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ABSTRACT 
Semantic matching of schemas in heterogeneous data sharing 
systems is time consuming and error prone. Existing mapping 
tools employ semi-automatic techniques for mapping two 
schemas at a time. In a large-scale scenario, where data sharing 
involves a large number of data sources, such techniques are not 
suitable. In this paper we present a method, which creates a 
mediated schema tree from a large set of input schema trees and 
defines mappings from the contributing schemas to the mediated 
schema. It is a two-phase approach. First, we use a set of 
linguistic matchers, which extract the semantics of all distinct 
node labels, present in input schemas, and form clusters of 
semantically similar labels. Second, we use a tree-mining data 
structure, combined with the similar label clusters, to calculate the 
context of each node, which is used in mapping. Since the input 
schemas are trees, our tree mining algorithm uses node ranks 
calculated by pre-order traversal. Tree mining combined with 
semantic label clustering minimizes the target search space and 
improves performance, thus making it suitable for large scale data 
sharing. We report on experiments with up to 80 schemas 
containing 83,770 nodes. PORSCHE took 587 seconds to match 
and merge them to create a mediated schema and to return 
mappings from input schemas to the mediated schema. We 
compare the quality of matching of PORSCHE with COMA++ on 
standard XML schemas, and find them to be very similar to the 
mappings produced by COMA++. 

Categories and Subject Descriptors 
I.7.2 [XML]: XML and Web Data – XML Data and schema 
integration. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
XML schema tree, schema matching, schema mapping, schema 
mediation, tree mining, large scale.  

1. INTRODUCTION 
Schema matching relies on discovering correspondences between 
similar elements of two schemas. Several different types of 
schema matching [2,4,7,8,9,13,14,15,16,17] have been studied, 
demonstrating their benefit in different scenarios. In data 

integration schema matching is of central importance. The need 
for information integration arises in data warehousing, OLAP, 
data mashups [11], and workflows. Omnipresence of XML as a 
data exchange format on the web and the presence of metadata 
available in that format force us to focus on schema matching, 
and on matching for XML schemas in particular. 

Previous work on schema matching was developed in the context 
of schema translation and integration [2,4,9], knowledge 
representation [8,17], machine learning, and information retrieval 
[7,12]. Most mapping tools map two schemas with human 
intervention [2,4,7,8,9,13,14,15]. The motivation behind our work 
is to explore the matching and integration of a large set of schema 
trees, using scalable syntactic and semantic matching and 
integration techniques. 

We consider schemas as rooted, labelled trees. This supports the 
computation of contextual semantics in the tree hierarchy. The 
contextual aspect is exploited by tree-mining techniques, making 
it feasible to use automated approximate schema matching [7] and 
integration in a large-scale scenario. The individual semantics of 
node labels have their own importance. We utilize linguistic 
matchers to extract the concepts hidden within them. Tree mining 
techniques by definition extract similar sub tree patterns from a 
large set of trees and predict possible extensions of these patterns. 
The pattern size starts from 1 and is incrementally augmented. 
There are different techniques [1,20] which mine rooted, labelled, 
embedded or induced, ordered or unordered sub-trees. The first 
basic function of tree mining is to find sub-tree patterns that are 
frequent in the given set of trees, which is similar to schema 
matching activity that tries to find similar concepts among a set of 
schema trees. 

Our Contributions 
a) Matching, merging and the creation of a mediated schema 

with semantically approximate mappings, in one algorithm 
which has good performance. 

b) Use of tokenisation, abbreviation and synonym matching of 
label tokens, supporting node clustering.  

c) Extension of a tree mining data structure [20] to schema 
matching, using b) to minimize the search space. 

d) Ability to produce simple 1:1 mappings, as well as  complex 
mappings, including 1:n (leaf mapped to non-leaf) and n:1 
(non-leaf mapped to leaf). 

e) Experiments with real XML schema instances (OAGIS, 
XCBL1) showing performance appropriate for a large scale 
scenario. 

f) Comparison with COMA++, showing that PORSCHE is 
qualitatively similar. 

                                                                 
1 OAGIS : http://www.openapplications.org/ 
XCBL : http://www.xcbl.org/ 
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The reminder of the paper is organized as follows. Section 2 
presents the motivations and issues encountered in large-scale 
schema integration. Section 3 defines the concepts used in the 
paper. In Section 4 we formalize the semantic integration and 
mediation problem. Our approach using Performance ORiented 
SCHEma matching (PORSCHE) is detailed in Section 5. Section 
6 presents the experimental results comparing our approach with 
previous work. While Section 7 reviews related work and 
compares it to ours. Section 8 gives a discussion for future work 
and Section 9 concludes the paper. 

2. MOTIVATIONS IN SCHEMA 
MEDIATION 
Schema Mediation can be defined as integration of a set of input 
schemas into a single mediated schema, with concepts mappings 
from the input schemas to the mediated schema. 

