
HAL Id: lirmm-00117053
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00117053v2

Submitted on 15 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PORSCHE: Performance ORiented SCHEma Mediation
Khalid Saleem, Zohra Bellahsene, Ela Hunt

To cite this version:
Khalid Saleem, Zohra Bellahsene, Ela Hunt. PORSCHE: Performance ORiented SCHEma Mediation.
RR-06055, 2007. �lirmm-00117053v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00117053v2
https://hal.archives-ouvertes.fr

PORSCHE: Performance ORiented SCHEma Matching
Khalid Saleem

LIRMM – UMR 5506 CNRS
University Montpellier 2

161 Rue Ada, F-34392 Montpellier
+33 467 41 85 85

saleem@lirmm.fr

Zohra Bellahsene
LIRMM – UMR 5506 CNRS

University Montpellier 2
161 Rue Ada, F-34392 Montpellier

+33 467 41 85 85

bella@lirmm.fr

Ela Hunt
GlobIS, ETH-Zentrum

CH-8092 Zurich
+41 44 632 74 21

hunt@inf.ethz.ch

ABSTRACT
Semantic matching of schemas in heterogeneous data sharing
systems is time consuming and error prone. Existing mapping
tools employ semi-automatic techniques for mapping two
schemas at a time. In a large-scale scenario, where data sharing
involves a large number of data sources, such techniques are not
suitable. In this paper we present a method, which creates a
mediated schema tree from a large set of input schema trees and
defines mappings from the contributing schemas to the mediated
schema. It is a two-phase approach. First, we use a set of
linguistic matchers, which extract the semantics of all distinct
node labels, present in input schemas, and form clusters of
semantically similar labels. Second, we use a tree-mining data
structure, combined with the similar label clusters, to calculate the
context of each node, which is used in mapping. Since the input
schemas are trees, our tree mining algorithm uses node ranks
calculated by pre-order traversal. Tree mining combined with
semantic label clustering minimizes the target search space and
improves performance, thus making it suitable for large scale data
sharing. We report on experiments with up to 80 schemas
containing 83,770 nodes. PORSCHE took 587 seconds to match
and merge them to create a mediated schema and to return
mappings from input schemas to the mediated schema. We
compare the quality of matching of PORSCHE with COMA++ on
standard XML schemas, and find them to be very similar to the
mappings produced by COMA++.

Categories and Subject Descriptors
I.7.2 [XML]: XML and Web Data – XML Data and schema
integration.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
XML schema tree, schema matching, schema mapping, schema
mediation, tree mining, large scale.

1. INTRODUCTION
Schema matching relies on discovering correspondences between
similar elements of two schemas. Several different types of
schema matching [2,4,7,8,9,13,14,15,16,17] have been studied,
demonstrating their benefit in different scenarios. In data

integration schema matching is of central importance. The need
for information integration arises in data warehousing, OLAP,
data mashups [11], and workflows. Omnipresence of XML as a
data exchange format on the web and the presence of metadata
available in that format force us to focus on schema matching,
and on matching for XML schemas in particular.

Previous work on schema matching was developed in the context
of schema translation and integration [2,4,9], knowledge
representation [8,17], machine learning, and information retrieval
[7,12]. Most mapping tools map two schemas with human
intervention [2,4,7,8,9,13,14,15]. The motivation behind our work
is to explore the matching and integration of a large set of schema
trees, using scalable syntactic and semantic matching and
integration techniques.

We consider schemas as rooted, labelled trees. This supports the
computation of contextual semantics in the tree hierarchy. The
contextual aspect is exploited by tree-mining techniques, making
it feasible to use automated approximate schema matching [7] and
integration in a large-scale scenario. The individual semantics of
node labels have their own importance. We utilize linguistic
matchers to extract the concepts hidden within them. Tree mining
techniques by definition extract similar sub tree patterns from a
large set of trees and predict possible extensions of these patterns.
The pattern size starts from 1 and is incrementally augmented.
There are different techniques [1,20] which mine rooted, labelled,
embedded or induced, ordered or unordered sub-trees. The first
basic function of tree mining is to find sub-tree patterns that are
frequent in the given set of trees, which is similar to schema
matching activity that tries to find similar concepts among a set of
schema trees.

Our Contributions
a) Matching, merging and the creation of a mediated schema

with semantically approximate mappings, in one algorithm
which has good performance.

b) Use of tokenisation, abbreviation and synonym matching of
label tokens, supporting node clustering.

c) Extension of a tree mining data structure [20] to schema
matching, using b) to minimize the search space.

d) Ability to produce simple 1:1 mappings, as well as complex
mappings, including 1:n (leaf mapped to non-leaf) and n:1
(non-leaf mapped to leaf).

e) Experiments with real XML schema instances (OAGIS,
XCBL1) showing performance appropriate for a large scale
scenario.

f) Comparison with COMA++, showing that PORSCHE is
qualitatively similar.

1 OAGIS : http://www.openapplications.org/
XCBL : http://www.xcbl.org/

Copyright is held by the author/owner(s).
WWW 2007, May 8--12, 2007, Banff, Canada.

