
HAL Id: lirmm-00113849
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00113849v1

Submitted on 1 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Context-Based Measure for Discovering Approximate
Semantic Matching between Schema Elements

Fabien Duchateau, Zohra Bellahsene, Mathieu Roche

To cite this version:
Fabien Duchateau, Zohra Bellahsene, Mathieu Roche. A Context-Based Measure for Discovering Ap-
proximate Semantic Matching between Schema Elements. RR-06053, 2006, pp.11. �lirmm-00113849�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00113849v1
https://hal.archives-ouvertes.fr

A Context-based Measure for Discovering
Approximate Semantic Matching between Schema

Elements

Abstract— The possibility to query heterogeneous and se-
mantically linked data sources depends on the ability to find
correspondences between their structure and/or their content.
Unfortunately, most of the tools used nowadays to discover
those mappings are either manual or semi-automatic. In this
article we present an automatic method to calculate the similarity
measure between two schema elements. Furthermore, a tool has
been implemented, Approxivect, based on the approximation
of terminological methods and on the cosine measure between
context vectors. Another important feature of our tool is that
our method does not use any dictionary or language-based
knowledge and works in specialized domain areas. Finally, we
have performed experiments showing that our tool provides good
results regarding those provided by COMA++. More precisely,
it appears that Approxivect, when its parameters are tuned in
optimum configurations, discovers most of the relevant couples in
the top ranking while COMA++ only finds half of the mappings.

Keywords : semantic similarity, semantic schema matching,
node context, terminological algorithms

I. INTRODUCTION

Interoperability among applications in distributed
environments, including today’s World-Wide Web and
the emerging Semantic Web, depends critically on the ability
to map between them. Unfortunately, matching between
schemas is still largely done by hand, in a labor-intensive and
error-prone process. As a consequence, semantic integration
issues have become a key bottleneck in the deployment
of a wide variety of information management applications.
The high cost of this bottleneck has motivated numerous
research activities on methods for describing, manipulating
and (semi-automatically) generating schema mappings.

The schema matching problem consists in identifying one
or more terms in a schema that match terms in a target
schema. The current semi-automatic matchers calculate
various similarities between elements and they keep the
couples with a similarity above a certain threshold. They also
display all discovered mappings so that the user might select
the relevant ones. The main drawback of the matching tools
is that if they miss a relevant mapping, because its similarity
is just below the threshold, there is no possibility for the
user to know them. Thus the user must find it manually in
the schemas. There exists many techniques to evaluate the

similarity between two terms, and it should be possible to
find a combination that satisfy a good ranking of the plausible
couples, with if possible many of the relevant couples.

There are many terminological approaches for calculating
the similarity measures : the Levenhstein distance, the Jaro
Winkler distance, the n-grams, the Jaccard distance, etc.
Some of them are character-based, others use the tokenization
process. However they are not sufficient to obtain all
relevant similarities between two schemas. For example some
irrelevant similarities may be discovered with polysemic
terms. On the other hand, the cosine measure is widely
spread in the natural language processing domain. It enables
to calculate the similarity between two vectors, each of them
composed of character strings. Thus our idea is to combine
some terminological measures with the cosine measure.

In this paper we present a method to calculate a similarity
measure between two elements. Contrary to similar works,
this approach is automatic, it does not use any dictionnary or
ontology and is both language and domain independent. Our
approach is specifically designed for schemas and consists
in using both terminological algorithms and structural rules.
Indeed the terminological approaches enable to discover
elements represented by close character strings. On the
other hand, the structural rules are used to define the notion
of context of a node. This context includes some of its
neighbours, each of them is associated a weight representing
the importance it has when evaluating the contextual node.
Vectors composed of neighbour nodes are compared with
the cosine measure to detect any similarity. Finally the
different measures are aggregated for all couples of nodes. A
tool has also been implemented, Approxivect, based on the
approximation of terminological methods and on the cosine
measure between context vectors. Approxivect can either rank
in descending similarity all possible couples or display the
ones whose similarity is above a certain threshold. This tool
has not been designed for discovering mappings. However, it
can be enhanced later on for the schema matching scenario
or ontology alignment.

Here we outline the main contributions of our work :
• We designed the Approxivect approach to evaluate the

similarity between two terms from different schemas.
This method is both automatic and not language-
dependent. It does not rely on dictionnaries or ontologies.
It is also quite flexible with different parameters.

• We described the notion of context for a schema node.
And a formula enables to extract this context from the
schema for a given node.

• An experiment section allows to judge on the results pro-
vided by Approxivect. It also enables to fix the values of
some parameters. COMA++ discovers half of the relevant
similar elements while Approxivect, tuned in optimum
configuration, enables to discover all the relevant couples
of elements.

The rest of the paper is structured as follows: first we
give some definitions and preliminaries in Section II; Section
III contains the related work; in Section IV, an outline
of our Approxivect method is described and illustrated by
an example; in Section V, we present the results of our
experiments; and in Section VI, we conclude and outline
some future work.

II. PRELIMINARIES

In this section we give some general definitions and intro-
duce the similarity measure used later on in this paper.

A. Definitions

Definition 1 : A schema is a labeled unordered tree S =
(VS , ES , rS , label) with :

• VS is a set of nodes;
• rS is the root node;
• ES ⊆ VS × VS is a set of edges;
• label VS → Λ where Λ is a countable set of labels.

Definition 2 : Let V be the domain of schema nodes, the
similarity measure, is a concept whereby two or more terms
are assigned a metric value based on the likeness of their
meaning / semantic content [1]. In the case of two schema
nodes, this is a value V × V → <, noted sim(n, n’), defined
for two nodes n and n’. Note that the semantic similarity
depends on to the method used to calculate it. In general, a
zero value means a total dissimilarity whereas the 1 value
stands for totally similar concepts.

