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Abstract. This paper is an attempt to design an interaction protocol
for a multi-agent learning platform to assist a human community in their
task of scientific discovery. Designing tools to assist Scientific Discovery
offers a challenging problematic, since the problems studied by scientists
are not yet solved, and valid models are not yet available. It is therefore
impossible to create a problem solver to simulate a given phenomenon
and explain or predict facts. We propose to assist scientists with learning
machines considered as adaptive problem solvers, to build interactively
a consistent model suited for reasoning, simulating, predicting, and ex-
plaining facts.

The interaction protocol presented in this paper is based on Angluin’s
”Learning from Different Teachers” [1] and we extend the original pro-
tocol to make it operational to assist scientists solve open problems. The
main problem we deal with is that this learning model supposes the ex-
istence of teachers having previously solved the problem. These teachers
are able to answer the learner’s queries whereas this is not the case in
the context of Scientific Discovery in which it is only possible to refute
a model by finding experimental processes revealing contradictions. Our
first contribution is to directly use Angluin’s interaction protocol to let
a machine learn a program that approximates the theory of a scientist,
and to help him improve this theory. Our second contribution is to at-
tenuate Angluin’s protocol to take into account a social cognition level
during which multiple scientists interact with each other by the means
of publications and refutations of rival theories. The program learned by
the machine can be included in a publication to avoid false refutations
coming from a wrong interpretation of the theory.

1 Introduction

Assistance to Scientific Discovery is a very challenging research domain: scien-
tists study open problems which have never been solved. Therefore, no satisfying
model or theory might already exist, so we propose to assist scientists by learning
machines in their task of theory building. Such a software assistant can learn to



simulate an observed phenomenon explain or predict facts, has to deal with un-
certainty, pattern discovery, interactive ontology building [2], and has to produce
statements comprehensible to a human to improve human-machine interaction.
We divide the problem solving process in 3 steps:

1. The user, acting as the teacher, interacts with his learning assistant to make
him learn his hypothesis. To model the interaction between a scientist vali-
dating his hypothesis with his assistant, we directly exploit Dana Angluin’s
Learning from different teachers paradigm [1] which formalizes a protocol for
a human compliant robust learning defined as the result of a stable interac-
tion cycle between a Learner and a Teacher. Her conclusions are completed
by theoretical results about query driven machine learning complexity in [3]
and [4].

2. The assistant brings a critical attitude concerning an approximation of the
user’s hypothesis to confirm or invalidate his hypothesis, and this interaction
can lead to a revision of the hypothesis and/or of the description model, in
which case they are both considered as learners. The user, at the heart of
the system, builds interactively with an adaptive problem solver an adequate
description model of the studied phenomena: he is in charge of providing a
description model, and the adaptive problem solver uses machine learning
and paraconsistent logic to detect contradictions between the learned theo-
ries and empirical results, or inadequateness between the description model
and learned theories. These contradictions are used to initiate an Angluin-
like interaction cycle during which the user learns at the same time as the
machine, and this co-learning leads to a pertinent understanding of the prob-
lem.

3. Once the user considers that the approximation of his theory learned by his
assistant is expressive enough, he can use it to publish his own theory: each
theory proposed by a scientist is not refutable, but a logical theory produced
by a machine can always be reduced to a universal form which is refutable by
an existential statement. Our contribution is to extend Angluin’s protocol
by introducing a social interaction level inspired by Popper’s philosophy of
science [5] and based on proofs and refutations of publications. The publi-
cations are logical conjectures which have to be submitted to the judgment
of other learners to be pitilessly tested, put into question, and eventually
falsified.