The reminder of the paper is organized as follows. Section 2
presents the motivations and issues encountered in large-scale
schema integration. Section 3 defines the concepts used in the
paper. In Section 4 we formalize the semantic integration and
mediation problem. Our approach using Performance ORiented
SCHEma matching (PORSCHE) is detailed in Section 5. Section
6 presents the experimental results comparing our approach with
previous work. While Section 7 reviews related work and
compares it to ours. Section 8 gives a discussion for future work
and Section 9 concludes the paper.

2. MOTIVATIONS IN SCHEMA
MEDIATION
Schema Mediation can be defined as integration of a set of input
schemas into a single mediated schema, with concepts mappings
from the input schemas to the mediated schema.

Heterogeneous data sharing environments require semantic
mediation to support query formulation and execution. Such an
environment can be dynamic or static. In the late 90s schema
integration applications emphasised a static approach, used, for
example, in data warehousing. In a data warehouse, schema
design (using a mediated schema) is a one-off process. The
experts analyse the source schemas and design a centralised data
warehouse schema, and the mappings from source schemas
mapped to the warehouse schema. The mappings in such
applications can be termed exact mappings.

In a dynamic environment, individual data sources and their
schemas are independent and free to change. A pre-designed
mediated schema is no answer in a dynamically changing world.
The mediated schema has to change, to match the changes in
source schemas, by changing the mappings between the source
and the mediated schema. An example of such a requirement can
be seen in catalogue mappings in web based B2B data exchange.
For example, at ebay.com, individual vendors map their catalogue
to the ebay catalogue. A query placed on ebay returns results from
all the vendors who have mapped their schemas to the ebay
catalogue. At any time ebay can enhance its catalogue or any
individual vendor can withdraw or change its catalogue structure.

There are numerous issues in the semantic integration of a large
number of schemas. Beside mapping quality, performance is also
very important. Semantic Web, by definition, offers a large-scale
dynamic environment where individual service providers are
independent. In such a situation the mappings can never be exact,
rather they are approximate [5,8].

In this paper we focus on a large number of schemas, automated
matching, and performance. We explore mediated schema
generation. For a given batch of schemas and a chosen mediated
schema, we efficiently carry out the construction of a large
mediated schema, which integrates all given schemas. To enhance
the speed and lower the cost of data integration, we remove the
need for human intervention. Previous work on matching two
large schemas has been presented in [15] using COMA++[2] tool.
In this work [15], first, user divide the schema into fragments and
then each fragment from source schema is mapped to target
schema fragments to find inter-fragment matchings. Next, these
fragment mappings are merged to compute the schema level
mappings.

Schema size, batch size and matching algorithms
Performance is an open issue in schema matching [15,16,17].
The complexity of the schema matching task is typically
proportional to the size of participating schemas, and the number
of match algorithms employed, i.e. O(NMA), where N and M are
node counts in the source and target schema and A is the number
of algorithms applied [2,14]. The quality of mappings depends on
the type of matching algorithms and the way they are combined,
for instance their execution order.

Here we present a new method for schema matching and
integration. The method is a hybrid algorithm which matches,
maps and integrates schemas. It uses extended tree mining data
structures for performance oriented approximate schema
matching for XML data sets.

3. PRELIMINARIES
3.1 Match Operator
Schema matching finds similarities between elements of one
schema and the elements of another schema. There are three basic
match cardinalities at node level as discussed in [16].

i) 1:1 – one node of source schema corresponds to one element in
the target schema,

ii) 1:n – one node in the source schema is equivalent to a
composition of n nodes in the target schema,

iii) n:1 - n number of nodes in source schema compositely map to
one node in target schema.

Since we are matching tree structures, where the leaf nodes access
data, we emphasize more on leaf node matching. Our
categorization of node match cardinality is driven by its leaf or
non-leaf status, as given in Table 1.

Table 1 : Match Categorization

Source
Node

Target
Node

Match
Cardinality

leaf leaf 1:1

non-leaf non-leaf 1 :1

leaf non-leaf 1 :n

lon-leaf leaf n :1

Semantically, a match between two nodes can be either an
equivalence or a partial equivalence. In a partial match, the
similarity is partial, e.g. Name = ‘John M. Brown’ in source
schema is partially matched to LastName=’Brown’ and
FirstName =’John’ in the target schema, because Name also
contains the MiddleInitial=’M’ information. If there are several
possible matchings of the source element to the mediated
schema, best/most correct match can be selected. The choice can
depend upon some match quality confidence computed at run
time [2,9,10,16].

3.2 Definitions
Semantic matching requires the comparison of concepts which are
structured as schema elements. Node labels of schema elements
can be considered as concepts and each element’s contextual
placement in the schema enhances the semantics of the concept.
For example in Figure 1, element author/name and
publisher/name are similar labels but their contexts are different,

which makes the two elements conceptually disjoint. In an XML
tree, the combination of the element label and the structural
placement of the element produce the concept.

Definition 1 (Schema Tree)
A schema is a rooted, labelled tree [18]. We call it a schema tree.
A schema tree, S=(V, E) is a directed, acyclic, connected graph,
with V = {0,1,...,n}, a set of nodes, and E = {(x,y) | x,y ∈ V }, a
set of edges. One distinguished node r ∈ V is designated the
root, and for all x ∈ V, there is a unique path from r to x. Further,
l : V L is a labelling function mapping nodes to labels in L =
{l1,l2, …}, and VT: L Vi is a function, which returns a set of
nodes Vi ⊆ V with label l ∈ L.

