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Abstract

Before one can attach a meaning to a sentence, one must distinguish different ways of parsing
it. When analyzing a language with pregroup grammars, we are thus led to replace the free
pregroup by a free compact strict monoidal category. Since a strict monoidal category is a
2-category with one 0-cell, we investigate the free compact 2-category generated by a given
category, and we describe its 2-cells as labeled transition systems. In particular, we obtain a
decision procedure for the equality of 2-cells in the free compact 2-category.
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1 Introduction

An algebraic notion that has recently been applied in mathematical and computational linguistics
is that of a pregroup [Lambek 99], a partially ordered monoid in which each element a has both a
left adjoint a` and a right adjoint ar, such that

a`a // 1 // a`a, aar // 1 // ara,

where the arrow denotes the partial order.
As a first approximation one has recourse to the free pregroup generated by a partially ordered

set of basic types. For example, look at the following English phrases:

men and women
p pr pp` p

// p

women whom I liked
p prpo``s` π1π

rs2o`

p pr p o`` s`π1π
r s2o`

// p.

Here we have employed the following basic types:

π1 first person subject

π subject when the person does not matter

s2 sentence in the past tense

s sentence when tense does not matter

p plural noun phrase.

We also postulate
s2

// s, π1
// π
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to determine the partial order among basic types, so that e.g.

π1π
r // ππr // 1, s`s2

// s`s // 1.

Note that we have assigned to each English word a type, namely a string of simple types of the form
· · ·a``, a`, a, ar, arr · · · where a is any basic type. In the above example, men, women, have been
assigned basic types whereas

liked: πrs2o`

and: prpp`

whom: prpo``s` .

Then

men and (women whom I liked)
ppr p p`pprp o``s`π1π

r s2 o` // p

(men and women) whom I liked
ppr p p`pprp o``s`π1π

r s2 o` // p

These two derivations have evidently different meanings. This suggests that we should take the
arrow to denote not just derivability, but the actual derivation. In other words, we should adopt
the categorical imperative: replace partially ordered sets by categories. There are two distinct
derivations

p pr p p` p pr p // p

which might be thought of as morphisms in a certain category, or even, as we shall see, as 2-cells in
a 2-category. Adjoints are usually defined in the 2-category of all (small) categories, but the same
definition works in any 2-category. A 2-category is said to be compact, if every 1-cell has both a left
and a right adjoint.

Our interest thus shifts to compact 2-categories (originally with one 0-cell) generated by a given
partially ordered set. We may as well replace this partially ordered set by a category and we will
ultimately abandon the assumption that there is only one 0-cell. Thus, we aim to study the free
compact 2-category generated by a given category (or a given 2-graph).

Let the reader be reminded that a 2-category with one 0-cell is usually called a strict monoidal
category. To start with, we will construct a compact one, the category of transitions, and show that
it is equivalent to the freely generated compact strict monoidal category. The 2-cells of the category
of transitions are described as what is known in computer science as labeled transition systems.
Horizontal composition models parallelism, vertical composition models temporal composition of
transition systems [Eilenberg]. Our transitions systems are given in normal form, i.e. they have
initial and final, but no intermediary states. Otherwise said, the 2-cells can be generated without
vertical composition. The fact that every 2-cell is equal to a 2-cell in normal form is the categorical
version of what logicians call “cut-elimination”. Our proof of this fact also provides a decision
procedure for the equational theory of compact 2-categories.

2 2 -categories recalled

To remind the reader of the concept of a 2-category, let her recall the notion of a natural transfor-
mation t : F // G between functors F : M // Q, G : M // Q . Here the categories M and Q
are the 0-cells, F and G the 1-cells and t is a 2-cell. The usual definition of natural transformations
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requires the commutativity of the following diagram, where f : A // B is a given arrow in the
category M:

FA FB
Ff //FA

GA

tA

��

FB

GA

tf

����
��

��
��

��
�

GA GB
Gf

//

FB

GA
����

��
��

��
��

�
FB

GB

tB

��

that is the equality

(2.1) tB ◦ Ff = Gf ◦ tA = tf, for f : A // B, t : F // G,

where ◦ denotes the composition of 2-cells. It is reasonable to denote the diagonal by tf .
Now this equality remains valid if A and B are themselves 1-cells, say functors N // M, and

then tf denotes horizontal composition tf : FA // GB as illustrated by the diagram:

MQ oo

MQ oo

Noo

Noo

�� ��

t f

F A

G B

This horizontal composition is to be distinguished from the vertical composition

s ◦ t : F
t−→ G

s−→H,

the usual composition of 2-cells. The two compositions are related by the equation

(2.2) (s ◦ t)(g ◦ f) = sg ◦ tf,

Mac Lane’s so-called interchange law [Mac Lane].

MQ oo

MQ oo

Noo

Noo

�� ��

t f

F A

G B

MQ oo �� Noo ��
H C

s g

If we identify B with 1B and F with 1F , we see that (2.1) is a special case of (2.2). But (2.2) can
also be deduced from (2.1) and the distributive laws

(2.3) (s ◦ t)C = sC ◦ tC, F (g ◦ f) = Fg ◦ Ff,

as may be verified by diagram chasing.
As a consequence of (2.1), note that

(2.4) 1FA = 1F 1A = 1F A ◦ F1A = F1A ◦ 1F A.

Identifying (the 2-cell) 1F with (the 1-cell) F , (2.4) becomes

(2.5) FA ◦ FA = FA
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and, in the case where A is an identity for horizontal composition, F ◦ F = F . In the particular
case where f is the identity of the 1-cell A , (2.2) becomes

(2.6) (s ◦ t)g = (s ◦ t)(g ◦ 1A) = sg ◦ t1A = sg ◦ tA.

Finally, for F : M // M, G : M // M, u : F // 1M and o : 1M
// G

(2.7) uo = ou

Indeed, let 1 stand for 11M and 1 for 1M. Then

ou = (o ◦ 1)(1 ◦ u) = o1 ◦ 1u = o ◦ u

MM 1oo

MM 1oo

1
��

MM 1oo

MM Foo

u

��

MM Goo

o

��
MM oo

1
��

and similarly,
uo = (1 ◦ u)(o ◦ 1) = 1o ◦ u1 = o ◦ u

MM 1oo

MM 1oo

1
��

MM 1oo

MM Foo

u

��

MM Goo

o

��
MM 1oo

1
��

using (2.2) and 1f = f = f1 .

3 Adjoints in 2-categories

A 1-cell G is said to be a right adjoint of 1-cell F , or F a left adjoint of G, if there are 2-cells
ε : FG // 1 and η : 1 // GF such that

Gε ◦ ηG = 1G, εF ◦ FηG = 1F

G← GFG← G, F ← FGF ← F,

or, identifying 1G with G ,
GεG ◦ ηG = G, εF ◦ Fη = F.

As in linguistic applications, it may be useful to call the co-unit of the adjunction ε a contraction
and the unit η an expansion and paraphrase the equations above by saying that an expansion is
canceled by a contraction immediately following it.

All the usual properties of adjoints, familiar from the category of (small) categories remain valid
in any 2-category. For example, adjoints are unique up to isomorphism (see e.g. [2]). This implies
in particular that one can choose canonical representatives

G` = F, εG : G`G // 1, ηG : 1 // GG`
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such that

(3.1)
GεG ◦ ηGG = 1G, εGG` ◦G`ηG = 1G`

G← GG`G← G, G` ← G`GG` ← G`.

Then G`r ∼= G ∼= Gr` and in the category T(C) described in Section 4, these isomorphisms are
replaced by the equalities

(3.2) G`r = G = Gr`.