In section 2, we define the needed functionalities that a problem solver should
implement to be adaptive and autonomous, and we emphasize that such an
adaptive problem solver has to reason in paraconsistent logic to cope with con-
tradictions. We show in section 3 that these contradictions are at the source of
the interaction between the solver and the human it’s assisting, and how this
interaction is formalized in [1] by the use of Membership and equivalence queries.
However, this learning model supposes an access to a Teacher to answer these
queries whereas there isn’t any to help scientists understand Nature and its laws,
so we propose in sections 3.2 and 3.3 two extensions of this model to make it op-
erational in the context of scientific discovery, and we validate in section 4 this



protocol on a toy game, E4+N. Finally, we present some experimental results
before concluding.

2 Toward a Definition of an Adaptive Problem Solver

Common definitions of a problem solver take into account the type of solv-
able problem which characterizes it, as a differential equation problem solver, or
nonlinear equation systems solver: a problem solver is designed to perform the
computation of a known problem which has already been solved and modelled.
So for any presented instantiation of the specific problem, it is able to solve it
and produce its solutions.

An adaptive and autonomous problem solver should be able to acquire new
abilities by learning how to solve new problems, and use this knowledge and
experience to find solutions. To solve an open problem, one has to observe the
problematic situation and analyse it to build a language describing the situation’s
dimensions pertinent for reasoning. These dimensions determine the definition
domain of the variables characterising the problem and influencing the solution’s
computation. The language thus defined is used to formulate assumptions and
hypothesis that have to be experimented. Comparing empirical results and theo-
retical computations can reveal contradictions between a theory and reality, and
therefore lead to a revision of the description model and to the formulation of
new hypothesis.

By making an analogy with the process of scientific discovery, in which nei-
ther the ontology nor the theory are perfectly known a-priori, we define below
the functionalities that an adaptive autonomous problem solver should be em-
powered with to assist the process of discovery. It should be able to build and
maintain an Ontology of the domain. By Ontology, we mean a logical language
relevant with observations describing the pertinent dimensions of the problem,
i.e. the types of the variables involved in its resolution. Furthermore, we want
the ontology building to be the consequence of the interactive learning process
of the logical language.

The principles of nominalization and reducibility [6] are the keys of a problem
solver’s adaptability, since they allow it to manipulate new concepts and design
experimentations to validate the pertinence of these new dimensions for the
computation of the problem’s solutions:

— The solver should be able to learn ontological statements to constraint the
relations between the values of the problem’s dimensions, by analysing and
correlating gathered information.

— The solver should be able to theorize: discover, name, and symbolically use
regularities or patterns appearing on data by revising the ontology and in-
troducing new dimensions to the problem’s formulation. Transforming an
observed property into a symbolic object and re-use it is called the Nom-
inalization principle. This principle is essential to formulate and express a
theory to explain the problem and predict further results. By theory, we
mean a set of rules used to compute a problem’s solutions.



— The solver should be able to empirically validate theories: transcribing math-
ematical abstractions to design experimentations feasible in the real world
is called the Reducibility principle.

Interactions between the solver and its environment are sine qua non con-
ditions of its evolution: by comparing the results of theoretical computations
and the results of its interactions with the environment, the solver is able to de-
tect contradictions in the formulated theories. These contradictions are used to
motivate the actions and reflections of the adaptive problem solver: each exper-
imentation is made to validate a theory, and is preceded by a prediction about
its consequences. This prediction is compared to observed results to search for
contradictions. Of course, the most informing situation is when a contradiction
is detected, because it reveals either a wrong formulation of the problem by
the user (perhaps a parameter was forgotten), or a inconsistency in the learned
theory (coming from a bias in the learning set). To reason in the presence of
contradictions, the logical ontology must be paraconsistent [7]: paraconsistent
logics don’t allow absurd reasoning (ex-contradiction sequitur quod libet), i.e. a
statement and its negation can be true at the same time.

The following deduction shows that the paraconsistent contradiction princi-
ple requires four arguments to deduce a contradiction about A:

—AFB —~AF-B —-A F—(BA-B)
A=A

—popetrain —popeF-rain —pope F=(rainA-rain)
pope/A—pope

In this example, all the arguments are evaluated. A contradiction Only if the
contradiction 7 —(rain A —rain)” is not admitted, then it is paradoxical to be
pope”.

