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Abstract

Given a set P of points (clients) on a weighted tree T , the k-centre of P corresponds to a set of k

points (facilities) on T such that the maximum graph distance between any client and its nearest facility
is minimized. We consider the mobile k-centre problem on trees. Let C denote a set of n mobile clients,
each of which follows a continuous trajectory on T . We establish tight bounds on the maximum relative
velocity of the 1-centre and 2-centre of C. When each client in C moves with linear motion along a
path on T , the motions of the corresponding 1-centre and 2-centre are piecewise linear; we derive a
tight combinatorial bound of Θ(n) on the complexity of the motion of the 1-centre and corresponding
bounds of O(n2

α(n)) and Ω(n2) for the 2-centre, where α(n) denotes the inverse Ackermann function.
We describe efficient algorithms for calculating the trajectories of the 1-centre and 2-centre of C: the
1-centre can be found in optimal time O(n log n) when the distance function between mobile clients is
known or O(n2) when the function must be calculated, and a 2-centre can be found in time O(n2 log n).
These algorithms lend themselves to implementation within the framework of kinetic data structures,
resulting in structures that are compact, efficient, responsive, and local.
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1 Introduction

Motivation. Finding a set of k points that are central to a collection of data points drawn from a metric
space is a fundamental problem of geometry and data analysis. Within the context of facility location, this
problem is commonly known as the k-centre problem; given a set of points (clients) in a metric space S,
the k-centre of P is a set of k points (facilities) such that the maximum distance from any client to its
nearest facility is minimized. Two common choices for S are a Minkowski distance (typically ℓ1, ℓ2, or ℓ∞)
in Euclidean space and graph distance on a weighted graph.

Recently, the k-centre problem has been explored under mobility. In one dimension, the mobile 1-centre
problem reduces to maintaining the extrema of a set of mobile clients as these move along the real line
[3, 4, 8, 20]. Natural generalizations of the mobile 1-centre to higher dimensions in R

d lead to the mobile
Euclidean 1-centre [4, 11, 16], the mobile rectilinear 1-centre [4, 12], and the kinetic convex hull [8, 9, 20]. In
this paper, we consider a different generalization of the one-dimensional mobile problem to the metric space
of graph distance on a weighted graph and, in particular, on a weighted tree.

Although the static k-centre problem on graphs is well understood (see Sec. 3), the corresponding mobile
problem remained unexplored. Any path in a weighted graph is isometric to a line segment; we generalize the
motion of a single client on the line to motion on a path in a graph. The union of the trajectories of a set of
clients forms a graph. That is, given a weighted graph G, each mobile client follows a continuous trajectory
along the edges and vertices of G. Continuity and bounded velocity are natural constraints on any physical
moving object. It is straightforward to show that for any graph G that contains a cycle, there exist sets of
mobile clients on G whose 1-centre is discontinuous. We restrict our attention to metric spaces for which
the k-centre is continuous. In particular, graph distance on a tree maintains many properties of Minkowski
distance on the real line, such as a unique shortest path between two points and a unique, continuous 1-centre
(see Sec. 4.1), while introducing interesting algorithmic challenges to the problem of maintaining a mobile k-
centre. Many of the properties we examine are familiar to geometry: continuity of motion, bounded velocity,
extremal points, reflection, etc. As such, these questions share common aspects with both kinetic/mobile
problems within computational geometry and problems in facility location on graphs.

Main Results. The 1-centre on a tree is unique [21]. We show its motion is continuous and has relative
velocity at most one when the motion of clients if continuous. Since a 2-centre of a tree is not unique, we
identify a particular 2-centre which we call the equidistant 2-centre and show that its motion is continuous
and has relative velocity at most two when the motion of clients is continuous. The 3-centre is discontinuous
even on a line segment; furthermore, no bounded-velocity approximation is possible for the mobile 3-centre
[15]. We consider values of k for which the mobile k-centre is continuous: k ≤ 2.

When each client in C moves with linear motion along a path on T , the motions of the corresponding
1-centre and equidistant 2-centre are piecewise linear. We derive a tight combinatorial bound of Θ(n) on the
complexity of the motion of the 1-centre, an upper bound of O(n2α(n)) on the complexity of the motion of
the equidistant 2-centre, and a worst-case lower bound of Ω(n2) on the complexity of the motion of any 2-
centre, where α(n) denotes the inverse Ackermann function. We describe efficient algorithms for calculating
the trajectories of the 1-centre and 2-centre of C. When the all-pairs distance function between mobile clients
is known at all times, the 1-centre can be found in optimal time O(n log n). The distance function can be
calculated in time O(n2). The 2-centre can be found in time O(n2 log n). Our algorithms have natural
implementations as kinetic data structures (KDS), introduced by Basch et al. [8]. Applications of KDSs
include collision detection (e.g., [1, 7, 30]), proximity problems (e.g., [10]), extent and extremal elements (e.g.,
[3, 4, 8, 20]), the convex hull (e.g., [8, 9, 20]), and the k-centre and k-median (e.g., [2, 4, 11, 15, 16, 19, 27]).

2 Definitions

Since a point refers to a fixed position in a metric space, we refer to a client in the context of motion. Let
C = {c1, . . . , cn} denote a set of mobile clients, where I = [0, tf ] denotes a time interval, UT denotes the
continuum of points defined by a weighted tree T = (V,E), and each ci is a continuous function ci : I → UT .
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For every t ∈ I, let C(t) = {c(t) | c ∈ C} denote the set of points in UT that corresponds to the positions
of clients in C at time t. The position of a mobile facility f is a function of the positions of a set of clients,
f : P(UT ) → UT .

A common assumption in problems involving motion in Euclidean space is that the position of a mobile
client is a linear function over time (e.g., [3, 4, 8]). We make a similar assumption and consider clients with
linear motion on trees to establish combinatorial bounds. As we discuss in Sec. 4.3, our algorithms generalize
to allow algebraic motion (although the derived bounds no longer apply). A mobile client or facility a has
linear motion if for all t ∈ I, d(a(0), a(t)) = t · va, where va is a non-negative constant and d(b, c) denotes
the graph distance between points b and c in UT . We refer to va as the velocity of a. That is, a follows
a continuous trajectory along the path on T between a(0) and a(tf ) with velocity va. The union of the
trajectories of a set of n mobile clients that move with linear motion is a subgraph of UT that has at most
2n vertices of degree one. Therefore, we assume that T has at most 2n leaves and at most 4n − 1 vertices,
and that c(0) and c(tf ) are vertices of T , for each c ∈ C.