Definition 2 (Ordered Tree)
In an ordered tree the children of each node are ordered 1 to k,
otherwise, the tree is unordered. We order each schema tree using
pre-order traversal (Figure 1, node number).

Definition 3 (Ancestor-Descendant Relationship)
If x,y ∈ V and there is a path from x to y, then x is called an
ancestor of y (and y a descendant of x), denoted x ≤p y, where p
∈ N is the length of the path from x to y. If x ≤1 y (x is an
immediate ancestor), x is called the parent of y, and y the child of
x. If x and y have the same parent, they are called siblings, and if
they have a common ancestor, they are called cousins, provided
they are at same level in the tree and are not siblings.

Definition 4 (Node Scope)
Since the schema tree is ordered (Def. 2), nodes x ∈ V are
numbered according to their position in the de pre-order traversal
of the tree S (for example, the root is numbered 0). Let T(x)
denote the sub-tree rooted at x, and let y be the rightmost leaf (or
highest numbered descendant) under x. Then the scope of x is
defined as scope(x)=[x,y]. Intuitively, scope(x) is the range of
nodes under x, and includes x itself, see Fig. 1. The count of
nodes in T(x) is y-x+1.

Definition 5 (Tokenization)
A label l is a composition of m strings, called Tokens. t: L Tis
a tokenization function which maps a label to a set of tokens
T= t1,t2, …}.

Tokenization [8] can help in establishing similarity between two
labels. For example label (DateOfBirth) = {date, of, birth} and
label (BirthDate) = {birth, date}. Since ‘of’ is a preposition, it can

be discarded. This produces 100% similarity for the two labels,
given the identical token sets {date, birth}.

Definition 6 (Token Semantics)
Token semantics discovery is the process of lemmatization of
each token and finding natural language grammatical meaning of
respective lemma (verb, noun, abbreviation etc.). For example, in
labels ‘IssuedAt’ and ‘IssuedOn’, lemma for the token ‘Issued’ is
‘issue’, which is a verb. Using some external natural language
oracles, one can infer different semantics for the two labels. For
label ‘IssuedAt’, the reference is towards a place, whereas
‘IssuedOn’ refers to a date. If the two labels are ‘ IssueAt’ and
‘IssueOn’, the semantics may be different, as lemma ‘issue’ is a
noun and not a verb. A function C(t) returns concept of token t as
the lemma which contains its grammatical interpretation.
 C(t):t lemma(t)

Definition 7 (Label Semantics)
Label semantics corresponds to the conceptual meaning of the
label (irrespective of its relation to the node it is related to). It is a
composition of concepts attached to the tokens making up the
label i.e.,

Cl: l (C (t1),C (t2), ……,C (tm)).

Definition 8 (Node Semantics)
Node semantics Cx combines the semantics of the node label C(lx)
with its contextual placement in the tree TreeContext(x) [8].

Cx: x (C(lx), TreeContext(x)).

TreeContext of a node is calculated using the node number and
scope. These properties encode structural semantics. This is
illustrated in Example 1, Section 3.3.

3.3 Scope Properties
Scope properties give us the contextual placement of a node in the
tree and are explained in detail, from the tree mining perspective
[20]. The properties are simple integer operations.

Unary Properties, given a node x [X,Y]
Property 1. Leaf Node(x) : X=Y.
Property 2. Non-Leaf Node(x): X<Y.
Binary Properties
Given x [X,Y], xd [Xd,Yd], xa [Xa,Ya], and xr[Xr,Yr].
Property 3. Descendant (x,xd), xd is a descendant of x : Xd>X
and Yd<=Y.
Property 4. Descendant Leaf (x,xd) (combination of Property 1
and 3) : Xd>X and Yd ≤Y and Xd=Yd.
Property 5. Ancestor (xa,a) (complement of Property 3) xa is
ansector of x : Xa<X and Ya>=Y.
Property 6. Right Hand Side Nodes with Non-Overlapping Scope
: xr is Right Hand Side Node of x I: Xc>Y.

Example 1: In Figure 1, Property 1 for node title[7,7] defines it
as a leaf because the node number equals the number of its
rightmost child. Property 2, for publisher [4,5] defines it is a non-
leaf node, as its number is less than the number of its rightmost
child. Properties 1 and 2 detect simple and complex elements in
an XML schema.■

Example 2: The task is to find in the tree nodes matching of
author/name. In Figure 1 there are two nodes called name:[2,2]
and [5,5]. Given synonymy between words author and

Figure 1. Example of an XML schema tree with
abbreviated labels and [number, scope] marked for each

node

info [3,6] title [7,7]

isbn [6,6]

name [5,5]

publisher [4,5] name [2,2]

writer [1,2]

book [0,7]

Input Schema Trees

Pre-Mapper

Schema Node Scope Calculator Distinct Labels List Creator

Label Concept Calculator

Linguistic Algorithms
Tokenization

Synonym

Identifier

Repository:

Synonyms, Abbreviations

Node Mapper

Mediated
Schema
Creator

Concept
Matching

Mediated

Schema

Nodes
Context
Minning

writer[1,2], we perform the descendant node check on nodes
[2,2] and [5,5] with respect to writer[1,2]. Node [2,2] is a
descendant of [1,2], using Property 3, and node [5,5] is not a
descendant of [1,2]. Similarly, property 5 produces
Ancestor([4,5],[5,5]) which holds for publisher[4,5] and
name[5,5] and Ancestor([0,7],[4,5]) holds for book[0,7] and
publisher[4,5]. ■

4. DEFINITION OF SEMANTIC
MATCHING
INPUT: A set of schema trees S={S1,S2, …, Su}.

OUTPUTS:
a) A mediated schema tree Sm, which is a composition of all
distinct concepts in S.
Sm = P ui=1 , Si = {C1 ρ C2 ρ ….ρ Cn} includes all distinct concepts
in S (Def. 8). P is the composition function and ρ denotes the
composition operator.
b) A set of mappings M = {M1, M2, …., Mw} from the concepts
of input schema trees to the concepts in the mediated schema.

The mediated schema tree Sm is a composition of all nodes
representing distinct concepts in the set of schemas. During the
integration process if a node is not present in Sm, a new edge e’ is
created in Sm and a node is added to it.

4.1 Semantic Label Matching
Semantic label matching intuitively minimizes the search space of
possible mappable target nodes [8,20]. The derivation of concept
similarity in two schemas is initiated by comparing their labels.
Similarity between labels is either equivalence or partial
equivalence, as shown below:
a) Equivalence: C(lx) = C(ly) Similar

b) Partial Equivalence: C(lx) ≅ C(ly)

i. More Specific ¦ Is part of : C(lx) ⊆ C(ly)

ii. More General ¦ Contains : C(lx) ⊇ C(ly)
iii. Overlaps: : C(lx) ∩ C(ly)

Example 3: Consider labels AuthorName and WriterName. Since
Author and Writer are synonyms and Name is shared,
conceptually they are equivalent, and AuthorName =
WriterName. Similarly, AuthorLastName ⊆ AuthorName, as
LastName is conceptually part of Name. Conversely,
AuthorName ⊇ AuthorLastName. MiddleLastName and
FirstNameMiddle are overlapping, as they share tokens {Name,
Middle}..■

5. PORSCHE: Our Approach
We assume that only schema trees are available as input.
PORSCHE accepts a set of schema trees and outputs the
mediated schema tree and the corresponding mappings. We make
the following assumptions valid in domain specific schema
integration (extended from [18]).

5.1 Assumptions
a) Schemas in the same domain contain the same domain

concepts, but differ in structure and concept naming.
b) In one schema different labels for the same concept are

rarely present.

c) Only one type of matching between two labels is possible.
For example, author is a synonym of writer.

d) We select the input schema with the highest number of nodes
as the initial mediated schema. Since each node represents a
concept, this covers the maximum number of concepts. This
minimizes the addition of new concepts (nodes not present in
the mediated schema) to the mediated schema and should
improve performance.

e) We perform semantic comparisons between the labels of the
mediated schema and the labels not present in the mediated
schema (based on assumption b). This minimizes the target
search space for similar labels.

f) A node from the input schema is only matched to the cluster
of similar label nodes present in the mediated schema.

5.2 PORSCHE Architecture
PORSCHE architecture covers the complete semantic integration
process involving schema trees in a large-scale scenario. A
diagram of the architecture is shown in Figure 2.

The application is divided in three parts: Pre-Mapper, Label
Concept Calculator and Node Mapper. Schema trees are input to
the system as a stream of XML. Pre-Mapper calculates scope and
node number for each of the nodes in the input schema trees. A
listing of nodes and a list of distinct labels for each tree is
constructed. In a schema tree, if several nodes have the same
label, each corresponding node label is considered as distinct, as it
represents a contextually different node and has distinct
semantics. For example, name in author name and
publisher name are two distinct node labels.
In the next phase, a linguistic matcher identifies semantically
distinct node labels in the input trees. It uses an abbreviation table

Figure 2. PORSCHE Architecture

and tokenizes the labels. Then it derives the meaning for each
individual token and combines these meanings to form a label
concept. The comparisons of labels are based on similar token
sets or similar synonym token sets.

Example 4 : Consider labels “POShipOn” and
“PurchaseOrderDeliverOn”. In the abbreviation table PO stands
for {purchase, order} and in the synonym table ‘deliver’=‘ship’
and ‘on’=‘date’. This implies that the two labels have similar
token sets.■

Mediated Schema Creator takes the input schema tree with the
highest number of nodes and then takes each schema in turn and
merges it with the mediated schema. This requires matching,
mapping and merging. Concepts from input schemas are matched
to the mediated schema. The algorithm traverses the input schema
depth-first, mapping parents before siblings. If a new concept is
found, with no match in the mediated schema, a new concept
node is created and added to the mediated schema. It is the right
most child leaf node added to the node in the mediated schema to
which the parent of current node is mapped. This new node is
used as the target node in the mapping. The algorithm combines
node label similarity and contextual positioning in the schema
tree, calculated with the help of properties defined in Section 3.3.