Definition 3 : A mapping is a non-defined relationship rel
between nodes of different schemas VS and V ′

S :

VS × V ′
S → rel

The relationship between nodes can include synonyms,
equality, hyperonyms, hyponyms, etc. The similarity measure
between the two nodes may be compared with a certain

threshold, defined by an expert, to determine if two elements
should be mapped.

Example of schema matching: Consider the two
following schemas used in [2]. They represent organization
in universities from different country and have been widely
used in the litterature.

images/schema1.eps

Fig. 1. Schema 1 : organization of an Australian university.

images/schema2.eps

Fig. 2. Schema 2 : organization of a US university.

With those schemas, the ideal set of mappings given by
an expert is {(CS Dept Australia, CS Dept U.S.), (courses,
undergrad courses), (courses, grad courses), (staff, people),
(academic staff, faculty), (technical staff, staff), (lecturer,
assistant professor), (senior lecturer, associate professor),
(professor, professor)}.

III. RELATED WORK

In this section, we describe related work on schema match-
ing [3], [4], [5] and terminological approaches for computing
similarity measures [6].

A. Schema matching tools

Although Approxivect is not a matching tool, it enables
to find similarities between schema elements so we decided
to compare it with two matchers : COMA++ and Similarity
Flooding. We limited the related work to those matchers
because COMA++ is well-known to provide good matching
results and Similarity Flooding uses structural rules like
Approxivect.

COMA++

As described in [7], COMA++ is a hybrid matching tool
that can incorporate many independent matching algorithms.
Different strategies, for example the reuse-oriented matching
or the fragment-based matching, can be included, offering dif-
ferent results. When loading a schema, COMA++ transforms
it into a rooted directed acyclic graph. Specifically, the two
schemas are loaded from the repository and the user selects
from the matcher library, the required match algorithms. For
each algorithm, each element from the source schema is at-
tributed a threshold value between 0 (no similarity) and 1 (total
similarity) with each element of the target schema, resulting in
a cube of similarity values. The final step involves combining
the similarity values given by each matcher algorithm by
means of aggregation operators like max, min, average...
Finally, COMA++ displays all mapping possibilities and the
user checks and validates their accuracy.

The advantage of COMA++ is the good matching quality
and the ability to re-use mappings, while supporting many
formats and ontologies. During the match process or at the
end of the process, the user has the final decision to choose
the appropriate mappings since COMA++ has done most of
the work in selecting the potential matches. New matching
algorithms can be added and the list of synonyms can be
completed, thus offering advantages for specific field areas. It
is also a good platform to evaluate and compare new matching
algorithms.

However the weak point of COMA++ is the time required,
both for adding the files into the repository and to match
schemas. In a large scale context, spending several minutes
with those operations can entail performance degradation and
the other drawback is that it does not support the matching of
many schemas directly.

COMA++ is more complete than Approxivect, it uses
many algorithms and selects the most apropriate function
to aggregate them. A comparison between COMA++ and
Approxivect is shown in the experiments section.

Similarity Flooding

Similarity Flooding is an algorithm described in [8] and is
based on structural techniques. Input schemas are converted
into directed labeled graphs and the aim is to find relation-
ships between those graphs. The structural rule used is the
following : two nodes from different schemas are considered
similar if their adjacent neighbours are similar. When similar
nodes are discovered, this similarity is then propagated to the
adjacent nodes until there is no changes anymore. As in most
of matchers, Similarity Flooding generates mappings for the
nodes having a similarity value above a certain threshold.

This algorithm mainly exploits the labels with some
semantic-based algorithms, like String Matching, to determine
the nodes to which it should propagate. Rondo, a tool that im-
plements Similarity Flooding, has been implemented. Finally,
it supports different formats like XML Schema and relational

database schemas.
Similarity Flooding does not give good results when labels

are often identical, especially for polysemic terms. Thus
involving wrong mappings to be discovered by propagating.
Although it uses the neighbour nodes, it should be extended
to work in a large scale context.

Approxivect uses the same structural rule stating that two
nodes from different schemas are similar if most of their
neighbour are similar. However, it is not possible to test
Rondo with our own set of schemas.

B. Approaches based on the similarity measures of nodes

There are many terminological measures which are often
cited in the litterature [9], [10]. Here we describe the Jaro
Winkler distance.

The Jaro-Winkler distance [11] is a measure of similarity
between two strings. It is a variant of the Jaro distance metric.
The Jaro distance metric states that given two strings s1 and
s2, their distance dj is :

dj(s1, s2) =
m

3a
+

m

3b
+

m − t

3m
(1)

where m is the number of matching characters, a and b are
the lengths of s1 and s2, respectively and t is the number of
transpositions.

Two characters from s1 and s2 respectively, are considered
matching only if they are not farther than δ :

δ =
max(a, b)

2
− 1 (2)

Each character of s1 is compared with all its matching
characters in s2. The number of matching (but different)
characters divided by two defines the number of
transpositions.

Jaro-Winkler distance uses a prefix scale p which gives more
favourable ratings to strings that match from the begining for
a set prefix length l. Given two strings s1 and s2, their Jaro-
Winkler distance dw is:

dw = dj + (l ∗ p ∗ (1 − dj)) (3)

where dj is the Jaro distance for strings s1 and s2, l is the
legth of common prefix at the start of the string and p is a
constant scaling factor for how much the score is adjusted
upwards for having common prefixes. This measure is very
effective, especially for mispelled terms.