We assume an upper bound of one on the velocity of clients since we are interested in relative velocity.
Unlike mobile clients, a mobile facility is not required to travel along a path in T nor is its velocity required
to remain constant. A mobile facility f has maximum velocity vf if

∀t1, t2 ∈ I, d(f(C(t1)), f(C(t2))) ≤ vf |t1 − t2|, (1)

for all sets of mobile clients C defined on any tree T and any time interval I. Observe that continuity is
a necessary condition for any fixed upper bound on velocity. Similarly, we say the rate of change of the
k-radius is bounded by rf if

∀t1, t2 ∈ I, |r(C(t1)) − r(C(t2))| ≤ rf |t1 − t2|, (2)

for all sets of mobile clients C defined on any tree T and any time interval I.
We say that two clients a and b cross at time t0 if

a(t0) = b(t0) and ∃ǫ > 0 s.t. ∀t ∈ (t0 − ǫ, t0), a(t) 6= b(t).

In most cases, clients a and b coincide only at the instant t0. However, if a and b have the same velocity,
then their trajectories may merge such that the positions of a and b coincide until their trajectories diverge
again. Since clients a and b have constant velocity and their trajectories intersect in a path, a and b may
cross at most once. We define the crossing event as the instant t0 when their two positions first coincide.

We say client c ∈ C is extreme at time t if c does not lie in the interior of any path through T between
two clients in C(t). The convex hull of C(t) corresponds to the union of all paths between two clients in
C(t). Whereas some definitions of the convex hull on a graph refers to a subset of the vertices [13], we refer
to the continuous subset of UT .

We recall the (static) definition of a k-centre of a client set on a tree.

Definition 1. Given a weighted tree T and a set of points C in UT , a k-centre of C is a set of k points in
UT , denoted Ξ1(C), . . . ,Ξk(C), that minimizes

max
c∈C

min
1≤i≤k

d(c,Ξi(C)). (3)

When k = 1, we omit the subscript and write Ξ(C). The definition of a mobile k-centre of a set of mobile
clients C follows directly from this static definition. That is, the instantaneous positions of a mobile k-centre
of C at time t is given by Definition 1 in terms of C(t).

We refer to the value of (3) as the k-radius of C or simply as its radius when k = 1. The diameter of C
is twice the radius of C [22] (for graphs, the diameter is at most twice the radius). A diametric path of C is
a path between two clients c1 and c2 in C such that the distance between them is the diameter of C. We
refer to {c1, c2} as a diametric pair and to c1 and c2 as diametric clients. The 1-centre of C is the unique
midpoint of all diametric paths of C [21].
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The 1-centre problem on graphs is also known as the absolute centre [21, 22, 23], single centre [22], and
minimax location problem [14, 21]. A common variation of the k-centre problem on graphs is known as the
vertex k-centre or discrete k-centre problem, for which the choice of locations for the facility is restricted to
vertices (similarly, clients) of the graph G. Observe that maintaining continuity in the motion of a mobile
facility is impossible in the vertex centre model, as a facility could be required to jump discontinuously from
vertex to vertex (similarly, client to client).

3 Related Work

Handler [21] gives linear-time algorithms for identifying the 1-centre and 2-centre of a tree. Frederickson gives
a linear-time algorithm for finding a k-centre of a tree [18]. Kariv and Hakimi [28] provide an O(mn+n log2 n)-
time algorithm for the 1-centre problem on graphs, where n = |V | and m = |E|. A review of single-facility
location problems on graphs is given in [24]. As for multiple-facility location problems, [28, 29], and [31]
provide reviews of the k-centre and k-median problems on graphs, while [32] reviews these problems on trees.

Kinetic data structures (KDS), introduced by Basch et al. [8], allow the maintenance of an attribute
(called the configuration function) of a set of mobile objects moving continuously in some metric space. To
do so, a KDS maintains a dynamic set of certificates that guarantee the correctness of the configuration
function at any time during the motion. Each certificate c is associated with a small set of mobile objects for
which some property is verified. The failure time of certificate c (called an event) is calculated as a function
of the motion of these objects. The failure time is added to a priority queue. Restoring the configuration
function following a certificate failure requires updating the set of certificates (and the corresponding events
in the queue). The compactness of a KDS measures the maximum number of certificates active at any given
time. The responsivity of a KDS measures the maximum number of certificates associated with any one
mobile object. The locality of a KDS measures the number of certificates that require updating as a result
of a certificate failure. The efficiency of a KDS compares the total number of certificate failures relative to
the number of external events (changes to the configuration function). See [6, 8, 9, 20] for a more complete
description of the KDS framework.

In relation to our work on the mobile k-centre, KDSs have been constructed to maintain various attributes
of a set of mobile clients; these include extremal elements in R [3, 4, 8, 20], the extent and approximate
extent (e.g., diameter and width) in R

2 [3, 4], approximations to the mobile 1-centre in R
2 [4, 11, 15, 16],

approximations to the mobile 2-centre in R
2 [15], the mobile rectilinear 1-centre in R

2 [4, 12], the kinetic
convex hull [8, 9, 20], and the approximate discrete rectilinear k-centre [19, 27].

In any metric space, identifying a pair of furthest clients in a set of mobile clients corresponds to finding
the upper envelope (the maximum function) of a set of distance functions. This problem is related to
Davenport-Schinzel sequences [5, 17, 26, 25, 33]. In particular, the upper (lower) envelope of a set of n
line segments is a piecewise-linear function that consists of Θ(nα(n)) linear segments [25] in the worst case.
Hershberger [26] provides an algorithm for computing the upper envelope in optimal O(n log n) time.