5.3 Algorithms
Pre-Mapper comprises a number of functions: (1) scope
calculation, (2) parent node number calculation, (3) initial
mediated schema detection and (4) creation of data structures for
matching, shown in Tables 1 and 2. Those data structures are
updated by NodeMapper algorithm. The novelty of our method
is that similar labels are clustered together to support fast
calculation of possible matches. The best match is selected, based
upon the contextual placement of nodes. (1), (2), (3) and (4)
require one traversal of each tree.
NodeMapper algorithm, Figure 3, covers both schema matching
and integration. It handles the semantics of node labels along with
the node’s tree context, to compute the mapping. The algorithm
creates mappings for almost every input node, in particular for the
leaves, since the data resides there. The algorithm accepts as input
a set of schemas S and selects the initial mediated schema Sm. It
outputs the mediated schema Sm’ with added nodes (if any) and a
set of mappings M, from input schema nodes to the mediated
schema.
Initially, Sm is adopted as the final mediated schema Sm’ (l. 1).
Match for every node (l. 3) of each input schema (l. 2) is
calculated, mapping it to the mediated schema. For each input
node v, a set Vt of possible mappable target nodes in the mediated
schema is created, constituting the target search space for v. The
criterion for the creation of this set of nodes is node label
equivalence or partial equivalence (l. 4,5). Vt can have zero (l.
24), one (l. 8) or more than one (l. 18) nodes. Checks in lines 9,
14 and 16 are used to compare the tree context of nodes v (input
node) and vt (possible target node in Vt), to ensure e.g. that a leaf
node is mapped to another leaf node.
Second check, ancestorMap (l. 10), ensures that at some point up
the ancestor hierarchy of v and vt, there has been a mapping. This
is to ensure that subtrees containing v and vt correspond to similar
concept hierarchies. This increases the match confidence of nodes
v and vt. Similarly if the target search space Vt has more than one
node, we check the descendant property (line 19), for each node
vt in Vt, Descandant(map(parent(v)),vt). This verifies that vt lies

in the sub-tree of node to which parent node of v is mapped, that
is with in the scope.

Algorithm : NodeMapper
Input: S, Sm // S : set of Schema Trees

 // Sm : Mediated Schema Tree
Output: M, Sm’ // M: set of mappings; initially empty
 // Sm’: Sm appended with new nodes
Begin
1 Sm’ Sm
2 for each Si ∈ S do // 1≤ i ≤ u
3 for each v ∈ V(Si) do // V : nodes of Si
4 Lv l(v) // Lv : label of node v
5 Lvsl SimilarLabels(Lv, Sm’)
 // Lvsl : set of labels in Sm’ similar to Lv

 // Lvsl ⊆ Lm where Lm: set of node labels in Sm’

6 if (Lvsl ¬ empty) then
7 Vt VT(Lvsl) //Vt : {vt1, vt2 ….vt|Lvsl|} : Def. 1
 // Vt: set of nodes in Sm’ corresponding to
 // labels in Lvsl, vt: one of the nodes in Vt
 // VT is applied to each label in Lvsl in turn

8 if (|Vt| = 1) then

9 if ((Leaf(v)∧Leaf(vt1)) ∨ // property 1,2

 ((¬ Leaf(v))∧(¬ Leaf(vt1)))) then
10 if (ancestorMap(v,vt1))
11 m map11 (v,vt1)
12 else (vt1, Sm’)=addNewNode(Sm’,v)
13 m map11 (v, vt1)

14 if (Leaf(v)∧(¬Leaf(vt1))) then
15 m map1n (v,leafNodes(vt1))

16 if (¬(Leaf(v))∧(Leaf(vt1))) then
17 m mapN1 (v,vt1)
18 else // i.e. |Vt| >1
19 for each vt ∈ Vt do // Vt:{vt1,vt2,..,vtm}
 // function true for only one node or none
20 if (descendant(v,vt) = true) // property 3
21 m map11 (v,vt)
22 else (vt, Sm’) addNewNode (Sm’,v)
23 m map11 (v,vt)
24 else (vt, Sm’)= addNewNode (Sm’,v)
25 m map11 (v,vt)
26 M=M U m

27 return M, Sm’
End

Figure 3. Schema mediation algorithm

Function addNewNode() (l. 12,22,24) adds a new node vt as the
rightmost sibling of node to which parent node of v is mapped.
Mapping function map11(), makes a 1:1 map from v to vt,
whereas map1n() creates a mapping from v (identified as leaf) to
a set of leaf nodes of subtree rooted at node vt (identified as non
leaf node), which is a 1:n mapping. This mapping is considered to
be an approximate mapping but follows the semantics that leaf
node should map to leaf nodes. And similarly mapn1() is a
composite mapping of leaf nodes under v, to the leaf node vt.
NodeMapper algorithm integrates all input nodes into the
mediated schema and creates corresponding mappings from input
schemas to the mediated schema.

5.4 Example of Schema Integration
Figure 4 shows two trees after executing Pre-Mapper. A list of
labels created in this traversal is shown in Table 2a. The two
nodes with the same label ‘name’ but different parents are shown
to be disjoint. The last entry in the list is a label ‘ROOT’ for the
root node of mediated schema. A matrix of size um is created,
where u is the number of schemas and m the number of distinct
labels in all schemas (the length of the label list), see Table 2.b. In
the matrix each row represents an input schema tree. Each non-
null entry contains the node scope, parent node link and the
mapping, which is initially null. Matrix columns are ordered
according to the order of nodes in the label list.