Heterogeneous data sharing environments require semantic 
mediation to support query formulation and execution. Such an 
environment can be dynamic or static. In the late 90s schema 
integration applications emphasised a static approach, used, for 
example, in data warehousing. In a data warehouse, schema 
design (using a mediated schema) is a one-off process. The 
experts analyse the source schemas and design a centralised data 
warehouse schema, and the mappings from source schemas 
mapped to the warehouse schema. The mappings in such 
applications can be termed exact mappings. 

In a dynamic environment, individual data sources and their 
schemas are independent and free to change. A pre-designed 
mediated schema is no answer in a dynamically changing world. 
The mediated schema has to change, to match the changes in 
source schemas, by changing the mappings between the source 
and the mediated schema. An example of such a requirement can 
be seen in catalogue mappings in web based B2B data exchange. 
For example, at ebay.com, individual vendors map their catalogue 
to the ebay catalogue. A query placed on ebay returns results from 
all the vendors who have mapped their schemas to the ebay 
catalogue. At any time ebay can enhance its catalogue or any 
individual vendor can withdraw or change its catalogue structure. 

There are numerous issues in the semantic integration of a large 
number of schemas. Beside mapping quality, performance is also 
very important. Semantic Web, by definition, offers a large-scale 
dynamic environment where individual service providers are 
independent. In such a situation the mappings can never be exact, 
rather they are approximate [5,8]. 

In this paper we focus on a large number of schemas, automated 
matching, and performance. We explore mediated schema 
generation. For a given batch of schemas and a chosen mediated 
schema, we efficiently carry out the construction of a large 
mediated schema, which integrates all given schemas. To enhance 
the speed and lower the cost of data integration, we remove the 
need for human intervention. Previous work on matching two 
large schemas has been presented in [15] using COMA++[2] tool. 
In this work [15], first, user divide the schema into  fragments and 
then each fragment from source schema is mapped to target 
schema fragments to find inter-fragment matchings. Next, these 
fragment mappings are merged to compute the schema level 
mappings. 

 
 

Schema size, batch size and matching algorithms 
Performance is an open issue in schema matching [15,16,17].  
The complexity of the schema matching task is typically 
proportional to the size of participating schemas, and the number 
of match algorithms employed, i.e. O(NMA), where N and M are 
node counts in the source and target schema and A is the number 
of algorithms applied [2,14]. The quality of mappings depends on 
the type of matching algorithms and the way they are combined, 
for instance their execution order.  

Here we present a new method for schema matching and 
integration. The method is a hybrid algorithm which matches, 
maps and integrates schemas. It uses extended tree mining data 
structures for performance oriented approximate schema 
matching for XML data sets. 

3. PRELIMINARIES 
3.1 Match Operator 
Schema matching finds similarities between elements of one 
schema and the elements of another schema. There are three basic 
match cardinalities at node level as discussed in [16]. 

i) 1:1 – one node of source schema corresponds to one element in 
the target schema,  

ii) 1:n – one node in the source schema is equivalent to a 
composition of n nodes in the target schema,  

iii) n:1 - n number of nodes in source schema compositely map to 
one node in target schema. 

Since we are matching tree structures, where the leaf nodes access 
data, we emphasize more on leaf node matching. Our 
categorization of node match cardinality is driven by its leaf or 
non-leaf status, as given in Table 1. 

Table 1 : Match  Categorization 

Source 
Node 

Target 
Node 

Match 
Cardinality 

leaf leaf 1:1 

non-leaf non-leaf 1 :1 

leaf non-leaf 1 :n 

lon-leaf leaf n :1 

Semantically, a match between two nodes can be either an 
equivalence or a partial equivalence. In a partial match, the 
similarity is partial, e.g. Name = ‘John M. Brown’ in source 
schema is partially matched to LastName=’Brown’ and 
FirstName =’John’ in the target schema, because Name also 
contains the MiddleInitial=’M’ information. If there are several 
possible  matchings of the source element to the mediated 
schema, best/most correct match can be selected. The choice can 
depend upon some match quality confidence computed at run 
time [2,9,10,16]. 

3.2 Definitions 
Semantic matching requires the comparison of concepts which are 
structured as schema elements. Node labels of schema elements 
can be considered as concepts and each element’s contextual 
placement in the schema enhances the semantics of the concept. 
For example in Figure 1, element author/name and 
publisher/name are similar labels but their contexts are different, 



which makes the two elements conceptually disjoint. In an XML 
tree, the combination of the element label and the structural 
placement of the element produce the concept. 

 

Definition 1 (Schema Tree) 
A schema is a rooted, labelled tree [18]. We call it a schema tree. 
A schema tree, S=(V, E) is a directed, acyclic, connected graph, 
with V = {0,1,...,n}, a set of nodes, and E = {(x,y) | x,y ∈  V }, a 
set of edges. One distinguished node r ∈  V is designated the 
root, and for all x ∈  V, there is a unique path from r to x. Further, 
l : V  L is a labelling function mapping nodes to labels in L = 
{l1,l2, …}, and VT: L  Vi is a function, which returns a set of 
nodes  Vi ⊆  V  with label l ∈  L. 