4 The Mobile 1-Centre on Trees

4.1 Properties of the Mobile 1-Centre

The mobile 1-centre is continuous in R and R
2 [15]. Although the mobile 1-centre has at most unit relative

velocity in R, its relative velocity is unbounded in R
2 [12]. As we show, the mobile 1-centre remains

continuous on trees (but not on graphs). Furthermore, the mobile 1-centre has at most unit relative velocity
on trees.

Theorem 1. The mobile 1-centre has relative velocity at most one on trees. This bound is tight.

Proof. Choose any t1, t2 ∈ I and let δ = |t1 − t2|. If Ξ(C(t1)) = Ξ(C(t2)), then the velocity bound holds
trivially. Therefore, assume Ξ(C(t1)) 6= Ξ(C(t2)). Let P denote the path in T between Ξ(C(t1)) and
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Ξ(C(t2)). Let r1 and r2 denote the respective radii of C(t1) and C(t2). Let L1 denote the subtree of T that
includes all branches of Ξ(C(t1)) except P . Note, L1 includes Ξ(C(t1)). Similarly, let L2 denote the subtree
of T that includes all branches of Ξ(C(t2)) except P .

Let a be a client in C such that a(t1) ∈ L1 and d(a(t1),Ξ(C(t1))) = r1. Similarly, let b be a client in C
such that b(t2) ∈ L2 and d(b(t2),Ξ(C(t2))) = r2. Such clients must exist since Ξ(C(t)) is the midpoint of a
diametric path of C(t) for all t. See Fig. 1 below.

L 1

a(t  )1
L 2

b(t  )2

(C(t  ))1!

(C(t  ))2!

P

Figure 1: Relative positions of a(t1), b(t2), Ξ(C(t1)) and Ξ(C(t2))

Therefore,

d(a(t1), b(t2)) ≤ d(a(t1),Ξ(C(t1))) + d(Ξ(C(t1)), b(t1)) + d(b(t1), b(t2)) ≤ 2r1 + δ (4a)

and d(a(t1), b(t2)) ≤ d(a(t1), a(t2)) + d(a(t2),Ξ(C(t2))) + d(Ξ(C(t2)), b(t2)) ≤ 2r2 + δ. (4b)

Consequently, d(a(t1), b(t2)) = d(a(t1),Ξ(C(t1))) + d(Ξ(C(t1)),Ξ(C(t2))) + d(Ξ(C(t2)), b(t2)),

⇒ d(Ξ(C(t1)),Ξ(C(t2))) = d(a(t1), b(t2)) − d(a(t1),Ξ(C(t1))) − d(Ξ(C(t2)), b(t2))

d(Ξ(C(t1)),Ξ(C(t2))) = d(a(t1), b(t2)) − r1 − r2

≤ δ,

by (4a) and (4b). Therefore, (1) holds for Ξ when vf = 1. The bound is realized when the two diametric
clients move in a parallel direction.

Corollary 2. The mobile 1-centre is continuous on trees.

Corollary 3. The relative rate of change of the radius is at most one on trees.

We refer to the following lemma by Handler:

Lemma 4 (Handler 1973 [21]). Given a set of clients C on a tree T , clients a, b ∈ C are a diametric pair
of C if and only if d(a, b) ≥ max{d(a, c), d(b, c)} for all c ∈ C.

4.2 Complexity of the Motion of the 1-Centre

When n clients move along the real line, each with some constant velocity, the identity of the client that
realizes either extremum changes Θ(n) times in the worst case [8]. In particular, any given client realizes
each extremum at most once in the sequence of changes. When n clients move in R

2 along linear trajectories
with constant velocity, the diametric pair of clients changes Ω(n2) times in the worst case [3]. As we show
in Theorem 8, for a set C of n clients with linear motion on a tree T , the identity of the diametric pair of C
changes Θ(n) times in the worst case. We begin with a definition.
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Given a client c moving with velocity vc, the outward velocity of c at time t, denoted ~v(c(t)), is given by

~v(c(t)) =







−∞ if c(t) is not extreme in C(t),
−vc if c(t) moves towards the interior of the convex hull of C(t),

vc otherwise.
(5)

Lemmas 5 through 7 assume linear motion of a set of clients C on a tree T . In addition, we assume
that the diameter of C is non-zero at all times; a zero diameter implies that all clients in C coincide in a
point and any two clients define a diametric pair. Furthermore, the interior of the convex hull is empty and,
consequently, outward velocity is ill defined. We consider a zero diameter in the proof of Theorem 8.

Lemma 5. The outward velocity of client c ∈ C is non-decreasing while c remains in a diametric pair of C.

Proof. Two cases are possible while c remains in a diametric pair of C.
Case 1. Assume c moves away from the interior of the convex hull of C initially. Client c has linear

motion along a path P ⊆ T . The subpath of P that remains to be travelled by c lies outside the convex hull
of C. Therefore the outward velocity of c remains constant.

Case 2. Assume c moves towards the interior of the convex hull of C initially. The outward velocity of
c remains constant until c branches and turns away from the interior of the convex hull. The remainder of
the motion corresponds to Case 1.

As we show in Lemma 6, any change in the outward velocity at either endpoint of a diametric path must
be increasing.

Lemma 6. Choose any t1 ∈ I and let {a1, b1} be a diametric pair of C(t1). If {a2, b2} is a diametric
pair of C(t2) and a1 is not in any diametric pair of C(t2) for some ǫ > 0 and all t2 ∈ (t1, t1 + ǫ), then
~v(a1(t1)) < min{~v(a2(t2)), ~v(b2(t2))}.

Proof. Since a1 is in a diametric pair of C(t1),

∀c ∈ C, d(a1(t1), b1(t1)) ≥ d(a1(t1), c(t1)). (6)

Since a2 and b2 are a diametric pair of C(t2) but a1 is not in any diametric pair of C(t2),

∀c ∈ C, d(a1(t2), c(t2)) < d(a2(t2), b2(t2)). (7)

Since client motion is continuous and by (6) and (7),

d(a1(t1), b1(t1)) = d(a2(t1), b2(t1)). (8)

The result follows from (7) and (8).

Lemma 7. A client c ∈ C becomes an endpoint of a diametric path of C at most four times.

