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Abstract: 
This paper proposes an original Design-For-Test (DFT) 
technique allowing the test of a complete set of converters 
embedded in a complex System-in-Package. The 
fundamental idea consists in implementing an additional 
circuitry allowing to interconnect the analogue ouputs of 
DAC’s with the analogue inputs of ADC’s. This globally 
results in an Analogue Network of interconnected 
Converters (ANC) that can be tested in a fully digital way. 
It is demonstrated that different configurations of the 
network can be described through a system of linearly 
independent equations. Solving the system of equations 
allows to determine the harmonic contribution of every 
converter in the network. 
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1 Introduction 

Many electronic solutions are developed nowadays 
for portable applications, such as mobile phones, laptops, 
or audio MP3 players. The basic trend in these areas can be 
summarized as follows: more features in smaller volumes. 
The System-in-Package (SiP), a package that combines all 
the electronic components (digital ICs, analogue ICs, RF 
ICs, passive components or other elements) needed to 
provide a system or subsystem in one package, represents 
an opportunity to accelerate the development of highly 
miniaturized solutions.  

Although the integration of many different functions into 
a single package offers several clear benefits, it implies 
significant test challenges. As an example, in the set-top-
box project of Philips (STBSiP [1]), the test of the 
analogue blocks in the system represents up to 80% of the 
whole test effort while these blocs represent only 20% of 
the whole chip area. 

When testing analogue blocks, the main difficulty comes 
from the performance requirements of the test instruments. 
Indeed, analogue testing is made of a long sequence of 
parameter characterization that is performed using very 
expensive instruments able to accurately measure analogue 
signals. In addition to these required expensive 
instruments, we should note that controllability and 
observability of deeply embedded analogue blocks are 
much reduced and the possibility of external testing may 
be limited. Indeed the number of pads are greatly reduced. 
Consequently the internal accessibility of the whole system 
decreases drastically. Also, as systems are operated at 

higher speeds, external testing becomes more susceptible 
to noise, crosstalk and probing problems. 

 To overcome these problems, several authors have 
proposed different Built-In-Self-Test (BIST) techniques 
where signals are internally generated and/or analysed [2-
8]. Another possible and less expensive solution consists in 
using DFT techniques to internally transform the analogue 
signals into digital signals that are made controllable and 
observable from the chip I/Os [4, 9, 10, 11, 12]. So, only 
digital signals are externally handled by a non-expensive 
“digital” test equipment.  

In the STBSiP product, like in most current mixed-signal 
systems, the converters are among the main components: 2 
ADC’s and 6 DAC’s are embedded in the same SiP. The 
today specifications for these converters require a 10-bit 
resolution, but the next generations will make use of 12-bit 
converters. Testing this set of converters is a complex task 
requiring a long test time because of the problems of 
accessibility, signal integrity, accuracy of converter 
parameter measurements.  

In this context, the authors propose an original DFT 
technique to test the whole set of embedded ADC’s and 
DAC’s. An extremely small circuitry is added to the 
original chip allowing a fully digital test approach for the 
whole set of converters.  

In section 2, we give the fundamental principle of the test 
technique. In this section, the test of the set of n DAC’s 
and m ADC’s is made equivalent to a system of equations 
where the converter characteristics are the unknowns. A 
concept of duality is introduced between the system of 
equations to be solved and the possible configurations 
C(n,m) of the set of converters. Section 3 explores the 
space of possible configurations of the network and defines 
the corresponding equations. In section 4, the proposed 
technique is validated through simulations. Finally, section 
5 gives some concluding remarks. 

2 ANC Fundamental Principle 

As often mentioned, analogue testing is classically 
oriented to performance characterization of a function 
under test. Performance characterization is obtained 
through a number of static and dynamic parameter 
estimations. 



