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Abstract. To the best of our knowledge, this paper is the first attempt to for-
malise a pragmatic logic of scientific discovery in a manner such that it can be
realised by scientists assisted by machines. Using Institution Agents, we define a
dialectic process to manage contradiction. This allows autoepistemic Institution
Agents to learn from a supervised teaching process. We present an industrial ap-
plication in the field of Drug Discovery, applying our system in the prediction of
pharmaco-kinetic properties (ADME-T) and adverse side effects of therapeutic
drug molecules.

1 Introduction

Scientific discovery is a collective process made possible by the tracability of judgment,
positive and negative results, theories and conjecture through their publication and eval-
uation within a community. Without this tracability, scientific results will not last long
enough to influence others, and there would be no science. This tracability is the key
to localise points of debate between members of a community,to open new research
fields, to put forward problems and paradoxes that need further investigation and the
establishment of a consensual frame of reference. This collective process leads to a so-
cial organisation in which some members specialise in publishing, refuting, or proving
results, and have gained credit which defines them as a reference in the community.

The logic of scientific discovery presented by Popper [1] or Lakatos [2], and dis-
cussed by the Vienna Circle puts forward the elaboration of norms and the break-points
taking place during the formation of scientific theories. However, to formalise scien-
tific discovery, one has to define logically notions such as paradox, postulate, result and
conjecture, which was not possible whithout using a logicalsystem allowing to reason
non trivially in presence of contradictions. Moreover, theprocess of scientific discovery
is a collective process that can only be formalized by takinginteraction into account in
a constructive way, as in multi-agent theories. Finally, scientific discovery is an inter-
active adaptive process, and it is only very recently that Angluin’s works on machine
learning theory gave a formal basis to the convergence analysis of such a process. To



the best of our knowledge, this paper is the first attempt to merge these three domains
in order to formulate a pragmatic logic of scientific discovery.

In section 2, we propose a cubic model to express judgment about statements in the
context of scientific discovery. We then show that the set of judgments is closed when
the underlying logic is a paraconsistent logic C1. In section 3, we assume that this
logic is applied independently by different institutions,and we present their properties
fixed by their interaction protocol: the respect of a hierarchy, the pair evaluation, and
finally the auto evaluation. This enables to tune these institutions in order to match a
specific context on knowledge construction and representation. In section 4, we assess
the learnability of scientific theories by scientists assisted by learning machines during
an interaction following this protocol, and we present an industrial application in the
field of Drug Discovery, applying our system in the prediction of pharmaco-kinetic
properties (ADME-T) and adverse side effects of therapeutic drug molecules.

2 Logical expectations: Cube of judgments

We assume that the form of reasoning used in science is the same for every institution
and every scientist. This form is given by a modality attributed to a statement beyond
the following: paradox, proof, refutation, result, conjecture, postulate, contingent, and
possible. This set of modalities is assumed complete and closed by negation. In this
section, we define with these modalities the cube of judgments and we have to work
with paraconsistent logic.

2.1 Square of modalities

The figure 1 expresses Aristotle’ssquare of modalities. Aristotle’s logic is said to be
ontic since every modality is expressed from a single modality¤ and negation¬ and
the square of oppositions is closed by doubling this negation: ¤ = ¬¬¤. The top
modalities (Necessary, Impossible) are used to express universal statements whereas
the lower modalities (Possible, Contingent) are used to express particular statements.
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Fig. 1. Aristotle’s square of modalities

We can make a parallel with Scientific Discovery and the theory of proof and refu-
tation as follow:

– ”‘ A is necessary”’ =A is proven:¤A
– ”‘ A is impossible”’ = ”‘A is refuted”’:¤¬A
– ”‘ A is possible”’ = ”‘A has not been refuted”’:¬¤¬A



– ”‘ A is contingent”’ = ”‘A has not been proven”’:¬¤A

To link these modalities, epistemic logic uses axioms: the axiom D describes the
vertical relations between necessary and possible, and between impossible and contin-
gent”. By following two different paths on the square of oppositions, we can reach the
same point, and we define consistency constraints by considering that these two paths
lead to the same result:

– What is necessary is possible and therefore is not impossible.
– What is impossible is contingent and therefore is not necessary.