Proof. By (5), the outward velocity of a client c in a diametric pair (c is extreme) is one of two values: ±vc.
By Lemma 6, a change in a diametric pair corresponds to an increase in outward velocity. Therefore, a client
c realizes either endpoint of a diametric path at most twice, for a total of at most four times.

Theorem 8. When each client in C moves with linear motion along a path on T , the motion of the 1-centre
of C is piecewise linear and is composed of Θ(n) linear segments in the worst case, where n = |C|.

Proof. Case 1. Assume the diameter of C is non-zero throughout the motion. The upper bound O(n) follows
from Lemmas 5 and 7 and the fact that the 1-centre of C is the midpoint of a diametric pair.

Case 2. Assume the diameter of C is zero at some time during the motion. A zero diameter implies
that all clients in C coincide at a point; that is, all clients cross simultaneously. This degeneracy occurs at
most once since any two clients cross at most once. Since clients in C have linear motion, the motion of the
1-centre of C has linear motion while all clients coincide. Before and after the degeneracy, the motion of
clients in C corresponds to Case 1. Therefore, the sum of the number of linear segments of the motion of
the 1-centre remains O(n).

The worst-case lower bound of Ω(n) follows from the corresponding result in one dimension [8].
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4.3 Kinetic Maintenance of the Mobile 1-Centre

Given a set C of n mobile clients, each moving with linear motion in R, the 1-centre of C is the midpoint
of the extrema of C. The position of each extremum is given by the upper (respectively, lower) envelope of
the set of n linear functions that correspond to the positions of clients in C relative to a fixed point in R.
Hershberger [26] gives an O(n log n) time algorithm which finds the upper envelope by dividing the set of
linear functions in two, recursively finding the upper envelope of each set, and recombining the two envelopes
to give the global upper envelope.

Using a related idea, we describe an algorithm for identifying a sequence of diametric pairs of a set of
mobile clients, each moving with linear motion on a tree. We then describe how to implement the algorithm
as a KDS. The algorithm makes use of the distance function d, where d(a(t), b(t)) returns the graph distance
on tree T between mobile clients a and b at time t. We begin with the following lemma upon which our
algorithm relies.

Lemma 9. Let C1 and C2 be sets of points on UT for some tree T . Let ai and bi denote a diametric pair
of Ci, for i = 1, 2. Points e and f are a diametric pair of C1 ∪ C2, where

{e, f} = argmax
{e′,f ′}⊆{a1,b1,a2,b2}

d(e′, f ′). (9)

Proof. By Lemma 4 we know

∀c ∈ C1, max{d(c, a1), d(c, b1)} ≤ d(a1, b1) and ∀c ∈ C2, max{d(c, a2), d(c, b2)} ≤ d(a2, b2). (10)

Similarly, by Lemma 4 it suffices to show

∀c ∈ C1 ∪ C2, max{d(c, e), d(c, f)} ≤ d(e, f).

Without loss of generality, choose any c in C1. Let T ′ denote the spanning tree of a1, b1, a2, and b2 in T .
Let q denote the vertex of T ′ that is closest to c. By (10) we know

d(a1, c) ≤ d(a1, b1),

⇒ d(a1, q) + d(q, c) ≤ d(a1, q) + d(q, b1),

⇒ d(q, c) ≤ d(q, b1).

Similarly, d(q, c) ≤ d(q, a1). It follows that

max{d(c, e), d(c, f)} = d(c, q) + max{d(q, e), d(q, f)}

≤ min{d(q, a1), d(q, b1)} + max{d(q, e), d(q, f)},

≤ d(e, f),

because q lies on a path in T between e and a or b, and on a path in T between f and b or a.

Algorithm Description. The set of mobile clients C is partitioned arbitrarily into sets C1 and C2 of size
⌊n/2⌋ and ⌈n/2⌉. For each i = 1, 2, the algorithm is called recursively to find a sequence of diametric pairs
of Ci, denoted {ai,1, bi,1}, . . . , {ai,mi

, bi,mi
}, and a corresponding partition of the time interval I, denoted

Ii,1, . . . , Ii,mi
, such that for each j, ai,j(t) and bi,j(t) are a diametric pair of Ci(t) for all t ∈ Ii,j . The

recursion terminates when n ≤ 2, in which case each client in C is in a diametric pair. We now describe how
to compute a corresponding sequence for C.

Consider a third partition of the time interval I, denoted I1, . . . , Im, such that for each i, Ii = I1,j ∩ I2,k,
for some j, k. For all t ∈ Ii, diametric pairs of C1(t) and C2(t) consist of four clients in C, say a1, b1,
a2, and b2. Let e and f be defined as in (9). By Lemma 9, e and f are a diametric pair of C(t). The
sequence of pairs of clients in {a1, b1, a2, b2} that realize e and f corresponds to the sequence of pairs whose
relative distance is maximized. That is, there are six combinations of pairs in {a1, b1, a2, b2}, each of which
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corresponds to an inter-client distance function. The upper envelope of these six functions determines the
sequence of identities of e and f during Ii. Thus, solutions to the recursive subproblems are combined to
find the sequence of diametric pairs of C.

Time Complexity. By Theorem 8, the complexity of the motion of the 1-centres of C1 and C2 is O(n).
That is, the time interval I can be partitioned into O(n) subintervals such that the motion of each 1-centre
is linear within every subinterval (i.e., m ∈ O(n)). Within each subinterval, we find the maximum of six
piecewise-linear functions, each composed of at most four linear segments. Therefore, the maximum function
is also piecewise linear, consists of at most 24 linear segments, and can be found in constant time. Thus,
the solutions to the two subproblems are combined in O(n) time. The recursion tree has depth ⌊log

2
n⌋,

resulting in a total time of f(n) = 2f(n/2) + O(n) which is O(n log n). The worst-case lower bound of
Ω(n log n) follows from the corresponding one-dimensional problem [26].

Distance Function. Depending on the formulation of the problem, the input may not include the distance
function. In this case, the input is given simply as the set of clients, each of which specifies origin and
destination vertices in T . In particular, the path of a client’s trajectory is not given.