2.1 ADC and DAC testing 
A crucial parameter, for ADC and DAC testing, is the 

Integral Non Linearity (INL). In addition, a number of 
dynamic parameters is also considered [10-14]. For most 
application domains, two key dynamic parameters are:  

• Total Harmonic Distortion (THD),  
• Spurious Free Dynamic Range (SFDR), 

These dynamic parameters are computed from the 
harmonic values appearing in the output signal spectrum.  
It means that a common way to estimate the dynamic 

parameters of a given converter is to perform a spectral 
measurement, i.e. to apply a 1-tone sine-wave to the 
converter input and compute the FFT of the output signal. 
The obtained harmonic values are then used to compute the 
dynamic parameters.  
Note that even some static parameters may be derived 

from these harmonic values as demonstrated in [15, 16]. 
 Given the above comments, it clearly appears that 

accurate measurement of the set of harmonic values of the 
output signal is a crucial point for any converter testing 
technique. 
Considering the test of a single ADC using efficient 

instruments, it has been demonstrated in [15] that the 
output signal can be represented by (1). This equation 
includes an ideal sampled sine-wave x(n) and the sum of 
all the harmonic values introduced by the converter errors 

( ) ( ) ( )( )∑
≥

θ+θ+=
0k

0nk kcosHconvnxns              (1) 

where n is the sample index, θ0 the initial phase and 

kHconv  the kth harmonic amplitude.  

The above equation may also apply to the test of a single 
DAC, because the analogue output signal is converted into 
a digital sample set. 

2.2 Analogue Network of Converters 
Considering a complex system with several ADC’s and 

DAC’s, the objective of this paper is to measure the 
harmonic values kHconv of each converter output signal 
using a fully digital way [17]. To be fully digital from an 
outside chip perspective, a simple circuitry is added to the 
system to: 
• Realize the analogue sum of any combination of DAC 

outputs, 
• Connect the resulting sum to any combination of ADC 

inputs. 
This DFT technique requests a simple circuitry as 

illustrated in Figure 1. A simple OPAMP-based analogue 
adder can be used to implement the proposed DFT. The 
multiplexer control signal Ii allows to connect the 
corresponding DACi numbered i. In the same way, the 
multiplexer control signal Oj allows to connect the 
corresponding ADCj numbered j. 
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Figure 1: The ANC DFT technique  

For a given combination of the control signals Ii and Oj in 
the configuration register, we obtain a given configuration 
of the ANC.  When n DAC’s are connected with m ADC’s, 
this is called a configuration C(n,m).  
Using configuration C(1,1), the spectrum of the output 

signal can be measured and we can extract the values of 
the harmonics. But in this case, the output signal includes 
both the errors of DAC1 and the errors of ADC1. In other 
words, the spectrum includes the harmonic contribution of 
DAC1 as well as the harmonic contribution of ADC1. So, 
due to the linearity of the system, we can write the 
following equation: 

kk
m
k

measure
k 1Hadc1HdacHH +==               (2) 

In this equation, we assume that the harmonic amplitudes 
created by the DAC are negligible with respect to the 
fundamental amplitude of the signal. Thus, we can 
consider the signal driving the ADC as a single tone signal. 
This working hypothesis will be verified in the validation 
phase described in section4. 
Thanks to (2), we obtain a relation between the harmonic 

contributions of the different converters. Indeed, in (2), the 
left member is known; it is the kth bin measured at the 
output of the ADC, while the right member represents the 
unknowns. 
This example demonstrates the relationship between one 

configuration and its resulting equation, which leads to the 
fundamental idea of the ANC DFT technique. By using 
different configurations C(n,m) we are able to obtain a set 
of different equations. So, with an adequate set of 
configurations (i.e. system of equations), we expect to be 
able to fully determine the set of unknowns, i.e. the 
individual harmonic contribution of each converter. 
The ANC DFT technique creates a duality between the 

configurations and the equations allowing the estimation of 
the harmonic contributions of each converter.  The next 
section explores the space of possible configurations to 
obtain such a set of equations. 
 