As Jaro-Winkler, with its character comparison and its
transpositions, is quite close to n-grams and levenhstein

distance, thus we use n-grams and levenhstein distance in
our Approxivect approach. These measures are described in
the next section.

IV. APPROXIVECT

A. Overview of terminological techniques

1) n-grams: An n-gram is a sub-sequence of n items
from a given sequence. n-grams are used in various areas of
statistical natural language processing to calculate the number
of n consecutive charcaters in different strings. In general,
the n value vary between 1 and 5 and is often set to 3 [1], [12].

To measure the similarity of two elements, the following
formula 4 issued from [1] gives a value in]0,1] :

Tri(c1, c2) =
1

1 + |tr(c1)| + |tr(c2)| − 2 × |tr(c1) ∩ tr(c2)| (4)

For example, consider the two character strings dept
and department. Using tri-grams, we build the two sets
{dep, ept} and {dep, epa, par, art, rtm, tme,men, ent}. The
number of common occurences in these sets is 1. By applying
the formula 4 on those sets, we obtain a similarity between
dept and department :

Tri(dept, department) =
1

1 + 2 + 8 − (2 × 1)
=

1

9
(5)

2) Levenhstein distance: The Levenhstein distance between
two strings is given by the minimum number of operations
needed to transform one source string into the target other,
where an operation is an insertion, deletion, or substitution of
a single character. The Levenhstein distance is the measure
where all operation costs are set to 1. The Levenhstein
similarity, noted LevSim, is a formula using the Levenhstein
distance, noted L, and which processes a similarity measure
between two strings :

LevSim(c1, c2) = max{0,
min{|c1|, |c2|} − L(c1, c2)

min{|c1|, |c2|} } (6)

where ch1 and ch2 are two strings. The value given by the
Levenhstein similarity formula is in [0,1], with the zero value
denoting a dissimilarity and 1 a total similarity. Note that
in the rest of the paper, we use either the term Levenhstein
similarity or Levenhstein distance.

Following is a simple example for illustrating the formula
6 to obtain the Levenhstein similarity between dept and
department :

LevSim(dept, department) = max{0,
min{4, 10} − 6

min{4, 10} } = 0 (7)

However, as shown in the examples, those terminological
techniques are not sufficient to discover similarities between
two terms since they may produce wrong results due to
homonyms, etc. They are often combined with other tech-
niques. Thus we added some structural rules described in [13]:

• a leaf node is similar only similar to another leaf node
• a non-leaf node is only similar to another non-leaf node
• a node is similar to another one if their neighbour

nodes are similar. The next part introduces this notion
of neighbour nodes.

B. Weight of context nodes

A specific feature of our approach is to consider the
neighbour nodes. We called this notion the context, which
represents, given a current node nc, the nodes denoted ni in
its neighbourhood. In fact, all nodes in the schema may be
considered in the neighbourhood of nc. But it is quite obvious
that the closest nodes ni are semantically closer to the node nc.
From this assumption, we calculate the weight of each node
ni according to the node nc, which evaluates how important
the context node ni is for the node ni. First we calculate ∆ d
which represents the difference between the level of nc and
the level of ni :

∆d = |lev(nc) − lev(ni)| (8)

where lev(n) is the depth of the node n from the root. Then
we can calculate the weight noted ω(nc, ni) between the nodes
nc and ni :

ω(nc, ni) =

{
ω1(nc, ni), ifAnc(nc, ni) or Desc(nc, ni)

ω2(nc, ni), otherwise
(9)

where Anc(n, m) (resp. Desc(n, m)) is a boolean function
indicating if node n is an ancestor (resp. descendant) of node
m. This weight formula is divided into two cases, according to
the relationship between the two concerned nodes. If n is an
ancestor or a descendent of m, the formula 10 is applied. Else
we apply formula 11. The idea behind this weight formula is
based on the fact that the closer in the tree two nodes are, the
most similar their meaning is.

ω1(nc, ni) = 1 +
K

∆d + |lev(nc)− lev(na)|+ |lev(ni)− lev(na)|
(10)

ω2(nc, ni) = 1 +
K

2× (|lev(nc)− lev(na)|+ |lev(ni)− lev(na)|)
(11)

where na represents the lowest common ancestor to nc and
ni, and K is a parameter to allow some flexibility with the
context. It is described with more details in section IV-E. The
value of this weight is in the interval]1,2] for K = 1. Note
that this formula, for a given node n, gives the same weight
to all descendants and ancestors of this node n which are at
the same level.

Example : Let consider the node Academic Staff from
schema 1. We look for the importance of Staff for the node
Academic Staff. As Staff is an ancestor of Academic Staff, we
apply formula 10. ∆d, the difference between their levels in
the tree hierarchy, is equal to 1. Their lowest common ancestor
is Staff, and the difference of level between this common
ancestor with itself is 0, while it is equal to 1 with the node
Academic Staff, thus giving us the following result :

ω(AcademicStaff, Staff) = 1 +
1

1 + 1 + 0
=

3

2
= 1.5 (12)

Now we look for the importance of the node Courses
with regards to Academic Staff. They have no ancestor or
descendent relationship, so the formula 11 is applied. Their
lowest common ancestor is the root node, namely CS Dept
Australia. Academic Staff is 2 levels far from the common
ancestor, and Courses is 1 level far from it. The importance
of Courses for the node Academic Staff gives :

ω(AcademicStaff, Courses) = 1 +
1

2× (2 + 1)
=

7

6
= 1.17 (13)

We can then generalize to obtain the following set of
couples (neighbour, associated weight) which represents the
context of the node Academic Staff. {(CS Dept Australia,
1.25), (Courses, 1.17), (Staff, 1.5), (Technical Staff, 1.25),
(Lecturer, 1.5), (Senior Lecturer, 1.5), (Professor, 1.5) }
Note that some parameters have influence on the context, as
described in the experiments section.