Note that if H has a left adjoint H` with counit εH and unit ηH , then GH has a left adjoint H`G`

with counit εGH and unit ηGH given by

(3.3) εGH = εH ◦H`εGH, ηGH = GηHG` ◦ ηG.

Indeed, by (2.1) the diagram below commutes

HH`G`G HH`

HH`εG

//

G`G

HH`G`G

ηHG`G

��

G`G 1
εG // 1

HH`

ηH

��

and therefore

GHεGH ◦ ηGHGH = GHεH ◦GHH`εGH ◦GηHG`GH ◦ ηGGH
= GHεH ◦G(HH`εG ◦GηHG`G)H ◦ ηGGH
= GHεH ◦G(ηH ◦ εG)H ◦ ηGGH
= G(HεH ◦ ηHH) ◦ (GεG ◦ ηGG)H
= GH ◦GH = GH, by (2.5).

Similarly, εGHH`G` ◦H`G`ηGH = H`G`.
In particular, it follows that we may take

(3.4) (GH)` = H`G` and (GH)r = HrGr.

For any 2-cell f : F // G , one can define a 2-cell f ` : G` // F ` as follows:

(3.5) f ` = εGF ` ◦G`fF ` ◦G`ηF

where on the right hand side, read from right to left, the arrows are

F ` ← G`GF ` ← G`FF ` ← G`.

We note that f ` : G` // F ` is the unique 2-cell which makes the following square commute:

G`F G`G
G`f //G`F

1

εf

��?
??

??
??

??
??

? G`G

1

εG

��
F `F 1

εF

//

G`F

F `F
��

G`F

1
��?

??
??

??
??

??
?

Indeed, introducing the name generalized contraction for the diagonal εf we show

(3.6) εf = εG ◦G`f = εF ◦ f `F
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as follows:
εF ◦ f `F = εF ◦ (εGF ` ◦G`fF ` ◦G`ηF )F

= εF ◦ (εG ◦G`f)F `F ◦G`ηF F
= (εG ◦G`f) ◦G`FεF ◦G`ηF F, by (2.1)
= εG ◦G`f ◦G`(FεF ◦ ηF F )
= εG ◦G`f ◦G`F
= εG ◦G`f.

To show uniqueness, i.e.

(3.7) If g : G` // F ` satisfies εG ◦G`f = εF ◦ gF, then g = f `

assume that g satisfies the hypothesis. Then

f ` = (εG ◦G`f)F ` ◦G`ηF = (εF ◦ gF )F ` ◦G`ηF

= εF F ` ◦ gFF ` ◦G`ηF

= εF F ` ◦ F `ηF ◦ g, by (2.1)
= g.

Similarly, we may define fr : Gr // F r by

(3.8) fr = F rεGr ◦ F rfGr ◦ ηF rGr

and, on the way to showing uniqueness, check that it satisfies

(3.9) frG ◦ ηGr = F rf ◦ ηF r .

It follows that

(3.10) fr` = f = f `r

and

(3.11) fF ` ◦ ηF = Gf ` ◦ ηG = ηf ,

where the generalized expansion ηf , is introduced as an abbreviation.

(3.12) (g ◦ f)` = f ` ◦ g`, (g ◦ f)r = fr ◦ gr.

For example to prove f = fr` : F r` // Gr` , it suffices to show that εF r ◦ F r`fr = εGr ◦ fGr ,
using (3.7) with fr : Gr // F r instead of f . This can be verified thus

εF r ◦ F r`fr = εF r ◦ F (F rεGr ◦ F rfGr ◦ ηF rGr)
= (εF r ◦ FF rεGr ) ◦ (FF rf ◦ FηF r )Gr, by (2.3)
= (εGr ◦ εF rGGr) ◦ (FF rf ◦ FηF r )Gr, by (2.1)
= εGr ◦ (εF rG ◦ FF rf ◦ FηF r )Gr, by (2.3)
= εGr ◦ (f ◦ εF rF ◦ FηF r )Gr, by (2.1)
= εGr ◦ fGr, by (3.1).

To see (3.11), use (3.9) with f ` : G` // F ` instead of f : F // G . Finally, we derive (3.12) by a
similar argument.

Equalities (3.1) generalize to

(3.13) Hεf ◦ ηgF = g ◦ f and εgF
` ◦H`ηf = (g ◦ f)`.

For example,
Hεf ◦ ηgF = H(εG ◦G`) ◦ (gG` ◦ ηG)F

= HεG ◦HG`f ◦ gG`F ◦ ηGF
= HεG ◦ gG`G ◦GG`f ◦ ηGF
= g ◦ εGG ◦GηG ◦ f
= g ◦ f.

Note that εF = ε1F
, thus (3.1) is a particular case of (3.13).
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4 Transitions

A 2-category is said to be compact, if every 1-cell has both a left and a right adjoint. A 2-category
with only one 0-cell is also called a strict monoidal category. For a given category C , we will
introduce a category T(C) in which the 2-cells are labeled graphs, called transitions, and show that
it is the compact strict monoidal category freely generated by C. As C is to be embedded in the free
category, the objects A,B, .. of C are identified with 1-cells, and the arrows of C with 2-cells such
that composition in C becomes vertical composition in T(C). As there is only one 0-cell, horizontal
composition is defined for arbitrary 1-cells and, in view of (2.1), horizontal composition is also defined
for arbitrary 2-cells. Hence, let

· · · , A(−2), A(−1), A(0), A(1), A(2) · · · ,

stand for
· · · , A

``

, A`, A Ar, Arr. · · ·

The 1-cells of T(C) are strings

Γ = A(z1)
1 · · ·A(zn)

n , zi ∈, Ai ∈ |C| ,

where the empty string represents the unit 1. Following pregroup terminology, 1-cells of the form
A(z) are called simple types and strings of simple types are called types. Using letters A, B for
simple types, we refer to the integer z such that A = A(z) as the iterator of A and to A as the base
of A . We define

(A(z1)
1 . . .A(zn)

n )` = A(zn−1)
n . . .A(z1−1)

1 ,

(A(z1)
1 . . .A(zn)

n )r = A(zn+1)
n . . .A(z1+1)

1 .

In particular
(A(z))` = A(z−1), (A(z))r = A(z+1).

It is customary in pregroup grammars to represent contractions of simple types as under-links:

εA : A`A // 1 A` A .

By analogy, following the practice of linear logicians, we introduce over-links for expansions of simple
types:

ηA : 1 // AA` AA` .

Representing an arrow s : A // B of C as a vertical link

A

B

s

we generalize this to vertical links
A(2z)

B(2z)

s(2z)

B(2z+1)

A(2z+1)

s(2z+1)

Again, . . . , s(−2), s(−1), s(0), s(1), s(2), . . . stands for . . . , s
``

, s`, s sr, srr, . . .. It is convenient to
declare s(z) : A(z) // B(z) if either s : A // B and z is even or s : B // A and z is odd. We use
s : A // B for s(z) : A(z) // B(z) and call arrows of this form simple arrows. Again, we call the
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integer z in s = s(z) the iterator of s and the arrow s of C the base of s. If s = s(z) : A // B, t =
t(z) : B // C we define

t ◦ s = (t ◦ s)(z), if z is even
= (s ◦ t)(z), if z is odd.

Other convenient meta-notations concerning simple arrows are

s` = (s(z))` = s(z−1),
sr = (s(z))r = s(z+1),

1A(z) = (1A)(z).

It follows from these definitions that (t ◦ s)` = s` ◦ t` and (t ◦ s)r = sr ◦ tr .
he idea is to extend this graphical representation of contractions, expansions and simple arrows

to all 2-cells of the free category, using links labeled by simple arrows.