 
 



3 Configuration C(n,m) 

The ANC principle consists in using different hardware 
configurations in terms of converter interconnections. 
Then, the idea is to find an adequate test setup to 
discriminate the influence of each converter on the final 
response. In practice, the only test setup parameters we can 
easily control are the phase and the amplitude of the digital 
stimulus. In this section, two configurations using DAC1, 
DAC2 and ADC1 are studied in order to discriminate their 
harmonic contributions. 

3.1 Configuration C(1,1) at full-scale 
The first configuration considered is made of a single 

DAC and a single ADC (Figure 2).  
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Figure 2: C(1,1) test configuration 

According to the harmonic contribution model (2), the 
influence of the two data converters appears in the output 
sampled signal as shown in (3): 

( ) ( ) ( ) ( )( )0n
0k

FS
k

FS
k kcos1Hadc1Hdacnxns θ+θ++= ∑

≥
  (3) 

where FS
k1Hdac  and FS

k1Hadc are respectively the kth 
harmonic contribution of the DAC1 and the ADC1 for an 
input signal reaching the converter full-scale. Notice that, 
in this study, we consider that all the converters have the 
same dynamic range.  
If we only consider the three converters DAC1, DAC2 

and ADC1, we generate two test setups. In a first step, a 
sine-wave is sourced from DAC1 to ADC1, with amplitude 
covering the converter full-scale. The expression of a,m

kH , 
the amplitude of the kth harmonic measured on the ADC1 
output is given by: 

FS
k

FS
k

a,m
k 1Hadc1HdacH +=                     (4) 

In the second step, the test path goes through DAC2 and 
ADC1. The amplitude of the test signal still reaches the 
full-scale of the converters. Therefore, we obtain a second 
equation given by (5), where b,m

kH  is the amplitude of the 
kth harmonic measured on the ADC1 output. 

FS
k

FS
k

b,m
k 1Hadc2HdacH +=                    (5) 

At this point, we have three unknown parameters 
( FS

k
FS
k

FS
k 1Hadc,2Hdac,1Hdac ) and only two equations (4 

and 5) from two acquisitions. 
One could think to play with the amplitude and phase of 

the input signal to establish new equations. Unfortunately, 
variations of these test setup parameters give no additional 
independent information to discriminate the influence of 
each converter on the final response. Indeed, the input 
signal phase has no influence on the converter harmonic 
contribution and even if the input signal amplitude Ain 
modifies the converter harmonic contribution 
( FS

k
A
k 1Hdac1Hdac in ≠ if Ain ≠ FS), each new acquisition 

would give a new equation but also two new unknown 
parameters ( inin A

k
A
k 1Hadc,1Hdac ).  

To avoid this problem, the two DAC outputs can be 
added to establish a new configuration. This new 
configuration is called C(2,1) and is described in the next 
section. 

3.2 Configuration C(2,1) at full-scale 
The second hardware configuration is made up of two 
DAC’s and one ADC. The input of the ADC is the sum of 
the two DAC outputs. A C(2,1) test configuration has 
already been described in [18]. But in this case, the 
objective is to test only the ADC, and DAC’s must have 
higher resolutions than the ADC. 
Unfortunately, considering three converters with the same 

resolutions and dynamic ranges, the sum of two full-scale 
signals from DAC1 and DAC2 with no relative phase shift 
is twice the converter full-scale and would saturate the 
ADC.  

The solution to overcome this problem is to introduce a 
relative phase shift of 2π/3 between the two input signals 
(Figure 3). 
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Figure 3: Test setup to obtain an additional equation. 