C. Overview of Approxivect

One of the contributions in our approach consists in taking
into account the context of the nodes. By context of a node
n, we mean the keywords, the description in natural language
and the neighbouring nodes of n. As the keywords and/or
description of the elements are not always available, we
mainly concentrate our work on the neighbouring nodes.
Indeed those lasts correspond to specific information thus
such knowledge is crucial to understand the meaning of the
elements. However our method works with keywords and
description as well.

To compare the context from one element, we first build
a vector composed of its neighbour elements. This vector is

then called context vector. The aim is finally to compare two
context vectors of elements from different schemas in order
to evaluate their semantic similarity. This similarity may
be determined by using the cosine measure which enables
to compare two vectors [14]. The cosine measure is higher
(close to 1) if the terms in the two vectors tend to have a
close meaning. A such measure is already used in Information
Retrieval and is explained later on. In the rest of this paper,
we call CosineMeasure CM, the cosine measure between
two relative context vectors.

As explained before, two context vectors tend to be close if
the terms they gather tend to be close. Yet, in the real world,
those terms may be different while having character string
quite close. So the idea to solve this problem is to use some
terminological algorithms presented in section II to replace
character strings that have high lexical measures.

D. Detailed approach of Approxivect

Our Approxivect (Approximation of vectors) approach is
based on two steps : first we replace terms in the context
vectors when they have close character strings. This step uses
the Levenhstein distance and 3-grams algorithms (see Section
IV-A). In a second time, we calculate the cosine measure
between two vectors to determine if their context is close or
not.

1) Part one : replacing terms: The following describes in
details the first part of Approxivect. The two schemas are
traversed in preorder traversal and all nodes are compared
two by two with the Levenhstein distance and the 3-grams.
Both measures are processed and according to the adopted
strategy1, the higher one or the average is kept. The obtained
value is denoted SM for String Measure. If SM is above a
certain threshold, which is defined by an expert, then some
replacements may occur. The threshold will be discussed in
section V. We decided to replace the term with the bigger
number of characters by the term with the smaller number of
characters. Indeed we consider that the smaller-sized term is
more general than the bigger-sized one. This assumption can
be checked easily since some terms may be written singular
or plural. So we finally obtain after this first step the initial
schemas that have possibly been modified with character
string replacements.

We have also noticed the polysemia problem, where a word
may have different meanings. The typical example is mouse,
which can represent both an animal and a computer device.
In those cases, the string replacement obviously occurs -
but has no effect since the terms are similar. The similarity
between the polysemic terms is not necessary high since
in the next step, we use the context, namely the neighbour

1The maximum and average strategies reveals to be a good compromise in
the litterature

nodes, to calculate it.

2) Part two : measuring cosine with context vectors:
In the second part of our algorithm, we traverse again the
schemas - in which some string replacements may have
occured due to Approxivect step 1. And the context vector
of a current element is extracted in each schema. The
neighbour elements composing this vector may be ancestors,
descendants, siblings or further nodes of the current element,
but each of them has a weight, illustrating the importance
of this neighbour with regards to the current node. The
two context vectors are compared using the cosine measure,
in which we include the weight of the node. Indeed when
counting the number of occurences of a term, we multiply this
number by its weight. This process enables to calculate CM,
the cosine measure between two context vectors, and thus the
similarity between the two nodes related to these contexts too.

The cosine measure [14] is widely used in Information Re-
trieval. The cosine measure between the two context vectors,
noted CM, is given by the following formula :

CM(v1, v2) =
v1 · v2√

(v1 · v1)(v2 · v2)
(14)

CM is in the interval [0,1]. A result close to 1 indicates
that the vectors tend in the same direction, and a value close
to 0 denotes a total dissimilarity between the two vectors.

Example : After Approxivect step 1, the following
replacement occured : Faculty ↔ Academic Staff. Consider
the two current nodes Staff and People respectively from
schemas 1 and 2. Their respective and limited2 context
vectors, composed of couples of a neighbour node and its
associated weight, are {(CS Dept Australia, 1.5), (Faculty,
1.5), (Technical Staff, 1.5) } and {(CS Dept U.S., 1.5),
(Faculty, 1.5), (Staff, 1.5) }. As the only common term
between the two vectors is Faculty with a weight of 1.5, the
cosine measure between those context vectors is 0.44.

Finally we obtain two similarity measures, SM and CM,
the first one based on terminological algorithms while the
second takes into account the neighbour nodes. Here again,
a strategy must be adopted to decide how to aggregate those
similarity measures. The maximum and the average have
been chosen because they generally give better results in the
experiments than other formulas where one of the measure is
privileged3. In the end of the process, Approxivect ranks all
element couples with their corresponding similarity.

As the aim of Approxivect does not concern performances,
we did not bother to optimize the algorithm. Thus the

2To clarify the example, the context has been voluntary limited thanks to
the parameters

3Those experiments are not shown in the section V to avoid overloading it

schemas are traversed twice but it is possible to do it only
once if some structures are used to store processed measures.
The obtained results depends on th tuning of the parameters,
so in the next part we firstly give more details about them.

E. Parameters in Approxivect

Like most of the matchers, our approach include many
parameters. Although this may be seen as a drawback, since
a domain expert is often required to tune them, this is com-
pensated by the fact that our application is generic and works
with no dictionnary and whatever the domain or language is.