In intuitionistic logic, the negation of a conceptA is not a concept but an application
from this concept into acontradiction, which is a statement both true and false (A∧¬A).
In the same way, a paradox is a statement which is both proven and refuted. For instance,
a bike withoutwheel ∨ frame ∨ handlebar would be contradictory. Classical logic
becomes trivial in the presence of a single contradiction, following the principle of
contradiction:given two contradictory propositions, one being the negation of the other,
only one of them is false. On the opposite, paraconsistent logic allows reasoning ina
non trivial way in the presence of contradictions [3] [4] [5].

2.2 Paraconsistent logic

Paradoxes have often been at the source of scientific discoveries, and have often lead
to new approaches and revisions of the frame of reference. This only happened when
the whole theory used to explain the concerned domain did notcompletely collapse
under the weight of its contradictions, and that is why we need to use paraconsistent
logic to formalise a logic of scientific discovery. Paraconsistent logic uses different
negations associated with different levels of contradiction to allow reasoning in the
presence of contradictions as in classical logic with no contradictory statement. Given a
theoryT , we call ’formal antinomy’ any meta-theoretical result showing thatT is trivial.
A ’ formal paradox’ is the derivation of two contradictory results ofT . Paraconsistent
logic can be paradoxical without being antinomic: aninformal paradoxis an acceptable
argument for which premises are acceptable (they seem true), argument is acceptable
(valid), and the conclusion unacceptable (seems false).

To achieve our goal of producing a complete judgment system,taking into account
contradictions, we need to complete the set of modalities with those of paradox and
conjecture, hypothesis and result. The square of oppositions then becomes a cube of
judgments for which the square is a diagonal plane as shown infigures 2 and 3.

Definition 1. The cube of judgmentsCube = (¤,¬) is the set of ontic modalities
derivable from a modality¤ and a negation¬.

Property 1 In a paraconsistent logic C1, this cube of judgments is complete and closed
by negation.

This property, highlighted by the diagonal planes of the cube on figure 2 is given by
the following two principles of abstraction that caracterise C1 logic [6], from which a
paraconsistent interpretation of the Morgan’s laws can be verified:
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Fig. 2. Square of deontic judgments as a diagonal plane of theCube

The weak principle of abstraction: If two propositions are not contradictory, then
none of the logical relations between them is contradictory:

– What is not a non contradictory postulate is aresult:

¬ : ¬¤ ∧ ¬¤¬ −→ ¤ ∨ ¤¬.

– What is not a non contradictory paradox is aconjecture:

¬ : ¤ ∧ ¤¬ −→ ¬¤ ∨ ¬¤¬

The strong principle of abstraction: Out of two propositions, if one is not contradic-
tory, then none of the logical relations between them is contradictory:

– What is not a non contradictory conjecture is aparadox:

¬ : ¬¤ ∨ ¬¤¬ −→ ¤ ∧ ¤¬.

– What is not a non contradictory result is apostulate:

¬ : ¤ ∨ ¤¬ −→ ¬¤ ∧ ¬¤¬.
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Fig. 3.Square of oppositions resulting from C1 logic, as a diagonal plane of theCube

This cube of judgments expresses a set of modalities closed by negation that can
judge any statement, object, or situation, formulated in the language upon which this
logic is applied.



3 The Institution Agent social game

Section 2 presented the properties of a closed system producing judgments and taking
into account contradiction. Such a system can be used to model the decision process
of an agent holding incomplete knowledge, and we call such anagent an”Institution
Agent” (IA).

Definition 2 (IA). An IA is an agent using theCube to judge statements.

We assume that the logic used during this decision process isthe same for every
IA, and we focus on the adaptation and the interaction of IAs sharing a vocabulary and
trying to build a common language or frame of reference with this vocabulary.