This is very useful when reasoning on descriptions coming from different
contexts or points of view, and [8] gives an elegant example of paraconsistency
based on a defeasible deontic logic:

— a Paraconsistent Logic allows to reason in presence of contradictions in order
to maintain obligations.

— a Deontic Logic allows to maintain a past knowledge by using the Obligation,
Forbiddance and Permission modalities. In the context of machine learning,
an obligatory fact is a fact which provoques a major contradiction when false,
a forbiden fact is a fact which provoque a major contradiction when true.
An advised (not obligatory) fact will provoque a minor contradiction when
false, a disadvised fact (not forbiden) will provoque a minor contradiction
when true.

— a Defeasible Logic allows to revise the model when new contradictory facts
occur, and to produce a new theory adapting the strength of the contradic-
tions.

Deontic logic is used to localise contradictions and provoke a revision in the
set of defeasible theories, and this paraconsistency allows the solver to adapt the
ontology to new facts and new observations.



Paraconsistent defeasible deontic logic rules describing a complex system are
not easy to determinate, and since this kind of monotonous and multivaluated
logics have experimentaly been shown as learnable using Angluin’s paradigm [2],
our goal is to have them learned by an adaptive problem solver interacting with
a human.

In the following section, we discuss how Angluin’s interaction protocol for
machine learning can be used to formalise the necessary interactions between
such a solver and its environment. We use contradictions to drive this interaction.
We also propose an extension of this protocol to adapt concept learning theory
to scientific discovery.

3 Making Angluin’s Formalism Operational in the
Context of Scientific Discovery

Angluin’s formalism [1] gives a strong basis to interactive learning from different
teachers, and introduces the idea that a learner could possibly become a teacher
for another learner. We present this formalism in section 3.1, then we apply this
protocol to assist scientific discovery with a learning machine in section 3.2. We
show in section 3.3 how we introduce a social interaction level between learners
to make this protocol operational in the context of scientific discovery, i.e. to
cope with the apparent impossibility to use Equivalence queries.

3.1 Formal Aspects

Formal learning models differ by the information sources, by a priori knowledge
given to the Learner, by its tasks and abilities, and by the success criteria of the
learning process. In the model of exact identification with queries, studied in [3]
and [4], the task is to identify an unknown concept drawn from a known concept
class using queries to gather information about the unknown concept.

The interest of Angluin’s works lies in the theoretic results she provides about
the learnability of different concept classes (as monotonous DNF which are not
learnable in the case of PAC learning or online learning) by methods based on
the use and the combination of two main types of queries: Membership and
Equivalence queries defined as follows:

Let the domain X be a nonempty finite set. A concept c is a subset of X,
and a concept class C is any nonempty set of concepts. In a Membership query
(MQ), the learner exhibits an example x € X, and the access to an oracle
returns 1 if € ¢, and 0 if ¢ ¢. In an FEquivalence query (EQ), the learner
exhibits a concept ¢/ C X, and the oracle’s answer is either "yes” if ¢ = ¢,
or an element z in the symmetric difference of ¢ and ¢/, if ¢ # ¢. In [9] and
[4], Angluin demonstrates the necessity of combining M Qs and EQs to allow
a powerful and effective learning. [1] formalizes a learning model based on the
interaction between a Learner L and a Teacher T. Both of them are modelled
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Fig. 1. Exact identification with queries

as computers, and T is assumed to have a program p representing the concept
to be taught to the learner, as illustrated in figure 1.

The teaching protocol involves examples of the concept, and possibly other
information (we bring up this topic again later in this section) from which the
learner is to develop a program p’ that also represents the target concept. [3]
emphasizes the fact that outright coding, in which 7" would transmit (using an
encoding via examples) the text of the program p to L, is neither compliant, nor
representative of human learning. Indeed, the ”hardware and software environ-
ment” differs quite substantially from one person to another. In other words, all
of us don’t have the same brains, nor the same ways of thinking, although our
anatomies are comparable.