• NB LEVELS : this parameter is used to know the number
of levels, both up and down in the hierarchy, to search in
to find the context nodes. It is used in combination with
MIN WEIGHT. Note that we could have divided it into
two parameters, one for the number of levels up in the
tree, and the second one for the number of levels down
in the hierarchy.

• MIN WEIGHT : combined with NB LEVELS, it represents
the minimum weight to be accepted as a context node.
This is quite useful to avoid to have many cousin nodes
- that does not have a significant importance - included
in the context.

• REPLACE THRESHOLD : this threshold is the minimum
value to be reached to do any replacement between two
terms.

• SIM THRESHOLD : this threshold is the minimal value to
be reached to accept a similarity between two schema
nodes based on terminological measures.

• K : this coefficient used in the weight formula 9 allows
more flexibility. Indeed it represents the importance we
give to the context when measuring similarities. Thus a
high value for K implies that the context is very important
where a value close to 1 indicates that the context should
not be too much taken into consideration.

Given that the number of parameters is important, a such
application need to be tuned correctly to give acceptable results
[15]. In the next section, we describe some configurations
that give good results and we provide some experimental data.

V. EXPERIMENTS

For these experiments, we have used typical evaluation
measures to analyse the results of Approxivect. They are
presented in the next subsection.

A. Precision, recall, and F-measure

Precision is an evaluation criterion very appropriate to the
framework of an unsupervised approach. Precision calculates
the proportion of relevant couples of elements extracted among
extracted couples. Using the notations of table I, the precision
is given by the formula (15).

Precision =
TP

TP + FP
(15)

A 100% precision means that all the couples extracted by
the system are relevant.

Another typical measurement of the machine learning ap-
proach is recall which computes the proportion of relevant
couples of elements extracted among relevant couples. The
recall is given by the formula (16).

Recall =
TP

TP + FN
(16)

A 100% recall means that all relevant couples of elements
have been found. This measurement is adapted to the
supervised machine learning methods where all positive
examples (relevant couples of elements) are known.

Relevant Irrelevant
couples couples

Couples
evaluated as TP (True Positive) FP (False Positive)
relevant by the system
Couples
evaluated as FN (False Negative) TN (True Negative)
irrelevant by the system

TABLE I
CONTINGENCY TABLE AT THE BASE OF EVALUATION MEASUREMENTS.

It is often important to determine a compromise between
recall and precision. We can use a measurement taking into
account these two evaluation criteria by calculating the F-
measure [16] :

F − measure(β) =
(β2 + 1) × Precision × Recall

(β2 × Precision) + Recall
(17)

The parameter β of the formula (17) regulates the respective
influence of precision and recall. It is often fixed at 1 to give
the same weight to these two evaluation measurements.

B. Evaluation protocol

To evaluate the results of our work, we need an oracle
that we can trust. We choose the domain expert as an oracle.
Although it may be considered as a tiresome task because of
the manual checking, dictionnaries like Wordnet [17] would
not have been efficient. Indeed the schemas contains some
acronyms or terms that need to be tokenized.

The aim of this evaluation is to show that Approxivect finds
higher similarity measures for similar elements. So the idea is
to sort all discovered similarities and to check if the similar
elements are in the top of this ranking. We then calculate the
precision, recall and F-measure on the top-third of the ranking.

The schemas used in the following experiments are Figure
1 and Figure 2. When matching the two schemas, an expert

should discover 9 relevant possibilities. Approxivect returns
a ranking of 39 similarities, sorted by descending similarity
measure. An extract of this ranking4 is shown in table II.
In the relevance column, a + denotes a true positive (TP)
whereas an empty cell stands for a false positive (FP).
Note that when two couples with the same similarity are
discovered, Approxivect ranks them in a random order.

Rank Element from Element from Similarity Relevance
schema 1 schema 2 Measure

1 Professor Professor 1.0 +
2 CS Dept Australia People 0.46
3 Courses Grad Courses 0.41 +
4 CS Dept Australia CS Dept U.S. 0.36 +
5 Courses Undergrad Courses 0.28 +
6 Academic Staff Faculty 0.25 +
7 Staff People 0.23 +
8 Technical Staff Staff 0.21 +
9 Senior Lecturer Assistant Professor 0.16

10 Professor Assistant Professor 0.16
11 Senior Lecturer Associate Professor 0.16 +
12 Professor Associate Professor 0.16
13 Senior Lecturer Professor 0.16
...

TABLE II
AN EXAMPLE OF APPROXIVECT RANKING

Example : With the table II, we can calculate the measures
explained in V-A. The precision is the number of discovered
true positives on the number of both TP and FP. Actually the
sum of TP and FP represents the number of extracted couples
by Approxivect.

Precision =
8

8 + 5
= 0.62 (18)

Then we can calculate the recall, which is the number of
true positives on the number of both TP and FN. The sum
of TP and FN can also be seen as the number of all relevant
couples.

Recall =
8

8 + 1
= 0.89 (19)

Finally, we can obtain the F-measure which represents
the compromise between precision and recall. We set the β
parameter to 1.

