the characterized genes and iegiall but one gene for each class of
homology in both the”' cluster and the reference set, before running the statiggst. That way,
characterized genes withiti are no more homologous, just as the uncharacterized genasnie
predict.

In order to evaluate the bias induced by the intra-speciesolagies when annotating the genes
without characterized homologues, we apply the above ciioreprocedure to the two datasets, and
compared the results with those achieved without cornectile used the GOTAT? software of
Beissbarth and Speed [2] for the tests. More precisely, wd tie GG TAT2 version, with the False

2 http://gostat.wehi.edu.au/



Discovery Rate procedure of Benjamini [3] to correct for tiplé testing. Given two sets of genes,

GOsTAT2 compares the proportions of every potential GO term inwlesets, and outputs the terms

that are statistically over-represented in the first one tfi®P. falciparumdataset, we used the gene

clustering computed in Le Roch et al. [14]. In this paperhartg used a k-means algorithm [15, 13]

to partition the genes in 15 clusters. First, we ran$3&2 on each of these clusters versus the
complete set of genes, and we counted the number of GO teanarthstatistically over-represented

with a p-value lower than 0.01. Next, in each cluster, we kady one representative of each class
of characterized homologues. The same procedure was ajppltbe complete data set too, and we
re-ran GGTAT2 on these modified clusters. For tBecerevisiaalataset, the same entire procedure
was run on a clustering of 15 classes achieved with the k-mpestedure implemented in the R

packagé. Results are summarized in Table 2.

Intra-species homologies appears to highly bias the numibrms that are statistically over-
represented. Actually, they are responsible for around 48% 23% of the total number of over-
represented terms in the falciparumand S. cerevisiaglatasets, respectively. Thus, an appropriate
procedure to apply the GBA principle in the non-supervisednework appears to be of great use to
avoid a large proportion of false positives.

p. falciparum___ __ S.cerevisiae

#G #G #T #T* #G #G #T #T*
cluster 1 70 42 18 0 565 507 58 49
cluster 2 75 68 0 0 183 132 66 66
cluster 3 85 79 0 0 287 260 65 68
cluster 4 65 50 0 0 383 348 59 52
cluster 5 64 53 0 0 48 43 0 0
cluster 6 133 126 41 29 165 143 37 25
cluster 7 75 67 17 17 313 286 16 16
cluster 8 84 77 0 0 568 478 15 3
cluster 9 64 64 0 0 183 160 25 5
cluster 10 152 133 0 0 551 481 42 37
cluster 11 78 64 15 0 121 108 48 24
cluster 12 160 144 0 0 683 570 3 1
cluster 13 114 93 0 0 591 531 86 66
cluster 14 92 7 2 0 224 196 77 66
cluster 15 72 58 10 8 688 642 36 12
total 1383 1195 103 54 5553 4885 633 490

Table 2.Bias in non-supervised methods. Columns #G andl dé&hote the number of characterized genes in
each cluster before and after removing the homologous geesgsectively. Columns #T and #Tenote the
number of over-expressed GO term find by &@t2 in each cluster before and after removing the homologous
genes, respectively.

5 Bias in supervised methods

In the supervised framework, the bias occurs in the proeedsed to estimate the performance of
the predictor. This procedure involves randomly splittihg characterized genes intdearning set

% http://www.r-project.org/



and atest set The learning set is used by the learning algorithm to buikel prediction function,
while the test set is used next to estimate the proportionistakes of the predictor when applied to
new unseen genes. More precisely, the accuracy of the psedianeasured on each gene of the test
set, and all the accuracy measurements are averaged t@testinglobal performance. Testing the
predictor on a set of genes that have not be used in the Iggphise insures that the performance is
not optimistically biased [12]. Moreover,aoss-validation(CV) procedure that averages the results
of this procedure on severa.(.dozens) different splits is used to provide better estimate

However, the CV procedure described above does not talkesp&cies homologies into account:
genes in the test set can have homologous co-expressed igetheslearning set. In this case, it
is easier for the predictor to correctly annotate the geHesvever, this appends more frequently
for the characterized genes than for the uncharacterized (see Table 1). Thus, the performance
estimated by CV is optimistically biased compared to thdgoerance that can be expected on the
non-characterized genes.

As in the non-supervised framework, we suppose now thataracterized genes with character-
ized homologues have been processed separately, and that werested in the functional annota-
tion of all the other uncharacterized genes. How can we cbtine CV in order to have an unbiased
estimate of the predictor performance on these genes? @hibe done in two different ways. The
first one involves removing all the genes of the test set thae thomologous genes in the learning
set; the second one involves removing all the genes in thaifgaset that have homologues in the
test set.

We computed the effect the bias has on a natural, GBA-basttboheOf course the effect differs
according to the type of predictor, but our aim here is tosillate that it can be important. The
predictor we chose is the following: Given an uncharacsgfigene, it searches in the learning set the
gene that has the most similar expression profile —assestethe/Pearson correlation coefficient—
and gives to the uncharacterized gene the same annotalibissis a quite natural method. The
performance of the predictor was assessed by CV, using #ranghscore of Formula (1) to measure
the accuracy between the set of predicted annotations anck#h set of annotations of each tested
gene. We applied a variant of the CV known as lgeve-one-ouprocedure. This involves keeping
only one gene for the test and using all the remaining genésato the prediction function. The
predictor is assessed on the test gene, and the procedwsuimaed until each characterized gene
has been used as test. Table 3 summarizes the results achiglieand without corrections for the
homology bias.