Angluin illustrates this point of view with the human learning of juggling,
which brings in muscular and visual reflexes, time perception and so on. .. These

e ”"low level” mechanisms from which we only know very few about their
triggering and their control. We merely know how to use or how to interpret their
inputs and outputs, doing so in a symbolic way. The idea we want to put forward
is that to realize a task, acquire an ability, or identify a concept, the learner
has to learn how to correctly use and combine ”black boxes” representing the
mechanisms triggered during the execution of the task, which are only partly and
poorly known to him. This example gave us the motivation to test this protocol
in the context of scientific discovery (see section 3.3): according to Popper’s
conception of Scientific Discovery [5], scientists try to understand Nature’s laws,
by designing experiments and formulating theories on the basis of their results.

We show in section 3.2 and 3.3 how Angluin’s protocol, in such a context,
can be used at different levels of interaction.

Here is the theorem enunciated in [1]: There exists a learner L* such that
for every total recursive function b(x, s) there is a teacher T * b such that for
every universal function box g’ and every function box g that is b-related to g,
L*(g) learns all the partial recursive functions from T *b (g°). Furthermore, L*



is box-and-teacher-proof. Using works as [10], [1] demonstrates the identification
in the limit [11] of this process.

This means that whatever might T’s and L’s applications black box be (appli-
cations being formalized by Angluin by recursive functions), L will learn after a
finite number of queries, a program p’ simulating p and producing only a finite
number of errors if:

1. The computing performances of T and L are comparable, which means L is
"not too slow” compared to T,
2. T has already managed to solve the problem.

This theorem stands in the context of language learning, to which the context
of scientific discovery is comparable since scientists aim at learning or discover-
ing a language adapted to describe their environment and various phenomena
occurring in it.

This protocol is clear and simple, and it ensures the convergence of the learn-
ing process, or at least, it ensures that whoever might the teachers be, the learner
will not converge towards an incorrect solution. An adaptive problem solver can
then learn a theory formulated by a scientist during the process of scientific
discovery. However, in the context of scientific discovery, the Nature, which is
considered as the teacher, is ”silent” and cannot answer all learner’s queries:
the learner may still use M @Qs, by designing experiments and interpreting their
results, but there is no way he can access Nature to answer his EQs (”is earth
flat?”, 7is the law of gravitation true?”).

We show in section 3.2 how the learning assistant can bring a critical point of
view to the scientist while analysing experimentations’ results and formulating
theories, and in section 3.3 how we extend the model ”Learning from Different
Teachers” to ”Learning from each other” by introducing multiple learners and
interactions between them to confront a learner’s interpretation of Nature with
others’.

3.2 Interactive aspects: Individual reasoning

A scientist L learns from Nature T, by experimenting his hypothesis. In our
approach of assistance to scientific discovery, we want the scientist to interact
with an adaptive problem solver to find the solution of a problem, and the
solution comes from the co-learning of these two entities.

An intelligent assistant is an adaptive problem solver, as described in section
2, able to analyse facts described in the language of the ontology written by the
researcher while observing and describing the problem. The intelligent assistant
that we develop [12] uses induction and abduction methods coming from machine
learning with graphs and Galois lattice theory [13] which allow to find relevant
logical implications and equivalence rules between the descriptors introduced by
the user to describe the facts observed (see fig. 2). These rules can be easily
understood by the researcher since they are formulated with his own words.