Definition 2 (Ordered Tree) 
In an ordered tree the children of each node are ordered 1 to k, 
otherwise, the tree is unordered. We order each schema tree using 
pre-order traversal (Figure 1, node number). 

Definition 3 (Ancestor-Descendant Relationship) 
If x,y ∈  V and there is a path from x to y, then x is called an 
ancestor of y (and y a descendant of x), denoted x ≤p y, where p 
∈  N is the length of the path from x to y. If x ≤1 y (x is an 
immediate ancestor), x is called the parent of y, and y the child of 
x. If x and y have the same parent, they are called siblings, and if 
they have a common ancestor, they are called cousins, provided 
they are at same level in the tree and are not siblings. 

Definition 4 (Node Scope) 
Since the schema tree is ordered (Def. 2), nodes x ∈  V  are 
numbered according to their position in the de pre-order traversal 
of the tree S (for example, the root is numbered 0). Let T(x) 
denote the sub-tree rooted at x, and let y be the rightmost leaf (or 
highest numbered descendant) under x. Then the scope of x is 
defined as scope(x)=[x,y]. Intuitively, scope(x) is the range of 
nodes under x, and includes x itself, see Fig. 1. The count of 
nodes in T(x) is  y-x+1. 

Definition 5 (Tokenization) 
A label l is a composition of m strings, called Tokens. t: L  Tis 
a tokenization function which maps a label to a set of tokens      
T= t1,t2, …}. 

Tokenization [8] can help in establishing similarity between two 
labels. For example label (DateOfBirth) = {date, of, birth} and 
label (BirthDate) = {birth, date}. Since ‘of’ is a preposition, it can 

be discarded. This produces 100% similarity for the two labels, 
given the identical token sets {date, birth}. 

Definition 6 (Token Semantics) 
Token semantics discovery is the process of lemmatization of 
each token and finding natural language grammatical meaning of 
respective lemma (verb, noun, abbreviation etc.). For example, in 
labels ‘IssuedAt’ and ‘IssuedOn’, lemma for the token ‘Issued’ is 
‘issue’, which is a verb. Using some external natural language 
oracles, one can infer different semantics for the two labels. For 
label ‘IssuedAt’, the reference is towards a place, whereas 
‘IssuedOn’ refers to a date.  If the two labels are ‘ IssueAt’ and 
‘IssueOn’, the semantics may be different, as lemma ‘issue’ is a 
noun and not a verb. A function C(t) returns concept of token t as 
the lemma which contains its grammatical interpretation. 
 C(t):t  lemma(t)  

Definition 7 (Label Semantics) 
Label semantics corresponds to the conceptual meaning of the 
label (irrespective of its relation to the node it is related to). It is a 
composition of concepts attached to the tokens making up the 
label i.e., 

Cl: l  (C (t1),C (t2), ……,C (tm)). 

Definition 8 (Node Semantics) 
Node semantics Cx combines the semantics of the node label C(lx) 
with its contextual placement in the tree TreeContext(x) [8].  

Cx: x  (C(lx), TreeContext(x)). 

TreeContext of a node is calculated using the node number and 
scope. These properties encode structural semantics. This is 
illustrated in Example 1, Section 3.3. 

3.3 Scope Properties 
Scope properties give us the contextual placement of a node in the 
tree and are explained in detail, from the tree mining perspective 
[20]. The properties are simple integer operations. 

Unary Properties, given a node x [X,Y] 
Property 1. Leaf Node(x) : X=Y. 
Property 2. Non-Leaf Node(x): X<Y. 
Binary Properties 
Given x [X,Y], xd [Xd,Yd], xa [Xa,Ya], and xr[Xr,Yr]. 
Property 3. Descendant (x,xd), xd is a descendant of x  : Xd>X 
and Yd<=Y. 
Property 4. Descendant Leaf (x,xd) (combination of Property 1 
and 3) : Xd>X and Yd ≤Y and Xd=Yd. 
Property 5. Ancestor (xa,a) (complement of Property 3) xa is 
ansector of x : Xa<X and Ya>=Y. 
Property 6. Right Hand Side Nodes with Non-Overlapping Scope 
: xr is Right Hand Side Node of x I: Xc>Y. 