We assume only a basic weighted edge adjacency list or matrix for the tree T . Build a table A[i, j]
that stores the following information for each vertex ui and each client cj : d(ui, cj(0)), the velocity of cj(0)
relative to ui, and the instant in I (if any) at which the velocity of cj relative to ui becomes negated (that is,
cj takes a branch such that its motion changes from towards ui to away from ui). This information encodes
the two-segment piecewise-linear function d(ui, cj(t)). Table A[i, j] has size O(n2) and can be calculated in
time O(n2) by considering each client cj and tracing its trajectory through T . Values for vertices in branches
not followed by the trajectory of cj are easily calculated recursively.

For any clients c1 and c2 in C, the client-to-client distance function d(c1(t), c2(t)) can be calculated in
constant time from table A. While c1 and c2 move towards each other, d(c1(t), c2(t)) = |d(c1(0), c1(t)) −
d(c1(0), c2(t))|. After one client, say c1, turns away from the other, d(c1(t), c2(t)) = |d(c1(tf ), c1(t)) −
d(c1(tf ), c2(t))|. Recall that c1(0) and c1(tf ) are vertices of T .

KDS Implementation. We describe a KDS that maintains a diametric pair over time along with a set of
certificates that validates the identity of the pair at any time during the motion.

The set of certificates corresponds to the recursive hierarchy described in our algorithm. At any time t, for
each set C in the hierarchy, the certificate for C(t) consists of five inequalities that confirm the maximum of
six functions. That is, the certificate verifies the identity of a diametric pair of C(t) in terms of the diametric
pairs of the subsets C1(t) and C2(t) by Lemma 9. The corresponding properties are certified recursively for
C1(t) and C2(t). Each set maintains a single certificate defined in terms of four clients and the total number
of certificates is O(n); therefore, the KDS is compact. Each client is contained in at most O(log n) sets and,
consequently, is associated with at most O(log n) certificates. As a result, a motion plan update for a client
results in changes to the failure times of O(log n) certificates; therefore, the KDS is local.

A certificate failure occurs whenever the diametric pair of a set C changes. Locally, the certificate for
C is restored in constant time; however, a change in the diametric pair of C may percolate upwards in the
tree, resulting in O(log n) additional certificate updates; therefore, the KDS is responsive. By Theorem 8,
each set C contributes at most O(|C|) certificate failures, resulting in a total of O(n log n) certificate failures
over the entire motion. Although this value is asymptotically greater than Θ(n) (the worst-case number of
external events for a set of n clients), any offline algorithm for finding the trajectory of the 1-centre requires
Ω(n log n) time in the worst case, even in one dimension. Therefore, the KDS is efficient.

Note, linear motion is not required by this KDS. In particular, the KDS applies to any algebraic motion
for which the client-to-client distance function permits calculating the failure time of a certificate. In general,
the combinatorial bounds and running times mentioned earlier do not apply to non-linear motion.
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5 The Mobile 2-Centre on Trees

5.1 Properties of the Mobile 2-Centre

Although a 2-centre of a set of clients C on a tree is not unique (this is the case even in one dimension [15]),
any 2-centre of C, Ξ1(C) and Ξ2(C), defines a natural bipartition of C, denoted {C1, C2}, such that

∀c ∈ C1, d(c,Ξ1(C)) ≤ d(c,Ξ2(C)) and ∀c ∈ C2, d(c,Ξ1(C)) ≥ d(c,Ξ2(C)). (11)

We refer to {C1, C2} as a diametric partition of C and to C1 and C2 as diametric subsets of C. A diametric
partition induced by a given 2-centre is not unique since any client that is equidistant from Ξ1(C) and Ξ2(C)
may belong to either C1 or C2. Since the 2-radius of C is at most the radius, it follows that there exists a
diametric pair {a, b} such that a ∈ C1 and b ∈ C2. As shown by Handler [22], following property is equivalent
to (11):

∀c ∈ C1, d(c, a) ≤ d(c, b) and ∀c ∈ C2, d(c, a) ≥ d(c, b). (12)

We say {C1, C2} is a diametric partition of C induced by {a, b}. We refer to the local 1-centre, local radius,
and local diametric pair/path, respectively, in reference to the 1-centre, radius, and diametric pair/path of
C1 or C2. The local 1-centres of C1 and C2 are a 2-centre of C [22]. In the mobile setting, we say a diametric
partition {C1, C2} is unchanged during time interval I if and only if

∀t1, t2 ∈ I, ∀c ∈ C, c(t1) ∈ C1(t1) ⇔ c(t2) ∈ C1(t2). (13)

Recall that C1(t1) denotes a set of points in UT ; therefore, (13) does not imply C1(t1) = C1(t2) for t1, t2 ∈ I.
We refer to the following lemma by Handler:

Lemma 10 (Handler 1978 [22]). Any local diametric pair includes one diametric client in C.

5.2 Equidistant 2-Centre

Even in one dimension the motion of a 2-centre defined by two local 1-centres is not continuous. This is easily
demonstrated by an example: position a client at each endpoint of a line segment and let a third client move
from one endpoint to the other. Not all 2-centres are discontinuous; by generalizing the one-dimensional
2-centre strategy described in [15], we obtain a strategy for defining the positions of a 2-centre on a tree
whose motion is continuous and whose relative velocity is at most two. We refer to this particular 2-centre
as the equidistant 2-centre:

Definition 2. Let {a, b} be a diametric pair of C. An equidistant 2-centre of C, denoted {Ξ̇1(C), Ξ̇2(C)},
is a pair of points that lie on the path between a and b at a distance ρ from a and b, respectively, where ρ
denotes the 2-radius of C.

See Fig. 2 for an example. As we now demonstrate, the equidistant 2-centre is independent of the choice
of the diametric pair {a, b}.

Lemma 11. The equidistant 2-centre is unique.