The assistant can then induce theories predicting the behaviour of the studied
system, and use abduction to explain past facts and to design experimentations
testing the validity of the produced logical rules.
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Fig. 2. Human-Machine interaction cycle

Compared to Angluin’s protocol, we propose to let the Learner be a couple
of Learners: a scientist and his assistant, learning as well from their common
Teacher (Nature) than from each other. The interaction between them follows
the protocol presented in section 3.1, with this difference that both entities can
act in turn either as the Teacher or as the Learner. So the scientist is in charge of
formulating a description model of the problem’s domain, and to modify it when
irrelevant examples arise: erroneous predictions invalidate either the theories,
either the initial conditions (description model). Therefore, he represents the
teacher guiding the learning machine, and can also eliminate learning errors
coming from bias of the learning set, for example by designing experiments to
produce results considered by him as informant. The assistant can analyse large
data and formulate an opinion concerning the scientist’s choices, and act as the
Teacher by anticipating negative result of M Qs or EQs.

This justifies the use of a paraconsistent defeasible deontic logic to localise
contradictions in the scientist’s interpretation of results, in the approximation of
his theory learned by the assistant, or in the discretization of the problem by the
scientist, i.e. in his description model. We saw how Angluin’s protocol formalized
the interaction between a scientist and his assistant, and how the link to their
common Teacher was made by designing experimentations and interpreting their
results. The next section deals with the need of a social game between learners
to answer one’s E(@s.



3.3 Social aspects: Collective cognition

As we introduced in section 3.1, the Nature, which is considered as the Teacher
from which scientists learn during the process of scientific discovery, cannot be
accessed to answer F(Qs, so we introduced a social interaction level to answer
these queries. A scientist is member of a community, and published theories are
temporary solutions accepted until they become insufficient to explain Nature:
in our model, learners (who are couples of scientists and their assistant) are
confronted to the judgment of other learners to cope with the impossibility to
access an oracle for FQs in the context of scientific discovery. Every learner has
the same access to Nature for MQs, whether they have proper interpretations
and points of view, and they are in charge of answering other’s FQs, as shown
on fig.3.
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Fig. 3. Coping with Qs without an oracle

Angluin’s prospect of letting a learner becoming a teacher is meaningful for
us, and our model let other learners answer EQs by the means of publications
and refutations. Doing so, we allow the learners to act on behalf of a teacher by
refuting other’s hypothesis. According to ”Learning From Different Teachers”
theory, learning is still possible in these conditions (if the learners are teacher-
proof ). We symbolize the product of this social interaction by a score and a profit
function. By attributing or deducing points for each query, depending on the
oracle’s answer, we can create a competition atmosphere or collaborative work
between multiple learners. This atmosphere motivates the emission of EQs to
score points and M Qs to prove or refute a theory. The introduction of this social
level can lead to experiment different points attribution in order to determine
in which condition the community formed by the learners converges faster to
an acceptable solution. These kinds of experiments are planned by cognitive
scientists [14], and some of them have already taken place with human players
only.
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We shall now describe these experimentations with the game E+N and link
the manipulated concepts with the notions presented previously.

4 Protocol validation on a toy game: E + N

We implemented this toy game E+4+N to validate the protocol of assistance to
scientific discovery presented in previous sections. In this experimentation, we
aim at defining the limits of our protocol, and having a standard reference to
evaluate further experiments implying scientists and their assistants.

4.1 problem’s definition: Eleusis

The problem in Abbott’s Eleusis card game [15] is to find a secret law hidden
from the players and determining the valid sequences of cards that can be played
during the game. The difficulty of the game can be adapted by:

— changing the length of the sequences concerned by the secret rule, to increase
the complexity of the learning problem.

— fixing the choices offered by the rule, determining the ramifications in the
resolution space. This might lead to formulations of various classes of Boolean
formulas, as CNF, DNF, k-term-DNF, ...

— giving or hiding this information to players. This allows letting the learner
fix his own learning biases or not.