Three logical properties are needed to qualify this interaction protocol and to add a
logical control to the adaptation process:

– deontic: anIA must be able to attribute credits to anotherIA, to interact, and to
teach anotherIA,

– defeasible: LowerIAs must be able to adapt their behavior to the norms imposed
by the higher ones,

– autoepistemic: anIA can be seen as composed by at least two interactingIAs and
can therefore learn its own hierarchy of norms and auto-adapt.

In this section, we suppose that eachIA can be represented by a particular norma-
tive system resulting from its own experience and adaptation during an interaction with
otherIAs.

Definition 3. We call aNormative System (NS)the couple (L, Cube) formed by:

– L: a language formed by a hierarchy of concepts and the relations between them
– Cube: a cube of judgments

3.1 Deontic logic

Often used in multi-agent systems to constrain an agent’s behaviour, annotable deontic
logic uses modalities expressing obligation, interdiction, advice, and warning. Accord-
ing to Frege’s definition, these statements express a judgment, ie. the recognition of the
type of truth of the statement [7]. Imputations (gains or losses, risk estimation) are used
to estimate the risk incurred in a given situation to decide what action to take or what
behaviour to adopt. A modality and an imputation have to be used to express statements
of the following form: ”The obligation to respect the speed limit is attached to a impu-
tation ofx”. A credit value can also be associated to IAs, ordering themhierarchically,
to define which one is the most qualified to rule in a given context, for example by
defining a social organisation as a government with a parliament, a senate, . . . .

Scientific discovery is a collective process, and needs interaction between researchers
to exchange their points of view and judgments. That’s how IAs interact: by exchang-
ing judgments about statements. More exactly, by asking another IA if it agrees with a
particular judgment: ”this statement is a conjecture, is itnot?”, to which the answer is
”yes” or ”no, it is a result”. Exchanging judgments creates the negation in the common



Fig. 4. IA’s credit
Fig. 5.Exchanging judgments

frame of reference (language), and the revision of the normative system associated with
one IA or the other. Two judgments are especially important:judging one’s conjecture
as being a paradox, and judging one’s postulate as already being a result. KEMTM ,
presented in section 4.2, illustrates this control by a scientist over theIA assisting him.

3.2 Defeasible logic

It is possible to link twoNS by respecting a defeasible logic to take into account a hi-
erarchy of Institution Agents. The resulting hierarchy of IAs has to be brought together
with the transitivity axiom, that stands as follows: ”What isnecessary in a normative
system of proof and refutation is also necessary in a lower normative system”. In other
words, no one should be unaware of the law, no one should go against a superior law. [8]
gives a concrete usage of defeasible logic, that allows us toorder rules and to supervise
an IA, for example with another higher IA, as illustrated on figure 6.
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Fig. 6. Normative system hierarchy

– Every Obligation of a lower IA belongs to the superior IA’s advice.
– Every Interdiction of a lower IA belongs to the superior IA’swarnings.

The middle line shows the conditions according to which an IAcan be supervised by
another one. The violation of this constraint (O2 = ¤2 ⊂ I1 = ¤1¬ or I2 = ¤2¬ ⊂

O1 = ¤1) can put forward contradictions between the two IA’s normative system. We



present in section 4 how IAs can learn and adapt their normative systems. Finding a
contradiction, and trying to eliminate it, leads to the initiation of a transaction between
the two IAs, during which they adapt their normative system.When no contradiction
remains, a new IA can be created, formed by the association ofthe two precedent IAs,
and this process ensures the tracability of all the events leading to an IA’s creation.

3.3 Autoepistemic logic

Aristotle distinguishes endophasy as an inner dialog. Thisis a constructive manner to
build an intelligent agent as the result of an auto-adaptation. The innerIAs can be
interpreted as managing believes, desires or intentions (BDI), for example. By applying
the dialectic and deontic interaction presented in section3.1, an IA is able to acquire
its ownNS, which prepares an efficient learning, and even enable self learning from
examples.

Fig. 7.Autoepistemic dialog
Fig. 8. IA formation

In this section, we presented how an interaction process anda hierarchical control
can be used to build an agent able to adapt its defeasible deontic and autoepistemic
Normative System.