The sum of the two DAC outputs is a full-scale signal; 
this property is mathematically explained by (6). 
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As a consequence we obtain (7), the third equation:  

( ) ( )3/kcos1Hadc3/2kcos2Hdac1HdacH FS
k

FS
k

FS
k

c,m
k π+π+=  (7) 



where c,m
kH  is the amplitude of the kth harmonic 

measured on the ADC output. So finally, we obtain the 
following equation system for each kth harmonic 
contribution: 

   FS
k

FS
k

a,m
k 1Hadc1HdacH +=  

   FS
k

FS
k

b,m
k 1Hadc2HdacH +=  

   ( ) ( )3/kcos1Hadc3/2kcos2Hdac1HdacH FS
k

FS
k

FS
k

c,m
k π+π+=  

We finally obtain a system of 3 equations with the 3 
converter harmonic contributions, which looks fine to 
determine the individual contributions. However, we are 
still unable to determine each converter contribution 
because the 3 equations are not always independent. 
Indeed, for some value of k and for the corresponding 
value of the cosines, the third equation happen to be a 
combination of the other two ones. In this case, we no 
longer have a 3-equation system and we are not able to 
discriminate the different harmonic contributions. 
For the harmonic components of a prime order and 

greater than three (k=5,7,11…), the third equation is a 
linear combination of the two other ones. To improve the 
discrimination capability, we need more equations and so, 
we need to create new test configurations. A solution can 
be to modify the amplitude of the input signal. This 
concept is developed in the next sections.  

3.3 Configuration C(1,1) at ½ full-scale 
The second parameter we can control is the input signal 

amplitude. As previously explained, harmonic contribution 
depends on the stimulus amplitude ( FS

k
A
k 1Hdac1Hdac in ≠ if 

Ain ≠ FS) and no trivial relationship exists between these 
different harmonic contributions. Consequently, the use of 
different amplitudes induces additional unknown 
parameters. Nevertheless, it also introduces new test setup 
possibilities that can be exploited to get additional 
independent useful information.  
Practically, we have looked for a system of equations that 

allows the discrimination of the three converter harmonic 
contributions, ,1Hdac FS

k  FS
k2Hdac , FS

k1Hadc  using test 
stimuli with amplitude at full-scale and amplitude at 
½ full-scale. 
The new third equation is the result of a test at ½ full-

scale through DAC2 and ADC1. 
The measured harmonics are the sum of DAC2 and 

ADC1 harmonic contributions for an input signal at ½ full-
scale. 

2/FS
k

2/FS
k

c,m
k 1Hadc2HdacH +=                   (8) 

Thanks to this test, we add two new unknowns. In order 
to keep the same number of unknowns and increase the 
number of equations, it is possible to associate DAC1 at 
full-scale as described in the next section. 

3.4 Configuration C(2,1) at ½ full-scale 
½ full-scaled input signal has introduced two unknown 

parameters, 2/FS
k2Hdac  and 2/FS

k1Hadc . Three independent 

equations have already been established, (4) (5) and (8), so 
we need two additional independent equations. C(2,1) 
configuration with both amplitude and phase variations is 
used to establish these two equations. The 4th test setup 
involves a full-scale input signal on DAC1 and a ½ full-
scale input signal on DAC2 with a π  phase shift 
(Figure 4). The resulting signal at the ADC input is a sine-
wave at ½ full-scale: 

( ) ( )
2

)xcos(
2

)xcos(xcos
2
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π+
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Figure 4: Test setup to obtain the 4th independent equation 

The resulting equation is the sum of the harmonic 
contribution at full-scale of DAC1, the harmonic 
contribution at ½ full-scale of DAC2 balanced by the 
phase shift and the harmonic contribution at ½ full-scale of 
ADC1. 

( ) 2/FS
k

2/FS
k

FS
k

d,m
k 1Hadckcos2Hdac1HdacH +π+=    (10) 

The 5th required test setup is very similar to the previous 
one. The input amplitudes are the same as before but they 
are relatively phase shifted of 1ϕ . The resulting signal at 
the ADC input is now a sine-wave at full-scale with a 
phase shift of 2ϕ . 
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The 5th equation then corresponds to the sum of the 
harmonic contributions balanced by their phase shift: 

( ) ( )2
FS
k1

2/FS
k

FS
k

e,m
k kcos1Hadckcos2Hdac1HdacH ϕ+ϕ+= (13) 

In summary, the proposed test strategy is composed of 
five successive tests. Each test consists in an acquisition 
and a spectral analysis (with Fast Fourier Transform) to 
evaluate harmonic bins. We obtain a 5-equation system for 
each harmonic bin: 
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This system of independent equations is sufficient to 
calculate the values of the required harmonic contributions 



( ,1Hdac FS
k  FS

k2Hdac , FS
k1Hadc ). It allows thus a fully 

independent characterization of the three converters of the 
C(2,1) configuration in terms of harmonic contributions. 