— providing or not the Ontology used to explain the rule. This might be equiv-
alent to concept learning on a finite or infinite domain

Players can formulate membership queries (M Qs) by proposing a sequence of
cards which is accepted or rejected by an oracle machine simulating Nature, and
build on the basis of their experiments a theory consistent with their current
knowledge to explain the hidden rule and predict further sequences. Since a
concept learning problem can be assimilated to the problem of learning the
mapping function between a set of examples (x € X, X being a non empty
finite set) and the Boolean value representing the belonging of = to the unknown
concept ¢ C X, we assume that it is suited to apply concept learning theory and
use the interaction protocol formalized by [1].

Experimentations are in fact membership queries ("is g(z) true?”, g being
an hypothesis, is an M Q), with this difference that experimentations often have
a cost (time, resource, ...). [1] showed that algorithms using only membership
queries were less performing than algorithms using membership queries combined
with equivalence queries ("does g = f?”, f being the hidden function). The
problem in the case of scientific discovery is that if experimentation results can
be analyzed and interpreted to estimate the answer of a membership query, it
is impossible to access an oracle able to answer an equivalence query (”is earth
flat?”). By taking this point into account, and to improve the rule discovery
process, we introduce a social interaction level by letting learner agents join a
community respecting a multi-agent publication protocol to dispatch equivalence
queries to other members of the community, as described in next section.
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4.2 A social interaction level to cope with Equivalence Queries:
Eleusis 4+ Nobel

We designed the card game E+4+N to simulate a situation of collective problem
solving implementing M Qs. To simulate a real problem of scientific discovery,
the oracle cannot be accessed to answer EQs. In fact, it is often hard and time
consuming to determine the equivalence of two elaborated theories, which might
not even use the same ontology, since each researcher has a personal way of
describing the world and interpreting the experiment results.

Friwatu | Homnn:

Mersbershap Queries
Cosra view

Fig. 4. Eleusis + Nobel Game display

Figure 4 shows a possible interface for E4+N. This is the first we developed,
as a web application, sufficient for the basic experimentations we made with
human players only.

Private environment: The central frame displays the results of the experi-
ments made by a player, by selecting cards in the bottom frame and placing
them on the ”?7 holes” to form a new sequence and submit it to the studied
Nature’s law. This way of displaying the results comes from Abbot’s original
game:

— A red surrounded card means it can not be placed after the previous one in
the depicted main sequence.

— A green surrounded card means it forms a valid sequence with the previous
card AND with the following one in the main sequence.

— When the card forms a valid sequence with the previous one in the main
sequence BUT NOT with the following one, it is surrounded in orange.
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Public environment: The frame on the left hand side displays a set of hidden
rules, publicly accessible by an imaginary name so their meaning is hidden. A
player can select the one he (or she) wants to study, and can switch between
them whenever he wants to. It opens in the central frame a private experimen-
tation context associated with the selected rule. When an EQ is formulated,
by publishing a theory, the rule appears in the ”published theories” cell, every
player can read it, and the publisher scores P points. The theory is considered
as correct until a player finds a counter example to refute it. The theory then
moves to the "refuted theory” cell, the refuter wins R points, and the original
publisher looses R points.

The P/R ratio can be set to modify the experimentation’s conditions, and can
also be different in the competitive scientific community and in a collaborative
working group, as proposed in section 3.3.

The alternative to Equivalence queries is a publication, a broadcast of the
player’s theory to every other player belonging to the community. Each player
can then compare this published theory with his personal current data, try to
prove it’s inconsistency, and refute it if a counter example is found. In fact,
the theory is not broadcasted to everyone, but is added to a publicly accessible
database storing every publication that is made on a hidden rule, and a noti-
fication is sent to players. This public database is a kind of collective memory,
which efficiency as been shown in works on Case Based Reasoning as [16] or [17].

5 Results and comments

We present in this section the results concerning the experimentation we made to
validate our protocol. To reach this goal, we needed players, an experimentation
which duration can be controlled, so the rules were defined to concern sequences
of only two cards, in order to have a degree of difficulty suited to non assisted
human players. The results showed that a human playing alone (i.e. using M Qs
alone) takes between 5 and 15 minutes to publish a theory concerning a rule
implying only sequences of two cards. He usually considers his theory correct,
and doesn’t try to refute it. Moreover, the average number of published theories
is between 10 and 20 (players stop before trying the 33 rules), and few of them
are equivalent to the corresponding hidden rule.