4 Learnability

To estimate the complexity of an IA’s creation, we embrace machine learning theories,
and we discuss the learnability of a normative system by an Institution Agent. We il-
lustrate various learning methods as decision trees or version spaces, then we show that
this system is related to Angluin’s theories on learning monotonous functions by query-
ing, and learning from different teachers [9] [10] [11]. Finally, we present an industrial
application dedicated to Drug Discovery.

4.1 Learning a scientific theory

Definition 4. A scientific theoryis an application :F : L −→ Ω such that(L,F (L))
is a normative system, associating to every statementx ∈ L a scientific judgment
F (x) ∈ Ω.



Definition 5. We callT cube the lattice obtained by ”forgetting” the negation links com-
ing from the weak and strong principles of abstraction (section 2.2).T 0 (figure 9 is the
truth lattice underlying a classical logic.T 1 and T 2 (respectively in bold and italic
characters on figure 10)are the lower and upper sub-latticesof T cube.
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Definition 6. A scientific theory learned by an IAis an application :FIA : L −→

TCube such that(L,FIA(L)) is a normative system, associating to every statement
x ∈ L a scientific judgmentFIA(x) ∈ T cube.

Remark 1.If we assume that aparadox(bottom of the lattice) is more informative than
a conjecture(top of the lattice) and that aproof (right) is more true than anrefutation
(left), this lattice can be oriented following a vertical axis representing the information
level and an horizontal axis representing the truth level.

Remark 2.T 1 represents the modalities used by the teacher during Angluin’s protocol
[11]. The interactive process used in the following cases isan interaction using only
membership queries. The furtherance of science can never bethe result of an isolated
scientist who cannot verify the interest of his theory. Reference theories of machine
learning use as well Equivalence QueriesEQs, which should compare two scientific
theoriesFI.A.1 andFI.A.2 . The protocol defined in section 3, depends on the use of
EQs in which case putting forward a contradiction answered anEQ: an interaction
between two hierarchicaly ordered IAs allows the confrontation of two non comparable
theories through the confrontation of their hypotheses andconjectures on the one hand,
with paradoxes and results on the other.

Property 2 SinceT cube is a modular lattice, a scientific theoryFIA is learnable in a
polynomial time using membership queries.



The following cases show the generality of this approach.

Case 1 Given a setL of boolean and real variables, ascientific theory learned by a
decision treeis an applicationFDT : L −→ T 0 such that(L,FDT (L)) is a normative
system.

Case 2 Given a setL of boolean variables, ascientific theory learned by a version
spaceis an applicationFV S : L −→ T 1 such that(L,FV S(L)) is a normative system.

Case 3 Given a setL of boolean variables, ascientific theory learned by a galois
lattice is an application :FGL : L −→ TCube such that(L,FGL(L)) is a normative
system.

Case 4 Given a setL of boolean and real variables, given a set of results coming
from a decision tree method,a scientific theory learned byDT/GL is an application :
FDT/GL : L −→ T 0,2 such that(L,FDT/GL(L)) is a normative system.

All these cases of scientific theories are monotonous functions and are therefore
learnable. However, only cases 3 and 4, which take into account dialectical aspects
required to manage the norms and the ruptures in scientific discovery, are learnable by
anIA. The following section develops the case 4.

4.2 Dialectic protocol and application in drug design

A real application of learning in scientific discovery, is from collaboration with Ariana
Pharmaceuticals in Drug design [12].

KEMTM can suggest specific molecular modifications to achieve multiple objec-
tives, after analysing a multi-parametric database. Data mining is performed with an
Institution Agent usingDT/GL to learn. KEMTM is an Institution Agent resulting
from the interaction of anIADT/GL and a expert scientist, who has in mind his own
normative system. To teach KEMTM how to learn his normative system, the expert
scientist describes each example by way of a set of non paradoxical results. KEMTM

learns from these examples a scientific theory, and the scientist uses(x, FDT/GL(x))
as a rational mirror of his own normative system. In a dialectic way, KEMTM evolves
and adapts to create a new IA from the learning process.