3.5 Configuration C(n,m) 
Thanks to the converter characterization obtained from 

the C(2,1) configuration, it seems easy to test every other 
converter embedded in the same complex chip. 
The idea is to use one of the three previously 

characterized converters as a measurement instrument 
whose non-ideal features are well known. 
Test time directly depends on the number of required 

acquisitions. The first step of the test procedure needs five 
acquisitions to test three devices. Then using a C(1,1) test 
configuration (cf 3.1) with an already characterized 
converter, considering (4) there is only one unknown 
variable: the harmonic contribution of the uncharacterized 
converter. As a consequence we need only one additional 
acquisition to test this converter. So, the number of 
acquisitions for a complex chip with n DAC’s and m 
ADC’s is only of n+m+2 acquisitions without any external 
analogue equipment requirement. 
Moreover, because only digital ATE resources are 

required, it is conceivable to test several converters at the 
same time. Consequently, after the first step, each new step 
could use simultaneously all available characterized 
converters as measurement instruments. In this 
configuration, the testing time could be drastically reduced.  

4 Validation 

A number of experiments based on simulation have 
been conducted to validate the proposed approach. The 
converter model used for simulation is first introduced, 
then the simulation setup is defined, and finally 
experimental results are presented. The performance of the 
proposed test strategy is discussed in terms of estimation 
error on the harmonic components and on the dynamic 
parameters. 

4.1 Data converter model 
To simulate the test strategy, we need to establish a model 

that takes into account the effects of the converter non-
idealities. Three main sources of errors will be considered, 
i.e. the sampling jitter of the converter, the non-linearities 
of its transfer function and the thermal noise. 
Let us consider an input sine-wave passing through an 

ideal converter. This sampled signal can be expressed (in 
LSB unit) by: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+θ+θ⎟⎟
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V
V
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V
V
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where N and VFS respectively represent the number of 
bits and the full-scale voltage of the converter, V0 and VDC 
respectively correspond to the amplitude and the DC 
component of the input sine-wave, and θ0 and θn are 
respectively the initial and nominal sampling phase of the 
signal. The nominal sampling phase is given by: 

n
M
P2n ⎟
⎠
⎞

⎜
⎝
⎛π=θ                                 (15) 

where M is the number of samples and P the number of 
periods in the record.  

Let us now introduce the sampling jitter of the converter. 
Essentially, it is a phase noise that changes the ideal 
sampling time. The resulting deteriorated signal is given 
by: 
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where t0t f2J δπ= , with f0 the frequency of the input 
signal and tδ  a centred Gaussian noise. According to [5] 
and thanks to a Taylor series development, the jitter 
contribution can be separated from the input signal 
expression in (16). Finally, considering an additional 
thermal noise we obtain the following expression: 

( ) ( ) ( )nnxnr ε+=                              (17) 

where ε(n) is the sum of the noise induced by the 
sampling jitter and the thermal noise (NTh). The thermal 
noise is usually modelled by a centred Gaussian noise. 