Example 1:  In Figure 1, Property 1 for node title[7,7] defines it 
as a leaf because the node number equals the number of its 
rightmost child. Property 2, for publisher [4,5] defines it is a non-
leaf node, as its number is less than the number of its rightmost 
child. Properties 1 and 2 detect simple and complex elements in 
an XML schema.■ 

Example 2:  The task is to find in the tree nodes matching of 
author/name. In Figure 1 there are two nodes called name:[2,2] 
and [5,5]. Given synonymy between words author and 

 
 
 
 
 
 
 
 

Figure 1. Example of an XML schema tree with 
abbreviated labels and [number, scope] marked for each 

node 

info [3,6] title [7,7] 

isbn  [6,6] 

name  [5,5] 

publisher  [4,5] name [2,2] 

writer  [1,2] 

book  [0,7] 
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writer[1,2], we perform the descendant node check on nodes 
[2,2] and [5,5] with respect to writer[1,2]. Node [2,2] is a 
descendant  of  [1,2], using Property 3, and node [5,5] is not a 
descendant of [1,2]. Similarly, property 5 produces 
Ancestor([4,5],[5,5]) which holds for publisher[4,5] and 
name[5,5] and Ancestor([0,7],[4,5]) holds for book[0,7] and 
publisher[4,5].  ■ 

4. DEFINITION OF SEMANTIC 
MATCHING 
INPUT: A set of schema trees S={S1,S2, …, Su}. 
 
OUTPUTS:  
a) A mediated schema tree Sm, which is a composition of all 
distinct concepts in S.  
Sm = P ui=1 , Si = {C1 ρ C2 ρ ….ρ Cn} includes all distinct concepts 
in S (Def. 8). P is the composition function and ρ denotes the 
composition operator. 
b) A set of mappings M = {M1, M2, …., Mw} from the concepts 
of input schema trees to the concepts in the mediated schema. 

The mediated schema tree Sm is a composition of all nodes 
representing distinct concepts in the set of schemas. During the 
integration process if a node is not present in Sm, a new edge e’ is 
created in Sm and a node is added to it. 

4.1 Semantic Label Matching 
Semantic label matching intuitively minimizes the search space of 
possible mappable target nodes [8,20]. The derivation of concept 
similarity in two schemas is initiated by comparing their labels. 
Similarity between labels is either equivalence or partial 
equivalence, as shown below:  
a) Equivalence: C(lx ) = C(ly) Similar 

b) Partial Equivalence: C(lx ) ≅ C(ly) 

i. More Specific ¦ Is part of : C(lx ) ⊆ C(ly) 

ii. More General ¦ Contains : C(lx ) ⊇ C(ly)  
iii. Overlaps: : C(lx ) ∩ C(ly) 

Example 3: Consider labels AuthorName and WriterName. Since 
Author and Writer are synonyms and Name is shared, 
conceptually they are equivalent, and AuthorName = 
WriterName. Similarly, AuthorLastName ⊆ AuthorName, as 
LastName is conceptually part of Name. Conversely, 
AuthorName ⊇ AuthorLastName. MiddleLastName and 
FirstNameMiddle are overlapping, as they share tokens {Name, 
Middle}..■ 

5. PORSCHE: Our Approach 
We assume that only schema trees are available as input. 
PORSCHE accepts a set of schema trees and outputs the 
mediated schema tree and the corresponding mappings. We make 
the following assumptions valid in domain specific schema 
integration (extended from [18]). 

5.1 Assumptions 
a) Schemas in the same domain contain the same domain 

concepts, but differ in structure and concept naming. 
b) In one schema different labels for the same concept are 

rarely present. 

c) Only one type of matching between two labels is possible. 
For example, author is a synonym of writer. 

d) We select the input schema with the highest number of nodes 
as the initial mediated schema. Since each node represents a 
concept, this covers the maximum number of concepts. This 
minimizes the addition of new concepts (nodes not present in 
the mediated schema) to the mediated schema and should 
improve performance. 

e) We perform semantic comparisons between the labels of the 
mediated schema and the labels not present in the mediated 
schema (based on assumption b). This minimizes the target 
search space for similar labels. 

f) A node from the input schema is only matched to the cluster 
of similar label nodes present in the mediated schema. 

5.2 PORSCHE Architecture 
PORSCHE architecture covers the complete semantic integration 
process involving schema trees in a large-scale scenario. A 
diagram of the architecture is shown in Figure 2. 

The application is divided in three parts: Pre-Mapper, Label 
Concept Calculator and Node Mapper. Schema trees are input to 
the system as a stream of XML. Pre-Mapper calculates scope and 
node number for each of the nodes in the input schema trees. A 
listing of nodes and a list of distinct labels for each tree is 
constructed. In a schema tree, if several nodes have the same 
label, each corresponding node label is considered as distinct, as it 
represents a contextually different node and has distinct 
semantics. For example, name in author name and 
publisher name are two distinct node labels. 
In the next phase, a linguistic matcher identifies semantically 
distinct node labels in the input trees. It uses an abbreviation table 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. PORSCHE Architecture 



and tokenizes the labels. Then it derives the meaning for each 
individual token and combines these meanings to form a label 
concept. The comparisons of labels are based on similar token 
sets or similar synonym token sets.  