An interesting alternative was to organise duels, between two players working
on the same rule, until one of them admitted, without being sure, that the
adverse theory was true. The players reached a consensus on a common Ontology.

To contrast with previous results, we made further experimentations involv-
ing multiple players, students coming from different scholar backgrounds. The
average time for a publication is the same, and we observe a period of roughly
half an hour during which players publish. Then they begin refuting each other,
and theories are revised and republished. A community of ten to thirteen players
takes between 1h 1/2 and 2h two reach a stable equilibrium of published theories
(opposed to the theoretical length of 5h 1/2 for one-player games). The amount
of correct theories is also much more superior. This empirically validate the need
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to use both Membership and Equivalence queries [1], and the use of a collective
memory to share experience and points of view on a given problematic.

Some of these experimentations of the protocol failed because players made
false refutations caused either by a misunderstanding of the ontology or of the
published theory, or even of the notion of refutation. This shows the need, even
for such small learning problems, to include in the publication a program sim-
ulating the user’s theory and allowing to detect eventual contradictions within
it (see section 2). A second notice is that the bias coming from the P/R ratio
favoured the players who only refuted others’ publications without publishing
themselves. We need to define an other ratio taking into account Popper’s idea
that a falsifying experimentation shows a contradiction in a theory, but doesn’t
stand without a rival theory. The third notice is that this game is very efficient
to teach the epistemological foundations of science theory.

Since the protocol is validated, we will now introduce the interaction between
scientists and assisting machines, but this implies more time and more efforts
from the players to learn how to work with adaptive problem solvers. This has
to be worth it, so next experimentations will have to last longer, for example
one month. These experimentations have excited some biologists who plan to
help us designing another version of the game in which the hidden laws will
be real scientific discoveries as described in [18], to simulate the (re)discovery
of Nobel prizes... We will organize very soon an experimentation in which a
team of human players will be opposed to a team of human players assisted
by intelligent learning assistants to validate our approach. An obvious use of
intelligent assistants is to let them test a sequence on various published theories,
and to be the guaranteeing one of the user’s published theory to answer M@s.
The violation of the theory is located by the contradiction between the assistant’s
answer and what is really observed.

6 Conclusion

We presented an interaction model to assist scientists with adaptive problem
solvers in their task of scientific discovery.

[1] formalized an interaction protocol for machine learning based on the use
and combination of Membership queries and Equivalence queries, that enables a
machine to learn a user’s theory. In the context of scientific discovery, the user
is fallible, and we emphasized that reasoning in a paraconsistent logic allows the
solver to localize contradictions in the user’s theory, which leads to a revision
of the description model. Defeasible logic is useful to supervise the learning
process and ” forget” wrong theories. In our model, the user and the software
assistant act in turns as the teacher or as the learner, and this interactive co-
learning leads to a better understanding of the problem and to the creation of
an adequate description model; being assisted by a learning machine trivializes
some fairly easy problems.

Membership Queries can be simulated by designing experiments and inter-
preting their results, experimentation putting the hypothesis to test. To simulate
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the oracle to answer Equivalence Queries, we introduced a social cognition level
to let multiple learners interact by answering each other’s EQs. Stating that a
group will solve a problem faster than an individual, we described a community
of agents learning from each others, each having its own point of view and in-
terpretation of events occurring in its environment, the learner refuting an £Q
acting temporarily as the Teacher. Defining this interaction as a competition to
optimize a score motivates the emission of queries.

This multi-agent discovery platform offers various industrial applications,
especially as a tool for analysts trying to have a synthetic vision of a complex
situation described by heterogeneous information sources, or for optimizing a
production process involving complex systems.
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