Horizontal composition can be represented by the juxtaposition of sets of links. For example,
A`

A` A A`

represents A`ηA : A` // A`AA`A.

and
A` A

A`

A`

represents εAA` : A`AA`A // A`

Vertical composition can be represented by connecting vertically graphs and identifying a composite
path with the corresponding link through its endpoints. For example, AεA ◦ ηAA = A we must
identify

A`

A`

A`

A`

A`

AA` =

For s : B // A , we represent

εs = εA ◦A`s = εB ◦ s`A : A`B // 1 by A` B
s

and then must define vertical composition such that

A`

A`

A

B

s =

A`

B`

s`

B

B

= A` B
s

.

Similarly,

ηs = sB` ◦ ηB = As` ◦ ηA : 1 // AB` is represented by

s

A B` .

In the case where the label is 1A : A // A , we omit it in the graphical representation.
Prompted by the motivation above, we introduce the formal notion of a transition between strings

of simple types as a special kind of graph. For the category theorist, a graph consists of two sets,
the set of nodes N and the set of arrows A, and two functions, called domain and codomain, from A
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to N. Graph theorists usually consider a special case of this, the so-called directed graph, where for
each pair of nodes (m,n) there is at most one arrow of domain m and codomain n , i.e. the set of
arrows identifies with a binary relation on the set of nodes. Besides directed graphs, they consider
non-directed graphs that is to say symmetric relations, where (m,n) and (n, m) are identified as the
edge between m and n, denoted {m,n}. It is the latter version we use in the following. In fact, we
will consider labeled non-directed graphs where a map assigns to each node and each edge a label.

Definition 1: Given strings of simple types Γ = C1 · · ·Cm, ∆ = D1 · · ·Dn a transition f : Γ //∆
is a labeled finite non-directed graph. The nodes of f have the form (0, i) or (1, k) where Ci is the
label of (0, i) and Dk the label of (1, k), 1 ≤ i ≤ m, 1 ≤ k ≤ n. We will refer to (0, i) as the “position
i in the domain” of the transition and to (1, k) as the “position k in the codomain”. If i and k are
positions either both in the domain or both in the codomain, i < k refers to the order of natural
numbers. The edges, called links here, are divided into vertical and horizontal links, the latter
being divided into over-links and under-links. The words “vertical”, “horizontal” etc. anticipate the
graphical representation. The following must hold:

1. A vertical link consists of a position i in the domain and a position k in the codomain. Its
label is a simple arrow s : Ci

// Dk .

2. An under-link consists of two positions i and k in the domain. If i < k, its label is a simple
arrow s : Ck

// Cr
i .

3. An over-link consists of two positions i and k in the codomain. If i < k, its label is a simple
arrow s : Dr

k
// Di.

Moreover,

4. each node is endpoint of exactly one link and every link has two distinct endpoints,

5. if {(0, i), (1, k)} and {(0, j), (1, l)} are vertical links and i < j in the domain, then k < l in the
codomain.

6. if {(0, i), (0, k)} is an under-link and j is a position in the domain such that i < j < k , then j
belongs to an under-link {(0, j), (0, l)} such that i < l < k. The same holds with “under-link”
replaced by “over-link” and “domain” by “codomain”.

We will represent the transition f : Γ // ∆ geometrically by a planar graph, the domain
Γ = C1 . . . Cm on the top, the codomain ∆ = D1 . . . Dn at the bottom, letting the simple types
stand for their occurrences, drawing the three kinds of links as their names indicate:

D1 . . . Dk . . . Dn

C1 . . . Ci . . . Cm

s C1 . . . Ci . . . Ck

s

. . . Cm D1 . . .

s

Di . . . Dk . . . Dm.

Conditions 5) and 6) then ensure that links do not cross. If the label of a link is an identity 1A we
may replace it by A or omit it altogether in the graphical representation.

Examples of transitions are the empty graph, denoted 1 : 1 // 1 , of empty domain and of empty
codomain
or for s : A // B
B` A

s
of domain A` B and of empty codomain, ultimately to be denoted

εs : B`A // 1,
or for t : C // D

9



t

D C`
, of empty domain and of codomain D C`, ultimately to be denoted

ηt : 1 // DC`.

This denotation anticipates the fact that A` B
s

will represent a generalized contraction and

t

D C` a

generalized expansion in the compact 2-category of transitions, as shown below. Similarly, a single
vertical link

A

B

s

is a transition of domain A and of codomain B.

To simplify notation, we use s : A // B both to indicate the simple arrow and the simple
transition with domain A and codomain B , consisting of a unique vertical link labeled s. A
somewhat more involved example is

A

D

t

22
22

22
22

2

s

B C`

C` C``B`

s`

A`B
r

C A`

B`

r`

��
��
��
��

where s : C // B, r : B // A, t : A // D and the missing labels are identities. Note that
according to our notation, s : C // B implies s` : B` // C` = C``r and therefore s` is a correct
label for a link under positions 5 and 6 in the domain above.

There is an alternative description of the labels in a transition:
By definition, the label s = s(z) of a vertical link between position i in the domain and position

k in the codomain, is a simple arrow s : Ci
// Dk and therefore the iterator of both Ci and Dk

is z. This says that the basic arrow s points downward, i.e. from the domain to the codomain, if z
is even, and upward if z is odd. The label s = s(z) of an under-link “points” from right to left, i.e.
s : Ck

// Cr
i if i < k in the domain. Hence z is also the iterator of Ck and z− 1 the iterator of Ci,

i.e. Ci = B(z−1) and Ck = A(z) and either s : A // B if z is even, or s : B // A if z is odd. This
means that in under-links, the base arrow s is directed from the position with the even iterator to
the position with the odd iterator.

Similarly, the label s of an over-link between positions k and i in the codomain “points” again
from right to left, i.e. s : Dr

k
// Di for i < k. This time the iterator z of s coincides with that of

Di whereas the iterator of Dk is z − 1, i.e. Di = B(z) and Dk = A(z−1) and either s : A // B if z
is even, or s : B // A if z is odd. Hence in over-links, the base arrow s is directed from the base
with the odd iterator to the base with the even iterator.

Consider for example the transitions and their base graphs

s

B`C``

E``

A``

r

A`

D`

q

55
55

55
55

5 E+

A+

r

��
D−

A−

q

``BBBBBBBBBBB

B−

s

C+
��

C`` D`

t

A``

A``

B`

C`

u

A+

A+
��

C−

B−

u

OO C+

t

D−
OO
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where
r : E`` // A``, r = r``, r : E // A
q : A` // D`, q = q`, q : D // A
s : C` // B`, s = s`, s : B // C

and

u : B` // C`, u = u`, u : C // B
t : D` // C`, t = t`, t : C // D

.

In the right hand graph we replaced the links by the basic arrows, the even iterators by + and the
odd iterators by −.

We define horizontal composition of transitions as juxtaposition. For example, if s : C // B
and t : A // D

B` B D` A
t

D` A
t

B` B B` B

εBεt = εtεB = εBηs =
s

B C`

or

ηstεB =
s

BC`

B`BA

D

t

))
))

))
))

tηsεB =

A

D

t

s

BC`

B`B

.

The examples above are constructed from one-link transitions by horizontal composition, but not
all transitions can be obtained thus. Counter-examples are

B` B` B D` A
t

C

s

s

B

t

D A` C` .

In fact, they are obtained by what we call nesting. We can perform it on transitions consisting either
of under-links only or of over-links only:

Let s : A // B be a simple arrow.