F − measure =
2 × 0.62 × 0.89

0.62 + 0.89
= 0.73 (20)

Next we discuss each parameter, except for
SIM THRESHOLD, which is tuned to 0, because our aim
is to rank the similarities. So we need them all. In the

4The parameters used for this example are : NB LEVELS = 1, RE-
PLACE THRESHOLD = 0.2, MIN WEIGHT = 1, K = 1

following tables, lev means Levenhstein distance and 3gram
stands for tri-grams. Their aggregation is noted SM, and
we selected two ways of aggregating those similarities: the
maximum, noted max(lev, 3gram), and the average, noted
lev+3gram

2 . CM represents the cosine measure between the
context of two elements and it is aggregated with SM either
by choosing the maximum, noted max(SM, CM), or by
calculating the average SM+CM

2 . The given results only
concerns the first third of the ranked similarities. This to
show that Approxivect ranks the relevant similarities at the
top of the ranking couples.

Discussion about NB LEVELS

Here we vary the NB LEVELS parameter to know if it is in-
teresting to include in the context far ancestors or deep descen-
dents. The other parameters are fixed : MIN WEIGHT is set to
1 so that we accept all the neighbours, REPLACE THRESHOLD
to 0.2 and K to 1.

Precision Recall F-measure
NB LEVELS = 1 max(lev, 3gram) 0.31 0.45 0.37

lev+3gram
2 0.62 0.89 0.73

NB LEVELS = 2 max(lev, 3gram) 0.46 0.67 0.55
lev+3gram

2 0.54 0.78 0.64
NB LEVELS = 3 max(lev, 3gram) 0.31 0.45 0.37

lev+3gram
2 0.39 0.56 0.46

TABLE III
EXPERIMENTS ON NB LEVELS WITH MAX(SM , CM)

Precision Recall F-measure
NB LEVELS = 1 max(lev, 3gram) 0.39 0.56 0.46

lev+3gram
2 0.54 0.78 0.64

NB LEVELS = 2 max(lev, 3gram) 0.54 0.78 0.64
lev+3gram

2 0.46 0.67 0.55
NB LEVELS = 3 max(lev, 3gram) 0.39 0.56 0.46

lev+3gram
2 0.31 0.45 0.37

TABLE IV
EXPERIMENTS ON NB LEVELS WITH SM+CM

2

The tables III and IV show that the number of levels
should not be too high. Good results are obtained when it is
set to 1, but they decrease with higher values. So the context
should be limited to the first or second levels, to the nodes
that are semantically closer. Note that this parameter could
have been studied deeper : the number of levels up and down
could have been different, so that either the ancestors or the
descendants are prioritized.

Discussion about REPLACE THRESHOLD

Here we vary the REPLACE THRESHOLD parameter, which
is the minimum threshold so that two terms are replaced.
The adopted strategy between the terminological algorithms,
namely the maximum or the average, is an important criteria
since it is used to calculate the similarity that is compared

to this threshold parameter. The goal of this experiment is to
demonstrate that replacing too many strings might involve bad
results. Indeed there is no guarantee that the replacements are
done on relevant similar couples. In the tables V and VI, the
Repl column indicates the number of replacements. The other
parameters are fixed : MIN WEIGHT is set to 1, NB LEVELS to
1 and K to 1. For the same reason as before, SIM THRESHOLD
is set to 0.

Repl Precision Recall F-measure
REPLACE max(lev, 3gram) 4 0.31 0.45 0.37
THRESHOLD = 0.2

lev+3gram
2 2 0.62 0.89 0.73

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64
THRESHOLD = 0.3

lev+3gram
2 1 0.54 0.78 0.64

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64
THRESHOLD = 0.4

lev+3gram
2 1 0.54 0.78 0.64

TABLE V
EXPERIMENTS ON REPLACE THRESHOLD WITH MAX(SM , CM)

On the first line of table V, the following 4 replacements
occur :

• Professor ↔ Professor
• Courses ↔ Grad Courses
• Senior Lecturer ↔ Undergrad Courses
• Lecturer ↔ Courses
On these 4 replacements, 2 of them are false positives. Thus

involving bad results when the context is then used to discover
similarities. So it is better to avoid too many replacements.

Repl Precision Recall F-measure
REPLACE max(lev, 3gram) 4 0.39 0.56 0.46
THRESHOLD = 0.2

lev+3gram
2 2 0.54 0.78 0.64

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64
THRESHOLD = 0.3

lev+3gram
2 1 0.46 0.67 0.55

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64
THRESHOLD = 0.4

lev+3gram
2 1 0.46 0.67 0.55

TABLE VI
EXPERIMENTS ON REPLACE THRESHOLD WITH SM+CM

2

With a threshold above 0.3, precision and recall do not
vary anymore. As the schemas used are quite small, there
are not so many replacements occuring. Thus this parameter
may need to be tested against larger schemas. Besides the
Levenhstein distance and the 3-grams are maybe not sufficient
enough to decide whether or not to replace terms. They focuse
on the characters in the terms and could be completed by
another algorithm that works on the tokens of a term.

Discussion about K

The K parameter is used in the weight formula 9. Increasing
K implies to give more importance to the context. In this
experiment, the other parameters are fixed : MIN WEIGHT is
set to 1, NB LEVELS to 1, REPLACE THRESHOLD to 0.2 and
SIM THRESHOLD to 0.

Precision Recall F-measure
K = 1 max(lev, 3gram) 0.31 0.45 0.37

lev+3gram
2 0.62 0.89 0.73

K = 2 max(lev, 3gram) 0.23 0.34 0.27
lev+3gram

2 0.62 0.89 0.73
K = 4 max(lev, 3gram) 0.23 0.34 0.27

lev+3gram
2 0.62 0.89 0.73

TABLE VII
EXPERIMENTS ON K WITH MAX(SM , CM)

Precision Recall F-measure
K = 1 max(lev, 3gram) 0.39 0.56 0.46

lev+3gram
2 0.54 0.78 0.64

K = 2 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2 0.54 0.78 0.64
K = 4 max(lev, 3gram) 0.31 0.45 0.37

lev+3gram
2 0.62 0.89 0.73

TABLE VIII
EXPERIMENTS ON K WITH SM+CM

2

Varying the K parameter is interesting. When using the
maximum between the Levenhstein distance and the 3-grams,
increasing K gives worse results. On the contrary, with the
average between the two distances, increasing K enables to
rank better the relevant couples. And the more we increase K,
the higher rank the relevant couples have. But with K above
4, results seem to be constant. So K depends on the adopted
strategy. But this experiment conforts the idea that the average
between the terminological algorithms gives better results.