Proof. If C has a unique diametric pair, then the equidistant 2-centre is also unique by Definition 2. There-
fore, assume C has two or more diametric pairs. Choose any two diametric pairs, {a1, b1} and {a2, b2}.
Without loss of generality, assume

d(a1, a2) ≤ d(a1, b2). (14)

Let {Ξ̇1(C), Ξ̇2(C)} denote the equidistant 2-centre defined in terms of {a1, b1} and let {Ξ̈1(C), Ξ̈2(C)}
denote the equidistant 2-centre defined in terms of {a2, b2}. Without loss of generality, assume d(a1, Ξ̇1(C)) ≤
d(a1, Ξ̇2(C)) and d(a2, Ξ̈1(C)) ≤ d(a2, Ξ̈2(C)). Let ρ denote the 2-radius of C. By symmetry, it suffices to
show Ξ̇1(C) = Ξ̈1(C).

8



A1 B1

A2 B2

T 2

T 1

local 2!centre

client

1!centre
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Figure 2: Equidistant 2-centre example. In tree T1, {a, b} is the unique diametric pair. In tree T2,
any two clients form a diametric pair; the diametric path between e and f is displayed. The corresponding
diametric subsets are A1 and B1 in T1 (unique) and A2 and B2 in T2 (not unique). In tree T1, the 2-radius
is realized by the local diametric pair {b, d}. Consequently, the local 1-centre of B1 coincides with the
equidistant 2-centre in B1. In tree T2, the 2-radius is equal to the radius. Consequently, the local 1-centre of
A2 coincides with the 1-centre and with both equidistant 2-centres. The local 1-centre of B2 coincides with
client f .

If a1 = a2, then Ξ̇1(C) = Ξ̈1(C) by Definition 2. Therefore, assume a1 6= a2. By (3) and the triangle
inequality, min{d(a1, a2), d(a1, b2)} ≤ 2ρ. By (14), d(a1, a2) ≤ 2ρ. Let v denote the vertex of T that joins
the branches containing a1, a2, and Ξ(C), respectively. Since a1 and a2 are diametric clients, d(a1,Ξ(C)) =
d(a2,Ξ(C)) and, therefore, d(a1, v) = d(a2, v). Consequently, d(a1, v) = d(a2, v) ≤ ρ. The point that lies
at a distance ρ from a1 on the path between a1 and Ξ(C) coincides with the point that lies at a distance ρ
from a2 on the path between a2 and Ξ(C). That is, Ξ̇1(C) = Ξ̈1(C).

Corollary 12. Ξ̇1(C) and Ξ̇2(C) lie in the intersection of all diametric paths of C.

Lemma 13. The equidistant 2-centre of C is a 2-centre of C.

Proof. Choose any client c ∈ C. Let {a, b} be a diametric pair of C. Let v denote the point in UT

that joins the branch containing c to the path between a and b (c may coincide with v). Let {C1, C2}
be a diametric partition of C induced by a and b such that a ∈ C1. Without loss of generality, assume
c ∈ C1 and d(a, Ξ̇1(C)) ≤ d(a, Ξ̇2(C)). Let ρ denote the 2-radius of C. By Corollary 12, Ξ̇1(C) and v
lie on the path between a and b. By Definition 2, d(a, Ξ̇1(C)) = ρ. If v lies between Ξ̇1(C) and a, then
d(Ξ̇1(C), c) ≤ d(Ξ̇1(C), a) = ρ, otherwise a is not a diametric client. Therefore, assume Ξ̇1(C) lies between
a and v. Since a, c ∈ C1, d(a, c) = d(a, Ξ̇1(C)) + d(Ξ̇1(C), c) ≤ 2ρ and, consequently, d(Ξ̇1(C), c) ≤ ρ.

Lemma 14. The relative rate of change of the 2-radius is at most one on trees.

Proof. We show |ρ(C(t1)) − ρ(C(t2))| ≤ |t1 − t2|, for any t1, t2 ∈ I, where ρ(C(ti)) denotes the 2-radius of
C(ti). Choose any t1, t2 ∈ I. Let δ = |t1 − t2|. Let ai and bi be clients in C such that {ai(ti), bi(ti)} is a
diametric pair of C(ti), for i = 1, 2. Since a local 1-centre is the midpoint of a local diameter, the 2-radius
of C(ti) can be expressed as,

ρ(C(ti)) =
1

2
max
c∈C

min{d(c(ti), ai(ti)), d(c(ti), bi(ti))}. (15)

Since clients move with at most unit velocity,

∀{c, e} ⊆ C, |d(c(t1), e(t1)) − d(c(t2), e(t2))| ≤ 2δ. (16)

Let {A2(t2), B2(t2)} denote the diametric partition of C(t2) induced by {a2(t2), b2(t2)} such that a2(t2) ∈
A2(t2) and b2(t2) ∈ B2(t2).
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Case 1. Without loss of generality, assume a1(t2) ∈ A2(t2) and b1(t2) ∈ B2(t2).

ρ(C(t1)) =
1

2
min

{

d(c̃(t1), a1(t1)), d(c̃(t1), b1(t1))
}

, where c̃ ∈ C maximizes (15) when i = 1,

≤
1

2
min

{

d(c̃(t2), a1(t2)), d(c̃(t2), b1(t2))
}

+ δ, by (16),

≤
1

2
max
c∈C

min
{

d(c(t2), a1(t2)), d(c(t2), b1(t2))
}

+ δ

≤
1

2
max
c∈C

min
{

d(c(t2), a2(t2)), d(c(t2), b2(t2))
}

+ δ,

since {a2(t2), b2(t2)} is a diametric pair of C(t2), {a1(t2), a2(t2)} ⊆ A2(t2), and {b1(t2), b2(t2)} ⊆ B2(t2),

= ρ(C(t2)) + δ, by (15).

Case 2. Assume a1(t2) and b1(t2) are in the same diametric subset of {A2(t2), B2(t2)}.

ρ(C(t1)) ≤ r(t1), where r(t1) denotes the radius of C(t1),

=
1

2
d(a1(t1), b1(t1)), since {a1(t1), b1(t1)} is a diametric pair of C(t1),

≤
1

2
d(a1(t2), b1(t2)) + δ, by (16),

≤ ρ(C(t2)) + δ,

since a1(t2) and b1(t2) are in the same diametric subset of C(t2).