εs(g) : B`ΓA //1 is obtained from g : Γ //1 by adding a new under-link from B` to A labeled
s and

ηs(h) : 1 //B∆A` is obtained from h : 1 //∆ by adding a new over-link from B to A` labeled
s.

With this definition, the examples above can be written as

ηs(1) =

s

B C` = ηs εt(1) = D` A
t

= εt

and

εs(εBεt) = B` B` B D` A
t

A

s

ηs(ηt(1)) =

s

B

t

D A` A`,

for s : C // B, t : A // D .
There is an obvious candidate for vertical composition, as we have seen by the examples at the

beginning of the section, namely vertical connection of transitions where every maximal path1 is
1(i.e. a path which has no proper extension)
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replaced by the link through its endpoints. These paths can get quite involved as illustrated by the
following example. Connect

f =

A` A`` A`` A``` A` A``A`` A```A` A``A A` A

A

to

g =

A`` A` A``` A`` A``` A`` A`` A`A`` A`A` AA

A

The connected graph

g; f = A` A`` A`` A``` A` A``A`` A```A` A``A A` A

A

A`` A` A``` A`` A``` A`` A`` A`A`` A`A` AA

A

has a unique maximal path with both endpoints labeled A, one in the domain and the other one in
the codomain

g ◦ f =

A

A

.

Note that the labels of successive links in a connected graph cannot be composed in general: Starting
from the right hand upper corner, the labels of the first successive links are : 1A for the vertical link
of f , 1A for the longest under-link of g, 1A` = (1A)`, over-link of f starting in the second position
of the string, 1A`` = (1A)`` etc. However, the base arrows of these links can be composed. Here and
below, when we say the “iterator of a position” or “the base of a position”, we mean the iterator or
the base of the simple type which is the label of the position, and similarly for links.

We form the connection g; f of f : Γ // ∆ with g : ∆ // Λ at ∆ as the union of g with f after
having renamed the nodes in the codomain of g from (1, k) to (2, k) and those in the domain of g
from (0, i) to (1, i). Note that a maximal path in g; f has its endpoints necessarily in the domain
of f or the codomain of g. We orient a maximal path as follows: A vertical path, i.e. with one
endpoint in the domain of f and the other one in the codomain of g, is directed from the top (the
domain of f) to the bottom (the codomain of g) if the iterator of the endpoint in the domain of f
is even, otherwise it is directed from the bottom to the top. If both end-points are in the domain
of f the path starts at the endpoint with the even iterator. If both end-points are in the codomain
of g , it starts at the endpoint with the odd iterator. We assign a label to each path in g; f as the
simple arrow whose base is obtained by composing the base arrows of the successive links beginning
at the starting point of the path. The iterator of the label of a vertical path is that of the starting
position. If a path has both endpoints in the domain of f the iterator of its label is that of its
rightmost endpoint. If it has both endpoints in the codomain of g the iterator of its label is that of
its leftmost endpoint.

To define the vertical composition g ◦ f : Γ // Λ of f : Γ // ∆ and g : ∆ // Λ we connect f
with g at ∆ to obtain g; f . The links of g ◦ f are obtained by replacing each maximal path of g; f

12



by a single link through its endpoints. The label of the link consists of the base and the iterator of
the replaced path.

To motivate the definition of the label, recall our alternative description of the labels of links.
It then becomes obvious that the basic arrows along a path can be composed as indicated. For
example, the connected graph

A`

s

D``

A`

A` C```

q

B``

B``

C```

t

D``

yields the base graph
A−

s

D+
��

A−

A−
OO C−

q

B+
��

B+
��

C−
OO

t

D+

where
s : D` // A`, s = s`, s : A // D
t : C`` // B``, t = t``, t : C // B
q : D`` // C``, q = q``, q : D // C

In this case the label is (1B ◦q ◦ t ◦ s ◦ 1A)` which is indeed a simple arrow (q ◦ t ◦ s)` : B` // A`,
corresponding to the transition

(q◦t◦s)`

A`B`` .

In the next lemma we show that in general the composite of the base arrows with the chosen iterator
is an appropriate label for the link replacing the path.

Lemma: (Combing)
Let f : Γ // ∆ and g : ∆ // Λ be transitions, Γ = A1 · · ·An, ∆ = B1 · · ·Bm, Λ = C1 · · ·Cp.

Then g ◦ f is a transition of domain Γ and codomain Λ.

Proof: Use induction on the length m of the intermediary string ∆. If m = 0, then ∆ is empty, f
has only under-links, g only over-links. Hence all paths in g; f have length 1 and g ◦ f = g; f = gf .
For the induction step, assume that ∆ is non-empty and that the property holds for all transitions
f ′ : Γ // ∆′ and g′ : ∆′ // Λ connected at an intermediary ∆′ shorter than ∆. Note that every
path of length at least 2 goes through a position in ∆ . In the following argument, we choose a
section of a path through such a position consisting of two or three consecutive links. This section
will be called a strand and be replaced by a single link, with the same endpoints. There are eight
different strands to be considered:

Case 1: Suppose there is a position j in ∆ such that both f and g have a vertical link through j.
Let s : Ai

// Bj and t : Bj
// Ck be the corresponding labels. Then f = f1sf2 and g = g1tg2

where fi : Γi
// ∆i, gi : ∆i

// Λi for i = 1, 2 . By induction hypothesis, gi ◦ fi : Γi
// Λi is a

transition, for i = 1, 2 and therefore

g ◦ f = (g1 ◦ f1)(t ◦ s)(g2 ◦ f2).

(Strand 1)
Γ = Γ1 Γ2Ai

Bj

s

∆ = ∆1 ∆2Bj

Ck

t

Λ = Λ1 Λ2

replaced by

Γ = Γ1 Γ2Ai

Ck

t◦s

Λ = Λ1 Λ2

13



Case 2: (Strand 2.1) to (Strand 2.6)

If ∆ does not have such a position, assume first that g has at least one under-link. Then there is a
position j in ∆ such that j and j+1 form an under-link of g. Let ∆′ be obtained from ∆ by omitting
BjBj+1 and g′ from g by omitting the under-link through j and j + 1. Clearly, g′ is a transition
from ∆′ to Λ . Next, consider the links determined by the positions j and j + 1 in the codomain of
f , say ¡{(γ, i), (1, j)} and {(1, j + 1), (δ, k)}, where γ, δ ∈ {0, 1}. Note that two consecutive positions
j, j + 1 in ∆ cannot simultaneously form an over-link of f and an under-link of g. Indeed, the
former would imply that the iterator of Bj is greater than the iterator of Bj+1 , whereas the latter
would imply the contrary. Hence, i and k are both different from j and from j + 1. We obtain
f ′ from f by omitting the two links {(γ, i), (1, j)} and {(1, j + 1), (δ, k)} and adding the new link
{(γ, i), (δ, k)}. For each strand, we verify that the labels (or their adjoints) of the three consecutive
links can be composed, providing thus the label for {(γ, i), (δ, k)}. Then the maximal paths of g; f
identify with the maximal paths of g′; f ′. Hence by definition, g ◦ f = g′ ◦ f ′. The property follows
then by induction hypothesis.

The under-link from Bj to Bj+1 being fixed in the next 6 cases, let t : Bj+1
// Br

j be its label.
Case 2.1: Both positions i and k are in the domain of f .

As links do not cross, we have i < k. Let q : Ai
// Bj and s : Ak

// Bj+1 be the labels of
the corresponding vertical links. According to the notations introduced earlier, qr : Br

j
// Ar

i and
therefore qr ◦ t ◦ s is defined and is a simple arrow qr ◦ t ◦ s : Ak

// Ar
i .