The largest schema tree Sb, Figure 4, is selected as the initial
mediated schema Sm. A list of size m, Tab. 1.c, is created to hold
Sm, assuming the same column order as in Table 1.a and 1.b. In
the label list the semantically similar (equivalent or partially
equivalent) labels are detected. Author is equivalent to writer.

The node mapping algorithm takes the data structures in Table. 1
as input, and produces mappings shown in Table. 3.b and the
integrated schema in Table 3.c. In the process, the input schema
Sa is directly mapped to mediated schema Sb. The mapping is
taken as the column number (Table 3.b <column number>) of
node. Saving mappings as column number gives us the flexibility
to add new nodes to mediated schema tree. Scope values of some
existing nodes are affected because of addition of new nodes, but
column numbers of all previous nodes remain the same. Thus
intuitively none of the existing mappings are affected. All
mappings in this case are one to one.

NodeMapper for input schema tree Sa (Table 2.b row 1) starts
from node Sa[0,3] with label book. The sequence of nodes
mapping from the input schema tree follows the depth first
traversal. This makes sure that parent nodes are mapped before
the siblings. Sa[0,3] is a non-leaf node with only one similar node

in the mediated schema tree Sm (Sb in this example) i.e., node 1
at column 1. So label <1> in column 1 for Sa records the mapping
Sa[0,3]-> Sb[0,5], see Table 3.b. Information regarding mapping
is also saved as ‘1.0’ i.e., label 0 of schema tree 1. Next node to
map is node in Sa, author[1,2], similar to writer[1,2] in Sb. Both
nodes are internal nodes and the function ancestorMap() returns
true since parent nodes of both are already mapped. The resulting
mapping for label 0 is label <7>. For label 2 ‘name’, there are
two possibilities, label 2 (column 2) and label 3 (column 3).
Descendant(name,author) is true for node in column 2 and false
for 3. Hence <2> is the correct match. The last node in Sa is
price[3,3]. There is no node in mediated schema tree with a
similar label, so a new node is added to mediated schema,
recorded by an entry in the column with label ‘price’ in the
mediated schema list (Table 3.c). This node is created as the right
most sibling of node in the mediated tree to which the parent node
of current input node is mapped i.e., node with label ‘book’. The
scope and parent node link is accordingly adjusted for the new
node. And a mapping is created from input node to this newly
created target node.

Figure 4. Two input schema trees

Table 2. Before NodeMapper Execution

a. Labels List

0 1 2 3 4 5 6 7 8

author book name name price pub title writer ROOT

b.Input Schema Nodes’ Matrix

1,2,0 0,3,-1 2,2,1 3,3,0

 0,5,-1 2,2,1 4,4,3 3,4,0 5,5,0 1,2,0

c. Initial Mediated Schema

 1,6,0 3,3,2 5,5,4 4,5,1 6,6,1 2,3,1 0,6,-1

Table 3 . After NodeMapper Execution

a. Label List

0 1 2 3 4 5 6 7 8

author book name name price pub title writer ROOT

b. Mapping matrix

1,2,0

<7>

0,3,-1

<1>

2,2,1

<2>

3,3,0

<4>

0,5,-1

<1>

2,2,1

<2>

4,4,3

<3>

3,4,0

<5>

5,5,0

<6>

1,2,0

<7>

c. Final Mediated Schema

 1,7,0, 3,3,2 5,5,4 7,7,1 4,5,1 6,6,1 2,3,1 0,7,-1

 1.0,
2.0

1.2,

2.2
2.4 1.3 2.3 2.5

1.1,

2.1

Sa Sb

author [1,2]

book [0,3]

name [2,2]

price [3,3]

book [0,5]

writer [1,2] title [5,5]

name [2,2]

pub [3,4]

name [4,4]

If the new node is added in the middle of the tree then its
ancestor’s scope is incremented by one and accordingly next node
numbers in a pre-order traversal are adjusted in the tree.

The algorithm keeps track of the columns for the next node
according to pre-order. Thus the final mediated schema tree can
be generated from the final mediated schema row by a traversal
starting from the ROOT.

6. EXPERIMENTAL EVALUATION
We examine both the performance and quality of schema
matching. Performance is evaluated as the number of schemas or
nodes processed versus the time required for matching, merging
and mapping. Quality of matches is compared with the match
results produced by COMA++ [2].

6.1 Performance Evaluation
The prototype uses Java 5.0. All the schema tree data structures
and corresponding mappings data are saved in a database for
analysis and statistical evaluation. A PC, Pentium 4-M, 1.80 GHz,
768 MB RAM, running Windows XP was used in this evaluation.
We selected three sets of schema trees from different domains:

1. Domain 1 : BOOKS (Synthetic Schemas)
2. Domain 2: OAGIS (Real Schemas from the Web)
3. Domain3 : XCBL (Real Schemas from the Web)

Table 4. Characterization of schema domains.