Discussion about MIN WEIGHT

Finally this last parameter is a constraint for the context and
aims at showing the importance of the closest elements : if
the weight of a node is not above the MIN WEIGHT threshold,
then it is not included in the context. The weight, given by
the formula 9, is in the interval [1, K+1], and as we set K
to 1 for these experiments, the weight may vary between
[1, 2]. With a MIN WEIGHT of 1, all neighbour nodes are
included in the context - if the other constraints are respected,
namely NB LEVELS. Here we set NB LEVELS to 1, so the
parent, children, siblings and cousins may be included in the
context. By changing MIN WEIGHT to 1.25, this context is then
restricted to the parent, children and siblings. And when set to
1.5, only the parent and children are included in the context.
The other parameters are fixed : K is set to 1, NB LEVELS to
1, REPLACE THRESHOLD to 0.2 and SIM THRESHOLD to 0.

So including the cousins in the context is not recommended.
However we notice that those good results quickly decrease
when the context is very limited, namely to the parent and
children of a node. Indeed the similarity measure found in
those cases quickly reaches values near 0 in the ranking table.
Note that in table IX, we have a configuration that enables
to find all the relevant similarities in the first third of the
ranking.

Precision Recall F-measure
MIN WEIGHT = 1 max(lev, 3gram) 0.31 0.45 0.37

lev+3gram
2 0.62 0.89 0.73

MIN WEIGHT = 1.25 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2 0.69 1 0.82
MIN WEIGHT = 1.5 max(lev, 3gram) 0.39 0.56 0.46

lev+3gram
2 0.39 0.56 0.46

TABLE IX
EXPERIMENTS ON MIN WEIGHT WITH MAX(SM , CM)

Precision Recall F-measure
MIN WEIGHT = 1 max(lev, 3gram) 0.39 0.56 0.46

lev+3gram
2 0.54 0.78 0.64

MIN WEIGHT = 1.25 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2 0.54 0.78 0.64
MIN WEIGHT = 1.5 max(lev, 3gram) 0.39 0.56 0.46

lev+3gram
2 0.39 0.56 0.46

TABLE X
EXPERIMENTS ON MIN WEIGHT WITH SM+CM

2

General discussion

The main conclusion of these experiments is that the
maximum between the cosine measure (CM) and the
string mesure (SM) combined with the average between
Levenhstein distance and 3-grams offer better results.

Approxivect has many parameters that need to be tuned.
Although this may be seen as a drawback, it is quite
obvious that some of them should not be too high. For
example, Approxivect should limit the context nodes to the
first or second level up and down in the hierarchy. And
the context should include the descendants, ancestors and
siblings, but should avoid the cousin nodes. According to
the adopted strategy (maximum or average), the importance
of the context may be increased a little. The threshold
to replace terms must be tested with larger schemas. The
parameter SIM THRESHOLD, which has not been tested here,
might be used to only discover the similarities above a
certain threshold. However using this parameter is probably
not sufficient enough to discover mappings, or it must be
completed by some algorithms to select the relevant couples
in the ranking. Finally a machine learning system could be an
interesting future work in order to tune automatically these
parameters.

C. Comparison with COMA++

To our knowledge there is no tool that tries to rank the
similarities between elements of two schemas. So to compare
our work, we decided to use some matching tools. But the
matchers do not offer the possibility to rank all the similarities
they processed. Instead they display the mappings, namely
the couples of elements they consider similar. So we apply
COMA++ on the same schemas 1 and 2. All the COMA++
strategies have been tried and the best obtained results are

shown in the following table XI. All those discovered map-
pings are relevant.

Element from Element from Similarity
schema 1 schema 2 Measure
Courses Grad Courses 0.5041725
Courses Undergrad Courses 0.5041725

Professor Professor 0.53545463
Technical Staff Staff 0.5300107

CS Dept Australia CS Dept U.S. 0.52305263

TABLE XI
RESULTS OBTAINED WITH COMA++ ON SCHEMAS 1 AND 2

COMA++ found 5 mappings on the 9 relevant similarities,
implying that 4 mappings are never discovered. The recall is
0.56, the precision is obviously 1 since the extracted list gives
only the relevant similarities. We obtain a F-measure equal
to 0.72. Even if it is quite difficult to compare those figures,
Approxivect has in the optimal configurations a F-measure
equal or above to 0.73. Those configuration enables to
discover between 7 and 9 relevant similarities, compared to
the 5 given by COMA++.

Our aim is not to find mappings - our algorithm has not
been designed for that since it does not include as many
algorithms as matching tools5 - but the comparison with
COMA++ might help to judge on the results of Approxivect.