Example 4 : Consider labels “POShipOn” and 
“PurchaseOrderDeliverOn”. In the abbreviation table PO stands 
for {purchase, order} and in the synonym table ‘deliver’=‘ship’ 
and ‘on’=‘date’. This implies that the two labels have similar 
token sets.■ 

Mediated Schema Creator takes the input schema tree with the 
highest number of nodes and then takes each schema in turn and 
merges it with the mediated schema. This requires matching, 
mapping and merging. Concepts from input schemas are matched 
to the mediated schema. The algorithm traverses the input schema 
depth-first, mapping parents before siblings. If a new concept is 
found, with no match in the mediated schema, a new concept 
node is created and added to the mediated schema. It is the right 
most child leaf node added to the node in the mediated schema to 
which the parent of current node is mapped. This new node is 
used as the target node in the mapping. The algorithm combines 
node label similarity and contextual positioning in the schema 
tree, calculated with the help of properties defined in Section 3.3. 

5.3 Algorithms 
Pre-Mapper comprises a number of functions: (1) scope 
calculation, (2) parent node number calculation, (3) initial 
mediated schema detection and (4) creation of data structures for 
matching, shown in Tables 1 and 2. Those data structures are 
updated by NodeMapper algorithm. The novelty of our method 
is that similar labels are clustered together to support fast 
calculation of possible matches. The best match is selected, based 
upon the contextual placement of nodes. (1), (2), (3) and (4) 
require one traversal of each tree.  
NodeMapper algorithm, Figure 3, covers both schema matching 
and integration. It handles the semantics of node labels along with 
the node’s tree context, to compute the mapping.  The algorithm 
creates mappings for almost every input node, in particular for the 
leaves, since the data resides there. The algorithm accepts as input 
a set of schemas S and selects the initial mediated schema Sm. It 
outputs the mediated schema Sm’ with added nodes (if any) and a 
set of mappings M, from input schema nodes to the mediated 
schema.  
Initially, Sm is adopted as the final mediated schema Sm’ (l. 1). 
Match for every node (l. 3) of each input schema (l. 2) is 
calculated, mapping it to the mediated schema.  For each input 
node v, a set Vt of possible mappable target nodes in the mediated 
schema is created, constituting the target search space for v.  The 
criterion for the creation of this set of nodes is node label 
equivalence or partial equivalence (l. 4,5).  Vt can have zero (l. 
24), one (l. 8) or more than one (l. 18) nodes. Checks in lines 9, 
14 and 16 are used to compare the tree context of nodes v (input 
node) and vt (possible target node in Vt), to ensure e.g. that a leaf 
node is mapped to another leaf node.  
Second check, ancestorMap (l. 10), ensures that at some point up 
the ancestor hierarchy of v and vt, there has been a mapping. This 
is to ensure that subtrees containing v and vt correspond to similar 
concept hierarchies. This increases the match confidence of nodes 
v and vt. Similarly if the target search space Vt has more than one 
node, we check the descendant property (line 19), for each node 
vt in Vt, Descandant(map(parent(v)),vt). This verifies that vt lies 

in the sub-tree of node to which parent node of v is mapped, that 
is with in the scope. 

Algorithm : NodeMapper 
Input:  S, Sm // S : set of Schema Trees  

              // Sm : Mediated Schema Tree 
Output: M, Sm’    // M: set of mappings; initially empty  
                 //  Sm’: Sm appended with new nodes 
Begin 
1  Sm’ Sm 
2 for each Si ∈  S do  // 1≤ i ≤ u  
3  for each v ∈  V(Si) do   // V : nodes of Si 
4 Lv  l(v)              // Lv : label of node v 
5 Lvsl SimilarLabels(Lv, Sm’)  
 // Lvsl : set of labels in Sm’ similar to Lv    

 // Lvsl ⊆ Lm where Lm:  set of node labels in Sm’ 

6 if (Lvsl ¬ empty) then 
7 Vt VT(Lvsl) //Vt : {vt1, vt2 ….vt|Lvsl|} : Def. 1 
 // Vt: set of nodes in Sm’ corresponding  to 
 // labels in Lvsl, vt: one of the nodes in Vt 
 // VT is applied to each label in Lvsl in turn 

8 if (|Vt| = 1) then 

9 if ((Leaf(v)∧Leaf(vt1)) ∨  // property 1,2 

      ((¬ Leaf(v))∧(¬ Leaf(vt1)))) then 
10   if (ancestorMap(v,vt1))   
11        m  map11 (v,vt1) 
12   else (vt1, Sm’)=addNewNode(Sm’,v) 
13          m  map11 (v, vt1) 

14 if (Leaf(v)∧(¬Leaf(vt1))) then 
15   m  map1n (v,leafNodes(vt1)) 