Domain 1

(Real)
OAGIS

Domain 2
(Real)
XCBL

Domain 3
(Synthetic)

Books

Number of
Schemas 80 44 176

Avg. nodes per
schema 1047 1678 8

Largest/
smallest schema

size
3519/ 26 4578/ 4 14/ 5

Experiments were performed with different sizes of sets taken
from the core domain sets. Algorithm time execution performance
was evaluated under three different label similarity cases.

A) Label String Equivalence
B) Token Set Equivalence
C) Synonym Token Set Equivalence

Our experiments show that the execution time for PORSCHE
depends upon the number on the schemas which are being
integrated, and appears to be quadratic in the number of nodes
compared. Figure 5 shows time in milliseconds for Domains 2 and
3.
Figure 6 shows a comparison of three kinds of matching A, B, and
C for sets of 2, 4, 8, 16, 32, 64, 128, 176 from BOOKS. There is
no difference in the time performance of various matchers. This is
possibly due to the fact that synthetic schemas vary little in their
labels.
For Domains 2 and 3, Figures 7 and 8 show the time in (s) against
the number of nodes processed, for the three similarity methods.
XCBL schemas are slower to match than OAGIS schemas. This is
due to the higher average number of nodes in XCLB schemas. It

takes less than 550 s to match 80 OAGIS schemas, while 44
XCLB schemas require about 800 s

Figure 5. Comparison of schema integration times for

real web schemas.

Figure 6. Integration time with reference to the number of

schemas in BOOKS
In both cases there is a slight increase in matching times for
categories A, B and C, because of different label matching
strategies. A is the fastest, as it works only on the labels
themselves. B is slightly slower, as labels have to be tokenized
and the number of tokens is larger than the number of labels, and
C is the slowest, as one need to match synonyms as well. These
evaluation cases show that PORSCHE has acceptable
performance on an office PC.

Figure 7. Integration of OAGIS schemas

Figure 8. Integration of XCBL schemas

6.2 Quality Comparison
The quality of mappings is compared for the three scenarios A, B
and C. The quality of mappings is the highest for case C,
synonym token sets equivalence. For quality evaluation we used
three sets of two schemas. Those were: (a) Purchase Order
schemas from a web site; (b) BOOKS; and (c) OAGIS. The
results were compared to COMA++ under similar conditions.
Table 5 shows the quality and performance comparison between
PORSCHE and COMA++. The abbreviation and the synonym
tables were provided by COMA++ demo version.

Table 5. PORSCHE – COMA++ performance comparison

Purchase
Order

Books OAGIS

S1
18

S2
14

S1
15

S2
12

S1
2931

S2
475

 Domain /
 Schema
 Size
Match
Tool T Q T Q T Q

PORSCHE 0.2 = 0.2 = 2.5 ---

COMA++ 5 = 3 = 370 ---

*T : Time (s) , Q : Quality comparison to COMA++
We could not carry out a quality comparison for Set C because of
the size of schemas and the fact that the abbreviation and
synonym tables existed only for Purchase Orders and Books.
Our experiments show that PORSCHE improves on COMA++, as
it produces similar integrated schemas automatically. COMA++
requires human intervention to select the best match and create
mappings after merging.

6.3 Complexity
Given a set of input schemas S ={S1,S2, …, Su}, we select as the
mediated schema the schema tree with highest number of nodes,
max (N(Si)) where N(Si)returns the number of nodes in a schema.
We match each node of each input schema with the mediated
schema. The number of input schema nodes Nt is given by Nt =
Σu

i=1 N(Si). Therefore the complexity of Node Mapper algorithm
is O(Nt x N(Sm)). This is quadratic in the size of schema set that
is to be integrated. Our experiments confirm this complexity.

7. Related Work
Nearly all schema-matching systems [2,6,7,8,9,13,14,15] compare
two schemas at a time and aim for quality matching but require
significant human intervention. For a limited number of schemas
(less than 10) of small size (less than 100 nodes), these matching
and integration processes give acceptable performance. Surveys
of schema-matching tools [16,17] present the results and their
comparison.

The most recent matching tools are S-Match and Coma++. S-
Match is a hybrid matcher. It carries out semantic matching by
using the Wordnet dictionary. [8] demonstrates better mappings
than Coma and Cupid but has worse performance. Coma is a
composite matcher, which can reuse previous mappings. It uses
user defined synonym and abbreviation tables, along with some
basic name matchers. Coma has the advantage of mapping large
schemas with the help of user input. The user can identify
fragments of the schema to be mapped. This option is intended to
manage the namespace/ include characteristics of XML schemas
[2,15]. However, human intervention in the schema mapping
process is needed. Moreover, the final requirement is an
integrated schema. Systems, which just produce mappings and no
integrated schema do not support automated data integration
suitable for application environments with hundreds of schemas.

Another interesting schema matching domain under active
research is matching elements across query interfaces of
structured Web databases. The elements layout forms a certain
hierarchy backed by a database schema. For certain Web domains
such as travel, these interfaces can go into thousands. [10, 18]
handle holistically the integration of these structured layouts as a
mining problem. [18] observes that Web database query interfaces
in the same domain are usually semantically similar, as a label is
often unambiguous in a domain but it can have several meanings
in a dictionary, and synonym labels are rarely co-present in the
same schema. However, grouping of elements such as .
LastName and FirstName, is common in the schema at the same
level with same parent element, to form a larger concept.