Theorem 15. Each facility in the mobile equidistant 2-centre has relative velocity at most two.

Proof. Choose any t1, t2 ∈ I. By symmetry of Ξ̇1(C) and Ξ̇2(C), it suffices to show that

min{d(Ξ̇1(C(t1)), Ξ̇1(C(t2))), d(Ξ̇1(C(t1)), Ξ̇2(C(t2)))} ≤ 2δ, (17)

where δ = |t1 − t2|. Let ai and bi be clients in C such that {ai(ti), bi(ti)} is a diametric pair of C(ti), for
i = 1, 2.

Case 1. Assume Ξ̇1(C(t1)) lies between Ξ̇1(C(t2)) and Ξ̇2(C(t2)). By Corollary 12, Ξ̇1(C(t2)) and
Ξ̇2(C(t2)) lie between a2(t2) and b2(t2). Without loss of generality, assume the points are ordered a2(t2),
Ξ̇1(C(t2)), Ξ̇1(C(t1)), Ξ̇2(C(t2)), b2(t2). Furthermore, assume Ξ̇1(C(t2)) is closer to Ξ̇1(C(t1)) than to
Ξ̇2(C(t1)). (See Fig. 3a.)

!1(C(t  ))2 !2(C(t  ))2!1(C(t  ))1

b  (t  )22a  (t  )22

a) Case 1

!1(C(t  ))1

!2(C(t  ))2!1(C(t  ))2

a  (t  )11

b) Case 2

Figure 3: The two different cases for the relative positions of Ξ1(C(t2)), Ξ1(C(t1)) and Ξ2(C(t2)).

10



d(Ξ̇1(C(t1)), a2(t2)) ≤ d(Ξ̇1(C(t1)), a2(t1)) + d(a2(t1), a2(t2))

≤ ρ(C(t1)) + d(a2(t1), a2(t2))

≤ ρ(C(t1)) + δ, since d(a2(t1), a2(t2)) ≤ δ,

≤ ρ(C(t2)) + 2δ, by Lemma 14. (18)

Observe that

d(a2(t2), Ξ̇1(C(t1))) = d(a2(t2), Ξ̇1(C(t2))) + d(Ξ̇1(C(t2)), Ξ̇1(C(t1)))

= ρ(C(t2)) + d(Ξ̇1(C(t2)), Ξ̇1(C(t1))). (19)

Therefore, by (18) and (19),

min{d(Ξ̇1(C(t1)), Ξ̇1(C(t2))), d(Ξ̇1(C(t1)), Ξ̇2(C(t2)))} ≤ 2δ.

Case 2. Assume Ξ̇1(C(t1)) does not lie on the path between Ξ̇1(C(t2)), and Ξ̇2(C(t2))). By Corollary 12,
Ξ̇1(C(t1)) lies between a1(t1) and b1(t1). Without loss of generality, assume a1(t1) lies on the branch rooted
at Ξ̇1(C(t1)) that does not contain Ξ̇1(C(t2)) and Ξ̇2(C(t2))). (See Fig. 3b.)

Using an argument similar to Case 1, we get

min{d(a1(t2), Ξ̇1(C(t2))), d(a1(t2), Ξ̇2(C(t2)))} ≤ ρ(C(t2)),

⇒ min{d(a1(t1), Ξ̇1(C(t2))), d(a1(t1), Ξ̇2(C(t2)))} ≤ ρ(C(t2)) + δ, since d(a1(t1), a1(t2)) ≤ δ,

≤ ρ(C(t1)) + 2δ, by Lemma 14. (20)

Observe that

min{d(a1(t1), Ξ̇1(C(t2))), d(a1(t1), Ξ̇2(C(t2)))}

= d(a1(t1), Ξ̇1(C(t1))) + min{d(Ξ̇1(C(t1)), Ξ̇1(C(t2))), d(Ξ̇1(C(t1)), Ξ̇2(C(t2)))}

= ρ(C(t1)) + min{d(Ξ̇1(C(t1)), Ξ̇1(C(t2))), d(Ξ̇1(C(t1)), Ξ̇2(C(t2)))}. (21)

Therefore, by (20) and (21),

min{d(Ξ̇1(C(t1)), Ξ̇1(C(t2))), d(Ξ̇1(C(t1)), Ξ̇2(C(t2)))} ≤ 2δ.

Therefore, (17) holds in all cases.

Since no mobile 2-centre can guarantee relative velocity less than two in one dimension [15], it follows
that the maximum velocity of the equidistant 2-centre is optimal.

Corollary 16. Each facility in the mobile equidistant 2-centre is continuous.

5.3 Complexity of the Motion of the 2-Centre

When clients move with linear motion, we derive combinatorial bounds of O(n2α(n)) on the complexity of
the motion of the equidistant 2-centre and Ω(n2) on the worst-case complexity of the motion of any 2-centre.

Theorem 17. When each client in C moves with linear motion along a path on T , the motion of each
facility in the equidistant 2-centre of C is piecewise linear and is composed of O(n2α(n)) linear segments,
where n = |C|.
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Proof. By Theorem 8, there exists a sequence of diametric pairs of C, denoted {a1, b1}, . . . , {am, bm}, and
a corresponding partition of the time interval I, denoted I1, . . . , Im, such that m ∈ O(n). It suffices to
show that for every i, the motion of each facility in the equidistant 2-centre of C is piecewise linear and is
composed of O(nα(n)) linear segments during Ii.

Choose any i ∈ {1, . . . ,m} and consider the motion of clients in C during Ii. For every t, let C1(t) and
C2(t) be a diametric partition induced by ai(t) and bi(t). By Lemma 10, ai(t) is in a local diametric pair of
C1(t) for all t. The second client opposite ai(t) in the local diametric pair corresponds to a furthest client from
ai(t) in C1(t). For any client c ∈ C, d(c(t), ai(t)) and d(c(t), bi(t)) are piecewise-linear functions composed
of at most four linear segments; consequently, c changes partitions O(1) times. Within C1, therefore, the
function d(c(t), ai(t)), may be partially defined, with O(1) intervals over which it is undefined. Finding the
furthest client from ai in C1 corresponds to finding the upper envelope of the n − 2 distance functions for
all clients in C \ {ai, bi}. Since the functions are partially defined, the upper envelope consists of O(nα(n))
linear segments [5]. This function corresponds to the local diameter of C1(t). The maximum of the two local
diameters determines the 2-radius; therefore, the 2-radius of C also consists of O(nα(n)) linear segments
during Ii. Since ai and bi have linear motion, the result follows by Definition 2.