(Strand 2.1)

Bj

t

Bj+1Bj

Ai

q

''''''

Bj+1

Ak

s

������

. . .

replaced by
Ai

qr◦t◦s

Ak. . .

Note that the positions between i and k in the domain must be linked by under-links of f , defining
thus a subtransition f3 of codomain 1 of f . Therefore f = f1t

`f3sf2. Replacing the two vertical
links {(0, i), (1, j)} and {(0, k), (1, j + 1)} by a single under-link {(0, i), (0, k)} and leaving the other
links of f unchanged we obtain a transition f ′ from Γ to ∆′.

Case 2.2: Position i is in the domain, position k in the codomain of f .
As links do not cross, j + 1 < k. The label of the vertical link is a simple arrow q : Ai

// Bj

and the label of the over-link is a simple arrow s : Br
k

// Bj+1. Then s` : Bj+1
` // Bk and

t` : Bj
// B`

j+1 and therefore s` ◦ t` ◦ q : Ai
// Bk. Hence

(Strand 2.2)

Bj

Ai

q

Bj

t

Bj+1Bj+1

s

Bk. . .

replaced by

Bk

Ai

s`◦t`◦q

''''''

. . .

Case 2.3: Position i is in the codomain, position k in the domain of f .
As links do not cross, i < j. Then q : Br

j
// Bi, s : Ak

// Bj+1 and q ◦ t ◦ s : Ak
// Bi.

(Strand 2.3)

Bi

q

BjBj

t

Bj+1Bj+1

Ak

s

. . .

replaced by

Bi

Ak

q◦t◦s

������
. . .
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Case 2.4: Both positions i and k are in the codomain of f .
Case 2.4.1: i < j and j + 1 < k
Let q be the label of the over-link between i and j, s the label of the over-link between j +1 and

k. Then q : Br
j

// Bi, s : Br
k

// Bj+1 and therefore q ◦ t ◦ s : Bk
r // Bi.

(Strand 2.4.1)

Bi

q

Bj. . . Bj

t

Bj+1Bj+1

s

Bk. . . replaced by
Bi

q◦t◦s

Bk. . . . . .

Note that the positions between i and j are linked by over-links in f and ditto for the positions
between j + 1 and k. Hence f ′ is again a transition from Γ to ∆′.

Case 2.4.2: j < i and j + 1 < k.
As links do not cross, it follows that k < i. The label of the over-link between i and j is a

simple arrow q : Br
i

// Bj . The label of the over-link between j + 1 and k is a simple arrow
s : Br

k
// Bj+1, therefore s` : B`

j+1
// Bk. Hence s` ◦ t` ◦ q : Br

i
// Bk.

(Strand 2.4.2)

Bj

q

BiBj

t

Bj+1Bj+1

s

Bk. . . . . .
replaced by

Bk

s`◦t`◦q

Bi. . . . . .

Case 2.4.3: i < j and k < j + 1.
As labels we have q : Br

j
// Bi and s : Br

j+1
// Bk. Hence s ◦ tr ◦ qr : Bi

r // Bk

(Strand 2.4.3)

Bk

s

Bj+1. . . Bi

q

Bj. . . Bj

t

Bj+1
replaced by

Bk

s◦tr◦qr

Bi. . . . . .

Case 3: There remains the case where g has no under-links. As we are in the case where no position
in ∆ belongs both to a vertical link in g and to a vertical link in f , the latter must have over-links.
Hence there is a position j in the codomain of f linked to j + 1 in f . Let i and k be the positions
in the codomain of g such that i is linked to j and j + 1 to k in g. As links do not cross, i < k.
Then the labels of these links satisfy s : Br

j+1
// Bj , t : Bj

// Ci, u : Bj+1
// Ck. Therefore

ur : Cr
k

// Br
j+1 and t ◦ s ◦ ur : Cr

k
// Ci.

(Strand 3)

Bj

s

Bj+1Bj

Ci

t

��
��
��

. . .

Bj+1

Ck

u
''
''
'' replaced by

Ci

t◦s◦ur

Ck. . .

This completes the proof.

Note that the vertical composition of two transitions can be computed in time proportional to
the number of links in the transitions. Indeed, it suffices to follow a maximal path exactly once,
computing the label on the way as indicated in the definition.

Proposition: T (C) is a compact strict monoidal category.

Proof: Vertical composition is clearly associative, the identity 1A1...An : A1 . . . An
// A1 . . . An

consists of the obvious vertical links through corresponding simple types. The label of the link
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connecting position i in the domain to position i in the codomain is the identity of the simple type
Ai . Recall that Γ is identified with 1Γ. Then the equality (2.1)

gΛ ◦∆f = Θf ◦ gΓ = gf, for f : Γ // Λ, g : ∆ // Θ

is straightforward.
Compactness follows, if

AεA ◦ ηAA = A and εAA` ◦A`ηA = A`

holds. By (3.3), it is enough to verify this for all simple types A, namely that

A`

A`

A` AA A`

A`

combs to

A`

A`

and

A

A A`A` A

A

combs to

A

A

.

The Combing Lemma is the categorical version of cut-elimination in compact bilinear logic,
established in [Buszkowski]. Indeed, the categorical equality defines an equivalence relation on
proofs such that transitions are cut-free representatives of equivalence classes. Besides providing
a graphical representation of cut-free proofs, the categorical result tells us more: not only can we
derive from f : Γ // ∆ and g : ∆ // Λ the existence of a cut-free h : Γ // Λ, but also show that
this new h : Γ // Λ is equivalent to g; f .

Justifying notation:
We have introduced s` = (s(z))` = s(z−1), sr = (s(z))r = s(z+1) for simple arrows as a convenient

notation in the meta-language. Now we can show that they indeed denote the left respectively right
adjoint in the compact 2-category of transitions, for example we show that s` = εBA`◦B`sA`◦B`ηA:

B`

B`B`

B`B` BB

A

s

A A`

A`

A`

= B`

B`

B`

s

AA A`

A`

= A`

B`

s`

A`

A`

1
A`

=

A`

B`

s`

where, from left to right, we made the replacements (Strand 2.1), (Strand 2.2) and (Strand 1).

Similarly, “nesting” can now be described in the language of compact 2-categories. One verifies
easily that for transitions g : Γ // 1 and h : 1 // ∆ and simple s : A // B,

εs(g) = εs ◦B`gA : B`ΓA // 1 and ηs(h) = BhA` ◦ ηs : 1 // B∆A`

For example,

B`

B`
7777777

B`

s

AA

A
�������

B` B D` A
t

combs to B` B` B D` A
t

A

s
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Theorem: T (C) is the free compact strict monoidal category generated by C.

Sketch of proof: (For a complete proof see the Appendix below.)

A functor Φ : C //U(M) into the underlying category of another compact strict monoidal category
C, can be extended to a strict monoidal functor Φ : T (C) //M as follows:

First we define Φ in the obvious way on simple types and simple arrows and, writing A for Φ(A)
and s for Φ(s) , we define Φ for generalized contractions and expansions as

Φ(εs) = εs = εs

Φ(ηs) = ηs = ηs.

Then, we extend Φ inductively to all transitions by making it commute with horizontal composition
and nesting:

fg = f̄ ḡ ,

εs(f) = εs ◦B
`
f A , s : A // B simple,

ηs(g) = B g A
` ◦ ηs̄ , s : A // B simple.