The bias also has a significant effect on the supervised m&tAde impact seems to be lower
than in the non-supervised framework. However, the resdiseved on theé. falciparumdataset
show that it is important to apply an appropriate CV procedoravoid over-estimating the perfor-
mance of the predictor.

6 A general scheme to properly exploit homology

As shown in the above sections, intra-species homologynigtically bias the performance of the
methods used to annotate the genes without characterizadldgues. On these genes, the actual
performance of the methods is lower than expected. On thex bnd, intra-species homologies can
be exploited to obtain better predictions on the genes vin#lracterized homologues.

In order to account for both the bias and the benefit inducetidmgology, a solution involves
splitting the non-characterized genes into three diffesets: set #1 contains the genes that possess



no correction correction #1 correction #2 random

P. falciparum 50.4% 43.7% 44.4% 36.8%
S. cerevisiae 43.2% 41.8% 41.3% 34.2%

Table 3.Bias in supervised methods. Accuracy estimated by a CV withorrection, with the corrected CV
that removes the homologues in the learning set (correétlgnand with the corrected CV that removes the
homologues in the test set (correction #2). For comparisopgse, the accuracy achieved by the predictor that
uses a randomly selected gene in the learning set is alsaedpo

characterized co-expressed homologues; set #2 contansritaining genes that possess character-
ized homologues; set #3 contains all the other genes. Gerseds #1 and #2 can then be annotated
with the following supervised methods:

— Genes in set #1 are annotated with the same GO terms as tiser ¢hssessed with the Pearson
correlation coefficient) characterized co-expressed hogoe; note that this is actually a form of
GBA approach;

— Genes in set #2 are annotated with the same GO terms as thssr ¢hssessed with thé ast P
E-value) characterized homologue;

Performances of these predictors are evaluated by CV orhtracterized genes. This involves using
the same rules to split these genese into three sets, anmhguvo independent CVs on the first

and second set. Next, genes in set #3 can be annotated usngf dine corrected supervised or
non-supervised GBA method described above. For examp@esubervised method described in the
previous section can be used.

We applied this general scheme to BhéalciparumandS. cerevisiaelatasets. Results are summa-
rized in Table 4. This table also reports the proportion @frabterized and non-characterized genes
that belong to each set. By extrapolating the results aetliew the characterized genes, we can hy-
pothesize that: (1) a small proportion (1-5%) of non-chimdmed genes can be annotated with very
high confidence~{ 88% accuracy); (2) a larger part-0%) can be annotated with quite good confi-
dence (70-80% accuracy); (3) annotations of the other g@i®e80%) is more awkward. We can also
compute the global performance of the method by the formela-Ap, - Acc; + p2 - Accy + p3 - Accs,
wherep,, and Acg, denote the proportion of uncharacterized genes and theaaycassociated with
set#n, respectively. We get Ace- 53.8% and47.4% for theP. falciparumandsS. cerevisiaelatasets,
respectively. These values are higher than the uncorréatetioptimistic) values shown in Table 3,
corresponding to the standard application of GBA not actogrior homology.

set #1 set #2 set #3
%C %N Acc %C %N Acc %C %N Acc

P. falciparum 242% 4.9% 87.5% 29.6% 22.1% 79.7% 46.2% T72.9% 43.7%
S. cerevisiae 5.1% 1.2% 88.0% 426% 17.4% 71.0% 523% 81.4% 41.8%

Table 4. Proportion of characterized (columns %C) and non-chariaee (columns %N) genes in each set
—for example, 24.2% of the total number of characterizedegeare in set #1—, and performance of the
associated predictor (columns Acc).



7 Discussion

Although this study is based on particular organisms, dataptation systems, and GBA method, its
conclusions should hold to any application of the GBA piteifor functional annotation, as soon as
we have more homologies within the characterized genedaiaveen the non-characterized and the
characterized genes. For example, it should apply to the @B#ods based on other information

sources than transcriptomic data.

The general scheme we proposed (Section 6) could be impimoaedumber of ways:

— The three predictors we proposed in this scheme are ovgilesiand could be advantageously
replaced by more sophisticated approaches. Especiabyjkely that the performance on set #3
(genes with no characterized homologue) could be easilyavesgl.

— Co-expression and homology are defined by fixed (and rekatstandard) thresholds. The co-
expression threshold (0.8) was chosen to highlight theestuaias in the histograms of Figures 1
and 2. Other values could be tried and optimized to improgeattturacy of the general scheme.
However, this threshold is just used to define the first twe bat does not intervene in set #3
where we use the closest neighbor for transcriptome-baseticfions; thus, the gains in accuracy
should not be very high.

— Selecting the homology threshold is more complex. Hereraigaould be appealing to try differ-
ent values to improve the accuracy of the general schemeetawthis would be problematic as
this threshold is the sole insurance against the bias wdidiiged. Thel0~ 10 value is well suited
for the genomes we studied, as we observed that gene pdirtavger E-values are less likely to
share common GO terms and do not show the strong bias of Biguaed 2. Methods should then
be designed to adjust the homology threshold, aiming teas® prediction accuracy but also to
prevent against bias.

— Finally, an important direction for further research would to design methods to combine
the multiple, non-homology-based information sourcesn@criptomic, proteomic, interactome,
etc.).
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