16 if (¬(Leaf(v))∧(Leaf(vt1))) then 
17   m  mapN1 (v,vt1) 
18 else           // i.e. |Vt| >1 
19     for  each vt ∈  Vt do   // Vt:{vt1,vt2,..,vtm} 
             //  function true for only one node or none 
20           if (descendant(v,vt) = true)       // property 3 
21      m  map11 (v,vt) 
22       else (vt, Sm’)  addNewNode (Sm’,v) 
23  m  map11 (v,vt) 
24 else (vt, Sm’)= addNewNode (Sm’,v)  
25  m  map11 (v,vt) 
26        M=M U  m 

27 return M, Sm’ 
End 

Figure 3. Schema mediation algorithm 



Function addNewNode( ) (l. 12,22,24) adds a new node vt as the 
rightmost sibling of node to which parent node of v is mapped. 
Mapping function map11( ), makes a 1:1 map from v to vt, 
whereas map1n( ) creates a mapping from v (identified as leaf) to 
a set of leaf nodes of subtree rooted at node vt (identified as non 
leaf node), which is a 1:n mapping. This mapping is considered to 
be an approximate mapping but follows the semantics that leaf 
node should map to leaf nodes. And similarly mapn1( ) is a 
composite mapping of leaf nodes under v, to the leaf node vt. 
NodeMapper algorithm integrates all input nodes into the 
mediated schema and creates corresponding mappings from input 
schemas to the mediated schema. 

5.4 Example of Schema Integration 
Figure 4 shows two trees after executing Pre-Mapper. A list of 
labels created in this traversal is shown in Table 2a. The two 
nodes with the same label ‘name’ but different parents are shown 
to be disjoint. The last entry in the list is a label ‘ROOT’ for the 
root node of mediated schema. A matrix of size um is created, 
where u is the number of schemas and m the number of distinct 
labels in all schemas (the length of the label list), see Table 2.b. In 
the matrix each row represents an input schema tree. Each non-
null entry contains the node scope, parent node link and the 
mapping, which is initially null. Matrix columns are ordered 
according to the order of nodes in the label list. 

The largest schema tree Sb, Figure 4, is selected as the initial 
mediated schema Sm. A list of size m, Tab. 1.c,  is created to hold 
Sm, assuming the same column order as in Table 1.a and 1.b. In 
the label list the semantically similar (equivalent or partially 
equivalent) labels are detected. Author is equivalent to writer.  

The node mapping algorithm takes the data structures in Table. 1 
as input, and produces mappings shown in Table. 3.b and the 
integrated schema in Table 3.c. In the process, the input schema 
Sa is directly mapped to mediated schema Sb. The mapping is 
taken as the column number (Table 3.b <column number>) of 
node. Saving mappings as column number gives us the flexibility 
to add new nodes to mediated schema tree. Scope values of some 
existing nodes are affected because of addition of new nodes, but 
column numbers of all previous nodes remain the same. Thus 
intuitively none of the existing mappings are affected. All 
mappings in this case are one to one. 

NodeMapper for input schema tree Sa (Table 2.b row 1) starts 
from node Sa[0,3] with label book. The sequence of nodes 
mapping from the input schema tree follows the depth first 
traversal. This makes sure that parent nodes are mapped before 
the siblings. Sa[0,3] is a non-leaf node with only one similar node  

in the mediated schema tree Sm (Sb in this example) i.e., node 1 
at column 1. So label <1> in column 1 for Sa records the mapping 
Sa[0,3]-> Sb[0,5], see Table 3.b. Information regarding mapping 
is also saved as ‘1.0’ i.e., label 0 of schema tree 1. Next node to 
map is node in Sa, author[1,2], similar to writer[1,2] in Sb. Both  
nodes are internal nodes and the function ancestorMap( ) returns 
true since parent nodes of both are already mapped. The resulting 
mapping for label 0 is label <7>. For label 2  ‘name’, there are 
two possibilities, label 2 (column 2) and label 3 (column 3). 
Descendant(name,author) is true for node in column 2 and false 
for 3. Hence <2> is the correct match. The last node in Sa is 
price[3,3]. There is no node in mediated schema tree with a 
similar label, so a new node is added to mediated schema, 
recorded by an entry in the column with label ‘price’ in the 
mediated schema list (Table 3.c). This node is created as the right 
most sibling of node in the mediated tree to which the parent node 
of current input node is mapped i.e., node with label ‘book’. The 
scope and parent node link is accordingly adjusted for the new 
node. And a mapping is created from input node to this newly 
created target node.  