( ) ( ) Th0nt
FS

0N NsinJ
V
V2n +θ+θ=ε           (18) 

The second significant source of errors that has to be 
considered is the non-linearity of the converter transfer 
function. A common approach to analytically model the 
converter INL is based on polynomial approximation [5, 
15, 20]. However, such modelling does not permit to 
describe the sharp transitions usually encountered for 
actual INL. In order to alleviate this drawback, we choose 
a different approach which consists in using “true” INL 
curves extracted from measurements on real data 
converters.  
Consequently, let us consider s(n) the signal deteriorated 

by the two types of errors: 

( ) [ ])])n(r([INL)n(rns +=                       (19) 

where INL(x) is a non-linearity curve measured through 
histogram testing of a real converter. This non-linearity 
curve is indexed by the rounded signal [r(n)], including the 
sampling jitter effect  The complete equation is rounded to 
model the quantization effect. 
Equation (19) is the equation that models the 

deterioration of a sine-wave signal passing through a 
converter affected by sampling jitter, transfer function non-
linearities and thermal noise. This equation has been used 
for the simulations described in the following sections. 

4.2 Simulation setup 
To validate the proposed test strategy, we have conducted 

a number of simulations considering data converters of the 
same resolution and sampling frequency. The objective is 
to compare the values of the harmonic components 



evaluated using the proposed strategy to the ones obtained 
using a classical stand-alone test.  
At first, we have performed histogram tests on 15 real 

data converters to extract INL curves (PHILIPS 
TDA9910). Using equation (19), we can therefore model 
15 different converters. Then we have conducted two sets 
of simulation: 

• At first, we have considered each data converter 
in a stand-alone configuration to get reference values. 
• Then, we have considered five different C(2,1) 
configurations, each one involving three different 
converters. For each C(2,1) configuration, we have 
simulated the test algorithm described in section 3.4.  

4.3 Results and discussion 
As an example, Figure 5 presents the results obtained for 

one converter. The amplitude of the harmonic components 
evaluated using the C(2,1) configuration (black bins) are 
compared to the amplitude of the harmonic components 
computed using the classical stand-alone test configuration 
(grey bins).  
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Figure 5: Estimation of the first 20 harmonics of one converter 
vs. reference values 

The maximum estimation error observed on the amplitude 
of the first 20 harmonic components is about 5dB. 
However, it is worth pointing out that this error is observed 
for a harmonic component of very small amplitude 
(≈-85dB). Considering only the major harmonic 
components with amplitude higher than -75dB, the 
observed estimation error remains inferior to 2dB. These 
results show the efficiency of the proposed strategy that 
permits an accurate evaluation of the converter harmonic 
components. 
 Similar simulations have been performed for the 

complete set of 15 different converters. Results are 
summarized in Table 1 that reports the maximum 
estimation error observed on the amplitude of the first 20 
harmonic components for the different converters. Note 
that the results have been classified in three different 
ranges  according to the amplitude of the harmonics: 
• Range 1 corresponds to harmonic higher than -75dB. 
• Range 2 corresponds to harmonic higher than -85dB 

and lower than -75dB. 
• Range 3 corresponds to harmonic lower than -85dB. 

It should be reminded that the harmonics will be later 
used to compute the dynamic parameters of the converters. 
It is obvious that harmonics belonging to range 1 will have 
a significant impact on the dynamic parameters, while 
harmonics in the third range are so small that they will 
have almost no impact on the values of the dynamic 
parameters. 

 H>-75dB -75dB>H>-85dB H<-85dB 
Converter#1 0.28 -7.99 -16.04 

#2 -0.64 7.58 -19.23 
#3 0.36 7.62 3.55 
#4 -0.26 6.1 -8.49 
#5 -0.25 0.91 11.60 
#6 -0.33 -4.89 5.73 
#7 0.24 -3.73 -18.16 
#8 -0.39 2.10 -22.31 
#9 0.25 8.00 6.58 
#10 3.50 1.03 3.70 
#11 -0.10 -2.10 -2.96 
#12 -0.29 -1.02 22.9 
#13 -0.37 -1.2 4.59 
#14 0.14 3.17 14.20 
#15 -0.45 -4.84 -5.42 

Table 1: Maximum estimation errors vs. the amplitude range of 
the harmonic components (in dB) 

Analyzing the results in Table 1, it can be observed that 
the harmonics in range 1 with high amplitude exhibit the 
lowest estimation error. On the complete set of 15 
converters, the maximum estimation error remains: 
• Below 3.5dB for harmonic components belonging to 

range 1,  
• Below 8.00dB for harmonic components belonging to 

range 2, 
• Below 22.9dB for harmonic components belonging to 

range 3. 
Moreover, we observed that the estimation error is 

globally proportional to the inverse of the harmonic 
amplitude and that harmonics remain in the same range 
even considering the error estimation (e.g. range 3).  