8. DISCUSSION FOR FUTURE WORK
PORSCHE is similar to other tools using linguistic techniques
like tokenization, use of abbreviations and synonym oracles. At
present it uses very limited linguistic methods but the match
quality is equivalent to other current tools. The architecture of
PORSCHE is flexible, and can accommodate new syntactic and
linguistic similarity algorithms.

As future work we plan to investigate the application of this
technique for nodes matching for an Information system based on
P2P architecture. Secondly, we want to enhance the linguistic
matching part of the system. Our study of the tree mining
technique reveals that it can be utilized for identifying co-
relationships between the co-existence of elements with in schema
tree and a forest of schema trees. Thus help in identifying
subsumptions and overlap relationships for n:m complex
mappings.

9. CONCLUSIONS
We presented a novel schema integration method, PORSCHE,
which has shown very promising results for large scale schema
integration. It uses a tree based pre-order traversal algorithm for
matching, merging and mapping a set of schema trees. To
improve performance we adapted a technique from tree mining
including the clustering of similar node labels. This minimizes the

target search space for a node match and gives better
performance. Selection of the largest schema tree as the mediated
schema further enhances the matching process. PORSCHE uses
the optimistic top down pre-order match traversal (parents are
mapped before children, and left sub-tree is traversed before right
sub-tree), since our assumption is that we utilize it in a domain
specific environment. This helps in using the structural semantics
of nodes for better quality matching.

The novelty of our method is fourfold. First, we support fully
automated schema matching. Second, we not only generate
matches, but also build an integrated schema at the same time.
Third, our approach scales to hundreds of schemas. Fourth, the
use of tree mining techniques for schema matching is also new in
this field.

10. REFERENCES
[1] Asai, T., Arimura, H., and Nakano, S. Discovering Frequent

Substructures in Large Unordered Trees. In Proceedings of
ICDS, 2003.

[2] Aumuller, D., Do, H.-H., Massmann, S., and Rahm, E.
Schema and ontology matching with COMA++. In
Proceedings of SIGMOD, 2005.

[3] Avigdor, G., Ateret, A-T., Alberto, T., and Danilo M. A
framework for modeling and evaluating automateic semantic
reconciliation. VLDB Journal, Vol. 14, Issue 1, March 2005.

[4] Bernstein, P.A., Melnik, S., Petropoulos, M., and Quix, C.
Industrial-Strength Schema Mapping. SIGMOD Record,
Vol. 33, No. 4, December 2004.

[5] Chang, K.C., He, B., and Zhang, Z. Mining Semantics for
Large Scale Integration on the Web: Evidences, Insights, and
Challenges. SIGKDD, Vol. 6, Issue 2, December 2004.

[6] Do, H.-H., Melnik, S., and Rahm, E. Comparison of schema
matching evaluations. In Proceedings of the workshop on
Web and Databases, 2002.

[7] Doan, A., Madhavan, J., Domingos, P., and Halevy, A.
Learning to map ontologies on the semantic web. In
Proceedings of the Int’l World Wide Web Conference
(WWW), 2003.

[8] Giunchiglia, F., Shvaiko, P., and Yatskevich, M. S-match: an
algorithm and an implementation of semantic matching. In
Proceedings of ESWS, 2004.

[9] Halvey, A., Ives, Z., Suciu, D., and Tatarinov, I. Schema
Mediation in Peer Data Management Systems. In
Proceedings of ICDE, 2003.

[10] He, B., and Chang, K.C.-C. A Holistic Paradigm for Large
Scale Schema Matching. SIGMOD Record, Vol. 33, No. 4,
2004.

[11] Jhingran, A. Enterprise Information Mashups: Integrating
Information, Simply. Keynote Address, VLDB 2006.

[12] Kurgan, L. et al. Semantic Mapping of XML Tags Using
Inductive Machine Learning. In Proceedings of ICMLA,
2002.

[13] Lu, J., Wang, S., and Wang, J. An Experiment on the
matching and Reuse of XML Schemas. In Proceedings of
ICWE 2005.

[14] Madhavan, J., Bernstein, P.A., and Rahm, E. Generic schema
matching with Cupid. In Proceedings of the VLDB, 2001.

[15] Rahm, E., Do, H-H., and Masmann, S. Matching Large XML
Schemas. ACM SIGMOD Record 33(4):26-31, 2004.

[16] Rahm, E., and Bernstein, P. A. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal, 2001.

[17] Shvaiko, P. A classification of schema-based matching
approaches. In Proceedings of the workshop at the ISWC,
2004.

[18] Su, W., Wang, J., and Lochovsky, F. Holistic Query
Interface Matching using Parallel Schema Matching. In
Proceedings of ICDE, 2006.

[19] Tranier, J., Baraer, R., Bellahsene, Z., and Teisseire, M.
Where’s Charlie: Family Based Heuristics for Peer-to-Peer
Schema Integration. In Proceedings of IDEAS, 2004.

[20] Zaki, M.J. Efficiently Mining Frequent Embedded
Unordered Trees. Fundamenta Informaticea, 2005.