VI. CONCLUSION

In this paper we have proposed an hybrid method,
Approxivect, to measure the similarity between two elements
of different schemas. Some interesting features include the
language and domain independance, and the fact that it does
not use any dictionnary or ontology. Indeed Approxivect is
based on the notion of context of a schema node and on
different terminological measures. The context of a given
node includes some of its neighbours according to the value
of Approxivect parameters and the weight formula. The
Levenhstein distance and 3-grams are commonly used to
compare character strings, and are well suited in our method.
They are completed by the cosine measure, which evaluates
the similarity between two sets of terms. The combination
of those measures enables to find similarities between
couples of elements, the terminological measures ensuring
to detect the terms whose terminologies are close while the
context allows to discover similarities between the other terms.

The experiments section showed that Approxivect gives
good results. By ranking all similarities found by our
approach, we notice that most of the relevant couples were
ranked in the beginning of the ranking. By comparing the
results with COMA++, it appears that Approxivect, when its
parameters are tuned in optimum configurations, discovers
most of the relevant couples in the top ranking while
COMA++ only finds half of the mappings. The experiments

5However it could be enhanced to reach this goal

also enabled to fix some parameters, and some of them could
be improved by deeper tests.

This work is essentially a first step, and it involves many
perspectives in different domain applications. The first one
would be to use other algorithms to compare terms, like the
one presented in the related work section. Another future
work concerns the schema matching : Approxivect could be
enhanced with more algorithms to extract mappings from the
ranking. And in a large scale schema matching scenario, with a
dynamic environment, it may be a good idea to use the context.
Instead of sending a whole schema or a random part of it on
the network, determining a subtree that includes the important
context nodes seems to be a good idea to spare resources [18].
This approach consisting in processing the semantic proximity
between schema elements may also be an important task when
building automatically ontologies [19] or to align them [12],
[20]. Finally machine learning techniques could bring more
flexibility by tuning automatically the parameters. Even if our
experiments showed a good configuration of the parameters,
some specific domains might need softer or harder constraints.
Thus machine learning would result in a process without the
expert intervention.

REFERENCES

[1] D. Lin, “An information-theoretic definition of similarity,” in
Proc. 15th International Conf. on Machine Learning. Morgan
Kaufmann, San Francisco, CA, 1998, pp. 296–304. [Online]. Available:
citeseer.ist.psu.edu/95071.html

[2] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Ontology
matching: A machine learning approach,” in Handbook on Ontologies,
International Handbooks on Information Systems, 2004.

[3] E. Rahm and P. A. Bernstein, “A survey of approaches to
automatic schema matching,” VLDB Journal: Very Large Data
Bases, vol. 10, no. 4, pp. 334–350, ???? 2001. [Online]. Available:
citeseer.ist.psu.edu/rahm01survey.html

[4] M. Yatskevich, “Preliminary evaluation of schema matching systems,”
University of Trento, Tech. Rep. DIT-03-028, Informatica e Telecomu-
nicazioni, 2003.

[5] J. Tranier, R. Barar, Z. Bellahsène, and M. Teisseire, “Where’s charlie:
Family-based heuristics for peer-to-peer schema integration,” in Proc of
IDEAS, 2004, pp. 227–235.

[6] A. Maedche and S. Staab, “Measuring similarity between ontologies,”
in Proc. of the European Conference on Knowledge Acquisition
and Management - EKAW, 2002, pp. 251–263. [Online]. Available:
citeseer.ist.psu.edu/maedche02measuring.html

[7] D. Aumueller, H. Do, S. Massmann, and E. Rahm, “Schema and
ontology matching with coma++,” in SIGMOD 2005, 2005.

[8] S. Melnik, H. G. Molina, and E. Rahm, “Similarity flooding: A versatile
graph matching algorithm and its application to schema matching,” in
Proc. of the International Conference on Data Engineering (ICDE’02),
2002.

[9] J. Euzenat et al., “State of the art on ontology matching,” Knowledge
Web, Tech. Rep. KWEB/2004/D2.2.3/v1.2, 2004.

[10] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison
of string distance metrics for name-matching tasks,” in In
Proceedings of the IJCAI-2003., 2003. [Online]. Available:
citeseer.ist.psu.edu/cohen03comparison.html

[11] W. Winkler, “The state of record linkage and current research problems,”
in Statistics of Income Division, Internal Revenue Service Publication
R99/04, 1999.

[12] H. Kefi, “Ontologies et aide à l’utilisateur pour l’interrogation de sources
multiples et hétérogènes,” Ph.D. dissertation, Université de Paris 11,
2006.

[13] J. Madhavan, P. Bernstein, and E. Rahm, “Generic schema matching
with cupid,” in VLDB01, 2001.

[14] R. Wilkinson and P. Hingston, “Using the cosine measure in a neural
network for document retrieval,” in Proc of ACM SIGIR Conference,
1991, pp. 202–210.

[15] M. Sayyadian et al., “Tuning schema matching software using synthetic
scenarios,” in Proceedings of the 31th VLDB Conference, 2005.

[16] C. Van-Risbergen, Information Retrieval. 2nd edition, London, Butter-
worths, 1979.

[17] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller., “Intro-
duction to WordNet: an on-line lexical database,” International Journal
of Lexicography, vol. 3, no. 4, pp. 235–244, 1990.

[18] P. Bouquet, L. Serafini, and S. Zanobini, “Peer-to-peer semantic
coordination,” Journal of Web Semantics, vol. 2, no. 1, pp. 81–97, 2004.
[Online]. Available: http://www.websemanticsjournal.org/ps/pub/2005-6

[19] N. Aussenac-Gilles and D. Bourigault, “Construction d’ontologies à
partir de textes,” in Actes de TALN03, vol. 2, 2003, pp. 27–47.

[20] A. Doan, J. Madhavan, P. Domingos, and A. Halvey, “Learning to map
ontologies on the semantic web,” in Proc of WWW Conference, 2002.