Theorem 18. There exists a set of mobile clients C, each moving with linear motion on the real line, such
that the motion of some facility in any 2-centre of C whose motion is piecewise linear is composed of Ω(n2)
linear segments, where n = |C|.

Proof. We define a set of n clients for any even n. For 0 ≤ i ≤ n/2 − 1, let client ci have position
ci(t) = sign(i)2(n2 − i2 + it) and velocity (relative to −∞) vi = sign(i)i. Let the remaining n/2 clients have
velocity zero and be positioned at distinct points in (−1, 1). See Fig. 4.
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Figure 4: The initial configuration of clients when n = 12

For 0 ≤ i ≤ n/2 − 1, client ci passes client ci−2 at time t = 2(i − 1). Observe that Ξ(C(t)) = 1 when
t mod 4 = 0 and Ξ(C(t)) = −1 when t mod 4 = 2 for all t ∈ [0, n]. Therefore, the 1-centre traverses the
interval [−1, 1] n/2 times, crossing each of the n/2 static clients on each traversal.

The partition of C defined by (12) is unique whenever Ξ(C(t)) does not coincide with any client in C.
The 2-radius is uniquely determined by the partition of larger local radius. Furthermore, any 2-centre of C
must include one facility whose position is uniquely determined by the midpoint of the local diametric path
of the partition with larger local radius. The motion of this facility changes Ω(n) times between each change
to the motion of Ξ(C(t)), resulting in Ω(n2) changes in total.

5.4 Kinetic Maintenance of the Mobile 2-Centre

Capitalizing on our 1-centre results, we describe an algorithm for identifying local 1-centres and the equidis-
tant 2-centre of a set of mobile clients, each moving with linear motion on a tree.

By Theorem 18, even under linear motion of clients in C the motion of any 2-centre of C has complexity
Ω(n2) in the worst case. It follows that any algorithm for calculating the trajectories of a mobile 2-centre of
C requires Ω(n2) time in the worst case. Since it can be calculated in O(n2) time, we assume a fully-defined
client-to-client distance function.

Algorithm Description. We first run our 1-centre algorithm to find a sequence of diametric pairs of C,
denoted {a1, b1}, . . . , {am, bm}, and a corresponding partition of the time interval I, denoted I1, . . . , Im, such
that m ∈ O(n). For each time interval Ii, determine when each client c is closer to ai and when it is closer
to bi. This determines the sets C1(t) and C2(t) for all t ∈ Ii. Consider C1 (an analogous algorithm applies
to C2). A diametric pair of C1(t) is given by ai(t) and a furthest client from ai(t) in C1(t). Each local
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diametric pair determines the motion of the corresponding local 1-centre and the local radius, from which
the motion of the equidistant 2-centre is straightforward to calculate.

Time Complexity. For a client c ∈ C, the functions d(c(t), ai(t)) and d(c(t), bi(t)) are piecewise linear,
each composed of at most four linear segments. Therefore, c changes partitions O(1) times during interval
Ii and calculating the interval for which c resides in either partition is achieved in constant time. Finding a
furthest client from ai(t) for all t ∈ Ii corresponds to finding the upper envelope of n − 2 partially-defined,
piecewise-linear functions, which can be done in O(n log n) time using Hershberger’s [26] algorithm. Since
there are O(n) time intervals, the total runtime in O(n2 log n).

KDS Implementation. We describe a KDS that maintains the equidistant 2-centre over time along with
a set of certificates that validates its identity.

We augment the 1-centre KDS described in Sec. 4.3. We require one additional certificate per client c
to verify whether c is in C1 or C2. We require a maximum KDS for C1 (and a second one for C2) that
maintains the furthest client from ai (respectively, bi). The kinetic tournament KDS described by Basch et
al. [8] allows for clients to be inserted and deleted from the set (recall that each client changes sets O(1)
times between changes to the diametric pair). This latter KDS has efficiency, compactness, locality, and
responsiveness that is comparable to our 1-centre KDS.

In terms of performance, the worst case occurs whenever the diametric pair changes and O(n) certificates
must be updated. Therefore, this KDS has locality O(n). The total number of certificate failures is O(n log n)
between changes to the diametric pair, or O(n2 log n) in total. By Theorem 18, the number of external events
is Ω(n2) in the worst case; therefore, the KDS has good efficiency (but it may not be optimal). The total
number of certificates remains O(n); therefore, the KDS is compact. Finally, O(n) certificates are associated
with each diametric client; therefore, the KDS has responsiveness O(n).

6 Future Work

Discrete k-Centre. The mobile discrete k-centre (when each facility is a client in C) is discontinuous.
Maintaining a sequence of clients that realize a discrete k-centre of a set of mobile clients on a tree is an
open problem. Maintaining a discrete 1-centre of C corresponds to maintaining the identity of a client in C
that is closest to Ξ(C(t)). For the discrete 2-centre, however, the problem is complicated by the fact that a
diametric partition does not necessarily correspond to a discrete diametric partition; that is, (11) and (12)
are not necessarily equivalent in the discrete case.

k-Centre on Graphs. We have omitted a detailed discussion of the k-centre on graphs due to space
considerations. As mentioned earlier, it is not difficult to show that for any graph G that contains a cycle,
there exist sets of mobile clients on G whose 1-centre is discontinuous. This motivates the search for bounded-
velocity approximations of the k-centre. For the 1-centre on graphs, we have preliminary results showing
that no continuous (2− ǫ)-approximation is possible for any ǫ > 0. A unit-velocity 2-approximation is given
by selecting an arbitrary client c0 ∈ C and setting the position of the facility to coincide with c0(t). It is
unknown whether any bounded-velocity approximation exists for the k-centre on graphs when k ≥ 2.
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