By construction, Φ̄ preserves horizontal composition, ε and η. As uniqueness is obvious, it only
remains to show that Φ̄ preserves vertical composition. To do this, we follow the Combing Lemma.
For the induction step, we prove Case 1 thus

g ◦ f = (g1 ◦ f1)(t ◦ s)(g2 ◦ f2)
= (g1 ◦ f1) (t ◦ s) (g2 ◦ f2)
= (g1 ◦ f1)(t ◦ s)(g2 ◦ f2)
= g1tg2 ◦ f1sf2

= g ◦ f

In the other cases we use the intermediary transitions g′ and f ′ for which g◦f = g′ ◦f ′ and therefore
also g ◦ f = g′ ◦ f ′. As by induction hypothesis g′ ◦ f ′ = g′◦f ′, it remains to show that g◦f = g′◦f ′.
This requires some care as we must express the seven definitions of g′ and f ′ of the Combing Lemma
in the language of T (C). Instead of carrying out the details of this program for all seven cases,
a different proof will be presented in the Appendix, relating transitions to derivations in the free
pregroup.

This theorem provides a decision procedure for the equational theory of strict compact monoidal
categories given by the axioms of strict monoidal categories together with 3.1 to 3.4. The procedure
applies then also to any definitially equivalent theory such as that of compact non-symmetric star-
autonomous categories where the unit of the tensor product is a dualizing object, [Barr]. Indeed, to
decide whether f = g can be derived, interpret both terms in the category of transitions.

5 The free strict compact 2-category generated by a given
2-graph

We can modify the above construction to the compact 2-category freely generated from a given
2-graph. To simplify matters, we will assume that the 2-cells of the 2-graph form a category.

MQ oo

MQ oo

t
��

A

B

MQ oo

s

��
C

=

MQ oo

MQ oo

t◦s
��

A

B
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Then the construction is the same as above. However, if A : M // N is a 1-cell and z ∈ Z , we
have to require that the simple type A(z) is 1-cell such that

A(z) : M // N, if z is even
A(z) : N // M, if z is odd.

Types are now paths, i.e. A(z1)
1 . . . A

(zn)
n must satisfy

A(zi)
i : Ni

// Ni+1, 1 ≤ i ≤ n− 1.

Then the 1-cells of the free compact 2-category are the types and the 2-cells are the transitions
between types.

As a particular case, let C consist of two 0-cells, M and N , a 1-cell F : M //N and the identity
of F as the unique 2-cells. Let G = Fr and only consider transitions with domain and codomain of
the form GFG . . .FG where FG is repeated n times, n ≥ 0. Then the only possible under-links are
between neighboring FG in the domain and the only possible over-links between neighboring GF
in the codomain. Hence the first position in the domain always belongs to a vertical link. When
connecting two such transitions, say

G

G

G

G
IIIIIIIIIII F GG FF GG FF GG

G<<<<<<<<

F G F

��
��

��
��

=

G

G

F G F G

,

Strands 2.4.2 and 2.4.3 do not occur. More generally, there is no nesting. These graphs are considered
in [Dos̆en 02] under the name of friezes. The connection between a free adjoint functor pair and
cut-elimination is investigated in [Dos̆en 99]. In compact 2-categories the infinite number of adjoints
requires more involved graphs for the computation of composition, like the spiral in Example 1. The
1-cells involving F and Fr only are so-called “linear” types, see [Degeilh-Preller], where it has been
shown that there is at most one transition between two given types. In particular, linear types do
not capture differences in meaning for which the presence of both right and left adjoint is required.
Linguistic applications call for right and left iterated adjoints, e.g. to describe the Chomskyan trace,
see [Lambek 99].

One may wish to generalize the present results to bicategories, using the notions of adjunctions
on bicategories (see e.g. [Lambek 04]), but we will refrain from doing so here. The special case of
compact symmetric monoidal categories has been treated in a classical paper by [Kelly - Laplaza].
They did not actually construct the free such category, instead they established the important result
that equations between morphisms in the language of such categories follow from the axioms if and
only if they hold, up to isomorphism, for the graphs. In the situation we have discussed here, the
graphs have to be equal.

6 Conclusion

We have described the 2-cells of T (C), the free compact monoidal 2-category generated by C as
labeled transition systems. These transition systems draw their labels from C and are closed under
parallel and sequential composition. In the case where C is itself freely generated by a labeled graph,
the edges of this graph stand for non-logical axioms or “information”. Both left and right adjoint
provide a mechanism for storing this information. It follows from the above that equality in TC)
is decidable, if the equality of arrows in C is. This is in particular the case, if C is freely generated
by a labeled graph. The reductions constructed when analyzing syntax with a pregroup grammar
are particular transitions. As different reductions give rise to different semantical interpretations,
transitions are an indispensable step from pregroup grammars to discourse representation.
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7 Appendix (by Anne Preller)

To prove that T (C) is the free compact strict monoidal category, we define the extension Φ :
T (C) //M of the functor Φ from C to a compact strict monoidal category M as indicated in
the outline of the proof in Section 4. First we check that Φ is well defined. The other property left
to be shown is that Φ commutes with vertical composition. The proof outlined in Section 4 is based
on the idea that the Combing Lemma can be expressed in purely categorical terms. Though the
equalities corresponding to the eight cases of the Combing Lemma can be shown to hold inM, the
proof below follows a different line: it relates transitions directly to the derivations in free pregroups
defined in [Lambek 99].

We remarked in Section 4 that an arbitrary transition can be obtained from single links by
the graphical operations of juxtaposition and nesting. To express these operations in categorical
language, we distinguish the horizontal normal forms among the expressions of the language of
compact strict monoidal categories with constants in C .

Definition 1 (Horizontal normal form)
Every simple arrow s : A //B, every generalized contraction εs : B`A //1 and every generalized
expansion ηs : 1 // BA` is a horizontal normal form.
An arbitrary horizontal normal form is obtained from them by the following rules

(Horizontal composition)
f : Γ // ∆ normal g : Θ // Λ normal

fg : ΓΘ // ∆Λ normal

(Nesting Contraction)
f : Γ // 1 normal s : A // B simple

εs ◦B`fA : B`ΓA // 1 normal

(Nesting Expansion)
f : 1 // ∆ normal s : A // B simple

ηs ◦BfA` : 1 // B∆A` normal

where the Horizontal Composition rule does not apply to u : Γ // 1 and o : 1 // Λ.

Note that the Horizontal Composition rule applies to o : 1 // Λ and u : Γ // 1. The order
u : Γ // 1 and o : 1 // Λ is excluded because uo = ou holds in all 2 -categories by (2.7). Thus,
only ou is a normal expression. This, together with the fact that 1 is not a normal expression, makes
it possible to assert the uniqueness of horizontal normal forms:

Lemma 1 (Horizontal normal form)

Every non empty transition f : A1 . . . Am
//B1 . . . Bn can be expressed in horizontal normal form,

which is unique up to associativity of horizontal composition.

Proof: Use induction on the number of links in f . At least one of n or m is greater than 0. First,
assume that m > 0. Distinguish two cases:

1. The last position m of Γ is linked to a position k in the codomain ∆ with label s .

A1 . . . Am−1

B1 . . . Bk−1

Am

Bk

s

��
��
��

Bk+1 . . . Bn

Then the other links of f can be divided into those with no endpoint to the right of k and those
with both endpoints to the right of k. The former set of links defines a transition g : A1 . . . Am−1

// B1 . . . Bk−1, and the latter a transition h : 1 // Bk+1 . . . Bn such that f = gsh.
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2. The last position m in the domain is linked to a position k < m in the domain.

A1 . . . Ak−1 Ak . . . Am

s

B1 . . . Bn.

Let g consist of the links of f with endpoints in the codomain or to the left of k in the domain,
and let h consist of the links with both endpoints in the domain strictly between k and m.
Then g : A1 . . . Ak−1

// B1 . . . Bn, h : Ak+1 . . . Am−1
// 1 and f = gεs(h)

Else, suppose m = 0 and n > 0. Now consider the link through the last position n in the codomain.
Let t be its label. The other endpoint of this link is a position j < n in the codomain:

B1 . . . Bj−1

t

Bj . . . Bn .