As a conclusion, we can say that the largest errors are 
made on harmonic in range 3, i.e. the harmonics with a 
very low impact on the computation of the dynamic 
parameters.  

To further validate the efficiency of the proposed 
strategy, we have evaluated two dynamic parameters, the 
THD and the SFDR, for the 15 different converters. These 
parameters are evaluated from the spectral distribution. 
Results are summarized in Table 2, which reports the 
THD/SFDR values computed using the stand-alone 
configuration and the THD/SFDR values computed using 
the C(2,1) configuration, and the corresponding estimation 
error.  



Conveter 
Number 

Wanted 
THD 
(dB) 

THD 
estimation 

(dB) 

THD 
error 
(dB) 

Wanted 
SFDR 
(dB) 

SFDR 
estimation 

(dB) 

SFDR 
error 
(dB) 

#1 -59.1 -59.0 -0.1 68.8 69.3 -0.5 
#2 -58.0 -57.9 -0.1 69.3 69.9 -0.6 
#3 -58.2 -58.2 0 67.9 67.5 0.4 
#4 -64.3 -63.9 -0.4 69.4 68.9 0.5 
#5 -66.7 -66.9 0.2 70.9 71.1 -0.2 
#6 -61.7 -58.8 -2.9 63.4 64.2 -0.8 
#7 -48.1 -48.1 0 67.1 66.3 0.8 
#8 -62.7 -62.2 -0.5 65.4 64.7 0.7 
#9 -60.7 -60.9 0.2 64.9 65.5 -0.6 
#10 -59.7 -59.7 0 62.2 62.2 0 
#11 -61.5 -61.8 0.3 64.0 65.1 -1.1 
#12 -61.6 -61.4 -0.2 62.8 62.8 0 
#13 -70.4 -69.6 -0.8 71.1 67.4 3.7 
#14 -55.5 -55.6 0.1 65.0 65.0 0 
#15 -64.0 -63.6 -0.4 68.6 68.4 0.2 

Table2: THD & SFDR estimation errors 

Analyzing these results, it can be seen that the strategy 
enables an accurate measurement of both dynamic 
parameters, with an estimation error that remains below 
3.7dB for the 15 different converters considered in the 
experiment. Note that such a low estimation error actually 
corresponds to the accuracy range that we can expect for 
the measurement of these parameters taking into account 
fluctuations in the test environment. Indeed, the reference 
values computed here with the stand-alone configuration 
are obtained considering ideal test instruments. However in 
a real environment, the repeatability of the measurements 
is impacted by unavoidable fluctuations in the test 
instrumentation. As a result, it is classical to observe 
dispersions in the range of 5 to 10% when measuring the 
THD and SFDR parameters in a real environment.   

5 Conclusion  

In this paper, we have presented a new concept called 
“Analogue Network of Converters” (ANC) that can be 
used to test distortion of embedded converters. Using this 
approach we have demonstrated that a fully digital test of 
the converters can be performed thus decreasing 
significantly the cost of the test. 
Moreover in the case when CPU resources (DSP) are 

already present in the chip, it is possible to implement a 
complete BIST setup. 
Our test strategy is well suited to SiP components which 

are usually complex, including several DAC’s and ADC’s. 
The next step presently under development consists in a 

validation by an experimentation and an evaluation of the 
robustness by varying several parameters like: amplitudes 
of different converters or different data converter 
resolutions.  
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