To assist the learning process, KEMTM selects an hypothesis that is not a paradox
and, more specifically, KEMTM selects a conjecture within this hypothesis that is not
a result. Then the scientist admits new examples to eliminate the conjecture as a result
or modifies his own normative system to eliminate the hypothesis as a paradox. Such a
method has been tried and succesfully tested in a legal context where the ”learners” are
humans, to build efficient normative systems [13] [14].

Designing novel therapeutic molecules is a challenging task since one needs not
only to select an active molecule, the molecule needs also tobe absorbed, needs to be
stable within the body (i.e. not metabolized too rapidly) and finally it needs to have low
toxicity and side effects. This is called improving the ADME-T profile (Absorption,
Distribution, Metabolism, Excretion and Toxicity).



In this example we focus on the prediction of Absorption, a key issue in drug de-
sign since this is one of the important and early causes of failure in the drug discovery
process. Indeed molecules need to be absorbed before they can perform any desired
activity. Absorption is a complex process involving both passive (diffusion) and ac-
tive (through transporter proteins) accross cellular membranes. For passive transport,
molecules need to be soluble (hydrophilic) in water and at the same time they need to
be greacy (hydrophobic) to penetrate cellular membranes that are formed of lipids. This
contradicting requirement is modulated by active transport, where molecules need to
be recognized (i.e. complementarity of shape and charge) bya another molecule (trans-
porter) that helps them through membranes.

Although no one can for sure predict the absorption of a new molecule, a number of
empirical rules are known. This is an interesting context for applying our IA since our
key requirement is to capture knowledge from the experimental data and then evolve
and improve this model in a consistent manner.

To illustrate our approach we focus on a set of 169 molecules for which the ab-
sorption in man has been experimentally evaluated (4 classes. 0 not absorbed, 3 highly
absorbed). These molecules are described using a set of physico chemical properties
such as molecular radius, different calculated measures oftheir total polar surface ac-
cessible to water (TPSAand VSA POL), their hydrophobicity (SLOGP), presence of
halogens etc.

Fig. 11.PredictionsA andB

Initially, the system learns from the dataset a set of rules linking the structure of the
molecule to the absorption. The quality of the prediction istested in a subsequent stage
on a novel set of molecules. The results are shown on predictionA in figure 11. Ideally
the predictions should be on the diagonal. An error of one class is tolerated. However, it
is clear that for one molecule, the error is larger (ie experimental : class 1 vs predicted
class 3).

Figure 12 shows that the molecule (Ranitidine) has been predicted with fraction
absorbed in man 3i.e. highly absorbed. However, if the user forcesfraction absorbed
in man 3to be false, the system shows that this contradicts a learnedrule VSA pol 2→
fraction absorbed in man 3. At this stage the user realises that indeed this rule was true



Fig. 12.KEMTM

for the learning set, however this is not generally true and it can be eliminated. Once
this rule has been eliminated, the user goes back to predicting once more the test set
and results are shown in Figure 11, predictionB. As expected, the results have been
improved. The important point is that the improvement has been done in a controlled
way under the user’s supervision.

In scientific discovery, there are in general no Oracles who can say a priori whether
a prediction is correct or not. Experimentalists design a hypothesis that is consistent
with existing empirical data and then set about to test it. Webeleive that the key for
a computational system is to adhere to the same process i.e. build up an explanation
/ reasons for suggesting for predicting an outcome. If the system is able to provide
enough arguments, the user will ”trust” it and try the experience.

KEMTM is an Institution Agent resulting from a process combining both human
and machine learning. It is very interesting to log the various adaptations of the learned
normative system coming from the addition of examples or normative theories and to
analyse process of the formation of such an IA. This method also give a compliance
record of the various processes chosen or rejected in the formation of the resulting IA.



5 Conclusion

We propose a pragmatic logic to manage scientific judgment. This set of judgments is
closed by negation when using paraconsistent logic C1. Using Institution Agents, we
define a dialectic process to manage contradiction. This allows autoepistemic Institution
Agents to learn from a supervised teaching process. This methodology is now tried and
tested in various domains: in drug design, in Law[14], and even in mathematical games
[15].
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