Then the links which have both endpoints to the left of j form a transition g : 1 // B1 . . . Bj−1

and the links with both endpoints between j and n form a transition h : 1 // Bj+1 . . . Bn−1 such
that f = gηt(h).

From the existence of a unique normal form for a transition, it follows at once that the canonical
extension Φ is well defined. We recall the definition using ( ) instead of Φ :

(I) A(0) = Φ(A), A object of C

s(0) = Φ(s), s arrow of C

(II) An+1 = A(n)
r
, A(−n−1) = A(−n)

`
, for 0 ≤ n

s(n+1) = s(n)
r
, s(−n−1) = s(−n)

`
, for 0 ≤ n

(III) Γ∆ = Γ ∆ fg = f g

(IV) εs = εs

ηs = ηs

εs(f) = εs ◦B
`
f A = εs(f), f : Γ // 1, s : A // B simple

ηs(g) = B g A
` ◦ ηs = ηs(g), g : 1 // ∆, s : A // B simple

(V) 1 = 1, 1Γ = 1Γ .

By definition, Φ preserves horizontal composition and the identities. If the left and right adjoints of
1 -cells are part of the signature ofM, Φ preserves left and right adjoints only up to isomorphism in
general. For example, we may only have (GH)` ∼= H`G` in M. However, as only the existence of
left and right adjoints of 1-cells is assumed in the definition in Section 3, a functor of 2 -categories
which preserves left and right adjoint up to isomorphism may still be correctly called a functor of
compact 2 -categories.

Finally, we must show that Φ commutes with vertical composition. This is easily verified if the
composed transitions are simple arrows or if one of them is an identity. In the general case, the idea
is to prove the property for transitions that consist essentially of just one link, the so-called single
step transitions, and to show that an arbitrary transition is equal to a vertical composition of single
steps.

Definition 3 (Single step)
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A single step is a 2-cell of one of the following forms

Γs∆ : ΓA∆ // ΓB∆ (Induced step)
Γεs∆ : ΓB`A∆ // Γ∆ (Generalized contraction step)
Γηs∆ : Γ∆ // ΓBA`∆ (Generalized expansion step)

where s : A // B is a simple arrow.

This definition uses categorical language only, hence replacing s by s, we may say that the canonical
map preserves single steps, i.e. Γs∆ = Γs∆ , Γεs∆ = Γεs̄∆ and Γηs∆ = Γηs̄∆. Single steps
generate all transitions, as follows from Lemma 1 and the following Lemma 2:

Lemma 2 (Vertical decomposition of horizontal normal forms)

Every horizontal normal form f : A1 . . . An
//B1 . . . Bm can be expressed as a vertical composition

of single steps f = f1 ◦ . . . ◦ fn such that f = f1 ◦ . . . ◦ fn.

The proof of Lemma 2 is straightforward by induction on the derivation of the horizontal normal
form of f . The distributivity laws (2.3) intervene if one of the nesting rules was applied. If the
horizontal composition rule was applied, the argument is as follows:
For h : Γ // Θ and g : ∆ // Λ, the equalities

gΘ ◦∆h = gh = Λh ◦ gΓ

∆

∆

∆

Γ

Θ

h

∆

Λ

g

Θ

Θ

Θ

=

∆

Λ

g

Γ

Θ

h =

∆

Λ

g

Γ

Γ

Γ

Λ

Λ

Λ

Γ

Θ

h

hold in a an arbitrary 2 -category by (2.1), therefore

g Θ ◦∆ h = gh = Λ h ◦ g Γ

Hence,
gΘ ◦∆h = gh = g h = g Θ ◦∆ h = gΘ ◦∆h

and similarly,
Λh ◦ gΓ = Λh ◦ gΓ .

In particular, if h and g are single steps, then Λh, gΓ, gΘ and ∆h are again single steps. We call Λh
and gΓ respectively gΘ and ∆h disjoint, because the essential links can not interact. This operation,
which switches two disjoint single steps, has given the Switching Lemma of [Lambek 99] its name.

In general, however, Lemma 2 is not sufficient to show that g ◦ f = g◦f , because g◦f is in general
not in horizontal normal form. All we can conclude form this is that g ◦ f = g1 . . . ◦ gn ◦ ◦f1 . . . fm

and that g ◦ f = g1 . . . ◦ gn ◦ f1 . . . fm . Our next task is to associate to a vertical composition of
single steps f1 ◦ . . . ◦ fn a normal form f such that

f1 ◦ . . . ◦ fn = f

f1 ◦ . . . ◦ fn = f

and therefore
f1 ◦ . . . ◦ fn = f1 ◦ . . . ◦ fn.

The other operations introduced in the Switching Lemma imply this equality for n = 2 by replacing
two successive single steps by one single step. We recall them as Operations (1) to (4) below and
prove that the replaced steps are equal to the replacing step.
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(Switching Operations)
(0) Switch two disjoint steps.

fi ◦ fi+1 = fi+1 ◦ fi and fi ◦ fi+1 = fi ◦ fi+1 .

In Operations (1) to (4) below, the two replaced steps are non-disjoint:
(1) Replace two induced steps by a single induced step.

Γt∆ ◦ Γs∆ = Γ(t ◦ s)∆

ΓA∆

ΓB∆

s

ΓB∆

ΓC∆

t

=

ΓA∆

ΓC∆

t◦s .

As the equality is an instance of the distributive laws in 2-categories, we also have

Γ t ∆ ◦ Γ s∆ = Γ (t ◦ s)∆ = Γ t ◦ s ∆ .

(2) Replace a generalized expansion followed by a generalized contraction by an induced step.
(2a) The generalized contraction is on the left:

ΓεtC
`∆ ◦ ΓA`ηs∆ = Γ(t ◦ s)`∆

Γ

Γ
��
��
��

Γ

Γ
22

22
22

2

A`

A`
��
��
��

A`

t

BB

s

C`C`

C`
��
��
��

∆

∆
--

--
--

∆

∆
��
��
��

=

Γ

Γ

A`

C`

(t◦s)`

∆

∆

where t : B // A and s : C // B. The equalities

εtC
` ◦A`ηs = (εA ◦A`t)C` ◦A`(sC` ◦ ηC)

= εAC` ◦A`tC` ◦A`sC` ◦A`ηC

= εAC` ◦A`(t ◦ s)C` ◦A`ηC

= (t ◦ s)`, by (3.5)

and
ΓεtC

`∆ ◦ ΓA`ηs∆ = Γ(εtC
` ◦A`ηs)∆ = Γ(t ◦ s)`∆

hold in arbitrary 2-categories. Recall that the canonical map commutes with vertical composition
of simple arrows and the adjoints of simple arrows

(t ◦ s)` = (t ◦ s)` .

Hence
ΓεtC`∆ ◦ ΓA`ηs∆ = Γ(t ◦ s)`∆

= Γ (t ◦ s)` ∆
= Γ (t ◦ s)`∆
= Γεt∆ ◦ Γηs∆
= Γεt∆ ◦ Γηs∆ .
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(2b) The generalised contraction is on the right:

ΓDεt∆ ◦ ΓηqB∆ = Γ(q ◦ t)∆

Γ

Γ
��
��
��
�

Γ

Γ
22

22
22

2D

q

A`D

D

22
22

22
2 A`

t

B

B

B

))
))

))
∆

∆
))

))
))

∆

∆
��
��
��

=

Γ

Γ

B

D

q◦t

∆

∆

.