 
 
 
 
 

Figure 4. Two input schema trees 

Table 2. Before NodeMapper Execution 

a. Labels List 

0 1 2 3 4 5 6 7 8 

author book name name price pub title writer ROOT 

 

b.Input Schema Nodes’ Matrix 

1,2,0 0,3,-1 2,2,1  3,3,0     

 0,5,-1 2,2,1 4,4,3  3,4,0 5,5,0 1,2,0  

c. Initial Mediated Schema 

 1,6,0 3,3,2 5,5,4  4,5,1 6,6,1 2,3,1 0,6,-1 

         

Table 3 . After NodeMapper Execution 

a. Label List 

0 1 2 3 4 5 6 7 8 

author book name name price pub title writer ROOT 

 

b.  Mapping matrix 

1,2,0 

<7> 

0,3,-1

<1> 

2,2,1 

<2> 
 

3,3,0 

<4> 
    

 
0,5,-1

<1> 

2,2,1 

<2> 

4,4,3 

<3> 
 

3,4,0 

<5> 

5,5,0 

<6> 

1,2,0

<7> 
 

c. Final Mediated Schema 

 1,7,0, 3,3,2 5,5,4 7,7,1 4,5,1 6,6,1 2,3,1 0,7,-1 

 1.0, 
2.0 

1.2, 

2.2 
2.4 1.3 2.3 2.5 

1.1, 

2.1 
 

Sa Sb

author [1,2] 

book [0,3] 

name [2,2] 

price [3,3] 

book [0,5] 

writer [1,2] title [5,5]

name [2,2] 

pub [3,4] 

name [4,4]



If the new node is added in the middle of the tree then its 
ancestor’s scope is incremented by one and accordingly next node 
numbers in a pre-order traversal are adjusted in the tree. 

The algorithm keeps track of the columns for the next node 
according to pre-order. Thus the final mediated schema tree can 
be generated from the final mediated schema row by a traversal 
starting from the ROOT. 

6. EXPERIMENTAL EVALUATION 
We examine both the performance and quality of schema 
matching. Performance is evaluated as the number of schemas or 
nodes processed versus the time required for matching, merging 
and mapping. Quality of matches is compared with the match 
results produced by COMA++ [2]. 

6.1 Performance Evaluation 
The prototype uses Java 5.0. All the schema tree data structures 
and corresponding mappings data are saved in a database for 
analysis and statistical evaluation. A PC, Pentium 4-M, 1.80 GHz, 
768 MB RAM, running Windows XP was used in this evaluation. 
We selected three sets of schema trees from different domains:  

1. Domain 1 : BOOKS (Synthetic Schemas) 
2. Domain 2: OAGIS (Real Schemas from the Web) 
3. Domain3 : XCBL  (Real Schemas from the Web) 

Table 4. Characterization of schema domains. 

 
Domain 1 

(Real) 
OAGIS 

Domain 2 
(Real) 
XCBL 

Domain 3 
(Synthetic) 

Books 

Number of 
Schemas 80 44 176 

Avg. nodes per 
schema 1047 1678 8 

Largest/ 
smallest schema 

size 
3519/ 26 4578/ 4 14/ 5 

Experiments were performed with different sizes of sets taken 
from the core domain sets. Algorithm time execution performance 
was evaluated under three different label similarity cases. 

A) Label String Equivalence 
B) Token Set Equivalence 
C) Synonym Token Set Equivalence 

Our experiments show that the execution time for PORSCHE 
depends upon the number on the schemas which are being 
integrated, and appears to be quadratic in the number of nodes 
compared. Figure 5 shows time in milliseconds for Domains 2 and 
3. 
Figure 6 shows a comparison of three kinds of matching A, B, and 
C for sets of 2, 4, 8, 16, 32, 64, 128, 176 from BOOKS. There is 
no difference in the time performance of various matchers. This is 
possibly due to the fact that synthetic schemas vary little in their 
labels.  
For Domains 2 and 3, Figures 7 and 8 show the time in (s) against 
the number of nodes processed, for the three similarity methods. 
XCBL schemas are slower to match than OAGIS schemas. This is 
due to the higher average number of nodes in XCLB schemas. It 

takes less than 550 s to match 80 OAGIS schemas, while 44 
XCLB schemas require about 800 s 

 
Figure 5. Comparison of schema integration times for 

real web schemas. 

 
Figure 6. Integration time with reference to the number of 

schemas in BOOKS 
In both cases there is a slight increase in matching times for 
categories A, B and C, because of different label matching 
strategies. A is the fastest, as it works only on the labels 
themselves. B is slightly slower, as labels have to be tokenized 
and the number of tokens is larger than the number of labels, and 
C is the slowest, as one need to match synonyms as well. These 
evaluation cases show that PORSCHE has acceptable 
performance on an office PC. 

 
Figure 7.  Integration of OAGIS schemas 



 
Figure 8. Integration of XCBL schemas 

6.2 Quality Comparison 
The quality of mappings is compared for the three scenarios A, B 
and C. The quality of mappings is the highest for case C, 
synonym token sets equivalence. For quality evaluation we used 
three sets of two schemas. Those were: (a) Purchase Order 
schemas from  a web site; (b) BOOKS; and (c) OAGIS. The 
results were compared to COMA++ under similar conditions. 
Table 5 shows the quality and performance comparison between 
PORSCHE and COMA++. The abbreviation and the synonym 
tables were provided by COMA++ demo version. 

Table 5. PORSCHE – COMA++ performance comparison 

Purchase 
Order  

Books OAGIS 

S1 
18 

S2 
14 

S1 
15 

S2 
12 

S1 
2931 

S2 
475 

     Domain / 
        Schema 
             Size 
Match 
Tool T Q T Q T Q 

PORSCHE 0.2 = 0.2 = 2.5 --- 

COMA++ 5 = 3 = 370 --- 

*T : Time (s) ,  Q : Quality comparison to COMA++ 
We could not carry out a quality comparison for Set C because of 
the size of schemas and the fact that the abbreviation and 
synonym tables existed only for Purchase Orders and Books. 
Our experiments show that PORSCHE improves on COMA++, as 
it produces similar integrated schemas automatically. COMA++ 
requires human intervention to select the best match and create 
mappings after merging. 

6.3 Complexity 
Given a set of input schemas S ={S1,S2, …, Su}, we select as the 
mediated schema the schema tree with highest number of nodes,  
max (N(Si)) where N(Si)returns the number of nodes in a schema. 
We match each node of each input schema with the mediated 
schema. The number of input schema nodes Nt is given by Nt = 
Σu

i=1 N(Si). Therefore the complexity of Node Mapper algorithm 
is O(Nt x  N(Sm)). This is quadratic in the size of schema set that 
is to be integrated. Our experiments confirm this complexity. 

 

7. Related Work 
Nearly all schema-matching systems [2,6,7,8,9,13,14,15] compare 
two schemas at a time and aim for quality matching but require 
significant human intervention. For a limited number of schemas 
(less than 10) of small size (less than 100 nodes), these matching 
and integration processes give acceptable performance. Surveys 
of schema-matching tools [16,17] present the results and their 
comparison.  

The most recent matching tools are S-Match and Coma++. S-
Match is a hybrid matcher. It carries out semantic matching by 
using the Wordnet dictionary. [8] demonstrates  better mappings 
than Coma and Cupid but has worse performance. Coma is a 
composite matcher, which can reuse previous mappings. It uses 
user defined synonym and abbreviation tables, along with some 
basic name matchers. Coma has the advantage of mapping large 
schemas with the help of user input. The user can identify 
fragments of the schema to be mapped. This option is intended to 
manage the namespace/ include characteristics of XML schemas 
[2,15]. However, human intervention in the schema mapping 
process is needed.  Moreover, the final requirement is an 
integrated schema. Systems, which just produce mappings and no 
integrated schema do not support automated data integration 
suitable for application environments with hundreds of schemas. 

Another interesting schema matching domain under active 
research is matching elements across query interfaces of 
structured Web databases. The elements layout forms a certain 
hierarchy backed by a database schema. For certain Web domains 
such as travel, these interfaces can go into thousands. [10, 18] 
handle holistically the integration of these structured layouts as a 
mining problem. [18] observes that Web database query interfaces 
in the same domain are usually semantically similar, as a label is 
often unambiguous in a domain but it can have several meanings 
in a dictionary, and synonym labels are rarely co-present in the 
same schema. However, grouping of elements such as  . 
LastName and FirstName, is common in the schema at the same 
level with same parent element, to form a larger concept.  

8. DISCUSSION FOR FUTURE WORK 
PORSCHE is similar to other tools using linguistic techniques 
like tokenization, use of abbreviations and synonym oracles. At 
present it uses very limited linguistic methods but the match 
quality is equivalent to other current tools. The architecture of 
PORSCHE is flexible, and can accommodate new syntactic and 
linguistic similarity algorithms. 

As future work we plan to investigate the application of this 
technique for nodes matching for an Information system based on 
P2P architecture. Secondly, we want to enhance the linguistic 
matching part of the system. Our study of the tree mining 
technique reveals that it can be utilized for identifying co-
relationships between the co-existence of elements with in schema 
tree and a forest of schema trees. Thus help in identifying 
subsumptions and overlap relationships for n:m complex 
mappings.  

9. CONCLUSIONS 
We presented a novel schema integration method, PORSCHE, 
which has shown very promising results for large scale schema 
integration. It uses a tree based pre-order traversal algorithm for 
matching, merging and mapping a set of schema trees.  To 
improve performance we adapted a technique from tree mining 
including the clustering of similar node labels. This minimizes the 



target search space for a node match and gives better 
performance. Selection of the largest schema tree as the mediated 
schema further enhances the matching process. PORSCHE uses 
the optimistic top down pre-order match traversal (parents are 
mapped before children, and left sub-tree is traversed before right 
sub-tree), since our assumption is that we utilize it in a domain 
specific environment. This helps in using the structural semantics 
of nodes for better quality matching.  

The novelty of our method is fourfold. First, we support fully 
automated schema matching. Second, we not only generate 
matches, but also build an integrated schema at the same time. 
Third, our approach scales to hundreds of schemas. Fourth, the 
use of tree mining techniques for schema matching is also new in 
this field. 
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