The proof is similar, using an instance of (3.13)

Dεt ◦ ηqB = q ◦ t.

(3) Replace an induced step followed by a generalized contraction by a generalized contraction.
(3a) The essential link of the induced step is on the right

Γεt∆ ◦ ΓA`s∆ = Γεt◦s∆

Γ

ΓΓ

Γ
++

++
++

A`

A`A`

t

BB

C

s

∆

∆∆

∆
��
��
��

=

Γ

Γ
%%
%%
%%
%%
%%
%%
%%
A`

t◦s

C ∆

∆
��
��
��
��
��
��
��

where t : B // A , s : C // B .
Indeed,

εt ◦A`s = εA ◦A`t ◦A`s = εA ◦A`(t ◦ s) = εt◦s,

and
Γεt∆ ◦ ΓA`s∆ = Γ(εt ◦A`s)∆ = Γεt◦s∆.

hold in all compact 2 -categories, hence

Γεt∆ ◦ ΓA`s∆ = Γεt◦s∆

(3b) The essential link of the induced step is on the left.
(4) Replace a generalized expansion and a following induced step by a generalized expansion.

(4a) The essential link of the induced step is on the right.
(4b) The essential link of the induced step is on the left.

The proofs of Cases (3b), (4a) and (4b) are left to the reader.

There are four cases which are not included in the switching operations, namely the cases where
the two consecutive single steps fi ◦fi+1 are either both generalized contractions or both generalized
expansions or where an induced step is preceded by a generalized contraction or followed by a
generalized expansion. For them also there is an intermediary transition f such that

fi ◦ fi+1 = f

fi ◦ fi+1 = f

However, in opposition to the cases of the switching operations (1) to (4), f is not a single step but
a horizontal normal form. We will prove this for a vertical composition of arbitrary length, provided
the single steps are all of the same kind. The import of this property is explained by the fact that
the Switching Lemma in [Lambek 99] preserves equality.
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Lemma 3 (Switching)

Every vertical composition of single steps can be rewritten as a vertical composition of single steps

f1 ◦ . . . ◦ fn = (h1 ◦ . . . ◦ hq) ◦ (v1 ◦ . . . ◦ vm) ◦ (g1 ◦ . . . ◦ gp)

such that the gi’s are generalized contractions, the vi’s induced steps and the hi’s generalized ex-
pansions. Moreover,

f1 ◦ . . . ◦ fn = (h1 ◦ . . . ◦ hq) ◦ (v1 ◦ . . . ◦ vm) ◦ (g1 ◦ . . . ◦ gp).

Proof: Omit the induced steps which are identities and use the switching operations (0) to (4).

The horizontal normal forms corresponding to a vertical composition of single steps which are all of
the same kind are described thus:

Definition 3
A normal contraction step is a horizontal composition

u0B1 . . . um−1Bmum : ∆0B1 . . .∆m−1Bm∆m
// B1 . . . Bm

where uk : ∆k
// 1 is 1 or a horizontal normal form, for 0 ≤ k ≤ m.

An normal expansion step is a horizontal composition

o0C1 . . . om−1Cmom : C1 . . . Cm
// Γ0C1 . . .Γm−1CmΓm

where ok : 1 // Γk is 1 or a horizontal normal form, 0 ≤ k ≤ m.

A normal vertical step is a horizontal composition

s1 . . . sm : B1 . . . Bm
// C1 . . . Cm

where sk : Bk
// Ck is a simple arrow.

We remark that these normal steps generalize the single steps and are horizontal normal forms.

Lemma 4
Every vertical composition of generalized contractions g1 ◦ . . . ◦ gp : A1 . . . An

// B1 . . . Bm can be
rewritten as a normal contraction step u0B1 . . . um−1Bmum such that

g1 ◦ . . . ◦ gp = u0B1 . . . um−1Bmum

and
g1 ◦ . . . ◦ gp = u0 B1 . . . um−1 Bm um.

Moreover,
g1 ◦ . . . ◦ gp = g1 ◦ . . . ◦ gp.

Proof: Use induction on the length p of the vertical decomposition. Note that

g1 = B1 . . . BjεtBj+1 . . . Bm

where εt : AiAk
// 1 for some 1 ≤ i < k ≤ n. By induction hypothesis,

g2 ◦ . . . ◦ gp = f ′AiuAkf ′′,

where u : Ai+1 . . . Ak−1
// 1 is the identity 1 or in normal form and f ′ : A1 . . . Ai−1

// B1 . . . Bj

and f ′′ : Ak+1 . . . An
// Bj+1 . . . Bm are normal contraction steps. Hence

g1 ◦ g2 ◦ . . . ◦ gp = (B1 . . . BjεtBj+1 . . . Bm) ◦ (f ′AiuAkf ′′)
= f ′(εt ◦ (AiuAk))f ′′ by 2.2
= f ′εt(u)f ′′.
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Recall that f ′ = u0
′B1 . . . uj−1

′Bjuj
′ and f ′′ = u0

′′Bj+1 . . . Bmum−j
′′ and define

ul = ul
′, for 0 ≤ l ≤ j − 1

uj = uj
′εt(u)u0

′′

ul = ul−j
′′, for j + 1 ≤ l ≤ m.

As the equalities above hold in all 2-categories, the rest of the assertion follows.

Lemma 5
Every vertical composition of generalized expansions h1 ◦ . . . ◦ hq : C1 . . . Cm

// D1 . . . Dm can be
rewritten as a normal expansion step o0D1 . . . om−1Dmom such that

h1 ◦ . . . ◦ hq = o0D1 . . . om−1Dmom

and
h1 ◦ . . . ◦ hq = o0D1 . . . om−1Dmom.

Moreover,
h1 ◦ . . . ◦ hq = h1 ◦ . . . ◦ hq.

Proof: Similar to the case of generalised contractions.

Lemma 6
If v1 ◦ . . . ◦ vn : B1 . . . Bm

// C1 . . . Cr is a vertical composition of induced steps, then r = m and
there is a normal vertical step s1 . . . sm such that

v1 ◦ . . . ◦ vn = s1 . . . sm and v1 ◦ . . . ◦ vn = s1 . . . sm.

Moreover,
v1 ◦ . . . ◦ vn = v1 ◦ . . . ◦ vn.

Proof : First, we remark that the domain and codomain of an induced step are strings of the same
length and therefore r = m. Now we proceed by induction on n, using the switching operation (0)
and the distributive laws (2.3)

Lemma 7: The canonical extension ( ) preserves vertical composition.

Proof: By Lemmas 1 and 2 each of g and f separately can be written as a vertical composition of
single steps and therefore

g ◦ f = f1 ◦ . . . ◦ fn

respectively
g ◦ f = f1 ◦ . . . ◦ fn .

Then by Lemmas 3, 4, 5 and 6, this vertical composition is equal to

f1 ◦ . . . ◦ fn = o0C1 . . . Cmom ◦ s1 . . . sm ◦ u0B1 . . . Bmum

respectively
f1 ◦ . . . ◦ fn = o0 C1 . . . Cm om ◦ s1 . . . sm ◦ u0 B1 . . . Bm um .

By the distributive laws (2.2) and (2.7), we derive

f1 ◦ . . . ◦ fn = o0u0s1 . . . smomum

respectively
f1 ◦ . . . ◦ fn = o0 u0 s1 . . . sm om um.

By definition, the canonical extension commutes with horizontal composition, hence

f1 ◦ . . . ◦ fn = f1 ◦ . . . ◦ fn.

and thus
g ◦ f = g ◦ f .

This completes the proof of the Theorem in Section 4.
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