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Building Abstrations in Class Models: FormalConept Analysis in a Model-Driven ApproahGabriela Arévalo, Jean-Rémi Falleri, Marianne Huhard and Clémentine NebutLIRMM, CNRS and Université de Montpellier 2,161, rue Ada, 34392 Montpellier edex 5, Frane{arevalo, falleri, huhard, nebut}�lirmm.frAbstrat. Designing lass models is usually an iterative proess to de-tet how to express, for a spei� domain, the adequate onepts andtheir relationships. During those iterations, the abstration of oneptsand relationships is an important step. In this paper, we propose to auto-mate this abstration proess using tehniques based on Formal ConeptAnalysis in a model-driven ontext. Using UML2.0 lass diagrams asmodeling language for lass models, in this proposal we show how ourmodel-driven approah enables parameterization, traing and generaliza-tion to any metamodel to express lass models.1 IntrodutionIn model-driven development, modeling ativities have as purpose (at least par-tially) to replae the oding tasks. Unfortunately, the model engineer does nothave all the same failities (suh as versioning and refatoring tools) as inmostly lassial oding environments. With these kinds of tools, the model-drivenparadigm ould be adopted in large software ompanies. Spei�ally, within theontext of refatoring objet-oriented models, in this paper we fous on au-tomating the detetion and building of lass hierarhies. Designing lass modelsis not a trivial task. It is an iterative proess to detet how to express, for aspei� domain, the adequate onepts and their relationships. During this it-erative proess, the abstration of onepts and relationships is a ruial task.Indeed, abstration provides better onept struturing and more reusable arti-fats. In this paper, we propose to automate this abstration proess using anadaptation of Formal Conept Analysis (FCA) tehniques [1℄ in a model-drivenontext. FCA has proved to be an e�ient tehnique to build or restruture lasshierarhies [2,3,4℄, but has not been yet applied in a model-driven approah.The ontribution of this paper is a FCA-based model-driven approah to ab-strat onepts involved in a lass model (lasses, assoiations, attributes andso on). Brie�y, this proess uses the suessive appliation of model transfor-mations as a main building mehanism. We use two main tools: Kermeta [5℄and UML. Using Kermeta [5℄ (ompatible with MOF and OCL) as our meta-modeling language, we are able to (1) give an operational semantis to everyunderlying metamodel and implement every model transformation, and (2) de-sribe the FCA algorithms and hek their performanes. Using the UML as



a language, we desribe lass models. As a result, the transformations are de-�ned based on a part of the UML 2.0 metamodel. However, the spei�ationand implementation of our proposal using model transformations turns to beeasily tunable by parameters, and appliable to other metamodels whih handleadequate onepts to detet and build abstrations. Our approah shows thatformalizing FCA with model transformations gives interesting bene�ts, suh astraing the di�erent steps of the proess, or the parameterization. These hara-teristis are also important if we ompare our ontribution to the one introduedin [6℄. In that approah the main limitation was that the authors onsider themodel transformations as a blak box, with no means of traing or parameteriz-ing.The paper is strutured as follows. Setion 2 gives a brief overview of ourapproah, realls the main notions of FCA, and introdues the example used allover the paper. Eah main transformation is then detailed into Setions 3, 4 and5 respetively. Setion 6 disusses the bene�ts and limitations of this approah,as well as related work.2 Overview and bakgroundBuilding lass models is usually not a trivial task but rather an iterative proessaiming at �nding the simplest model with good properties suh as, for exam-ple, maintainability, adequate fatorization and easy testing. While building alass model, one task onsists in generalizing onepts: �nding regularities inalready identi�ed onepts in order to detet new abstrations. When repre-senting lass models with UML lass diagrams, several model elements an beabstrated suh as, obviously, lasses, but also assoiations, attributes, and meth-ods. As an example, starting from the lass model shown in Fig. 1(a), the lassmodel of Fig. 1(b) an be obtained, where new lasses have been introdued (forexample lass BankClient that is an abstration of the BasiAountHolderand the TeenagerClient lasses), as well as new attributes (e.g. the attributeaountList that abstrats the two attributes bAountList and tAount-List). Our approah aims at automating this refatoring, i.e. at deteting andbuilding new abstrations in a lass model, using Formal Conept Analysis(FCA). Before going into the details, we provide in this setion the minimalnotions of FCA, and then we give an overview of our approah, that will bedetailed in the next setions.2.1 Bakground on FCAFCA [1℄ is a mathematial tehnique, based on lattie theory, to disover ab-strations (known as onepts) from a set of entities (formal objets) desribedby attributes (formal attributes) 1. Conept speialization draws a lattie stru-ture. Basi FCA onsiders formal ontexts K = (E, P, I) as shown in Figure 21 All over the text we use the term attributes to denote formal attributes, exept inase we must larify the ambiguity between attributes of a lass model and formalattributes of a FCA ontext. 2



(a) A simplelass diagram (b) Refatored lass diagramFig. 1. The example of bank aounts(left). E is the entity set (here UML lasses), P the attribute set (here UMLattributes) and I assoiates an entity with its attributes: (e, p) ∈ I when entity eowns attribute p. With any entity set X ⊆ E we assoiate the shared attributeswith the mapping α de�ned by α(X) = {p ∈ P | ∀e ∈ X, (e, p) ∈ I}. Symmet-rially, with any attribute set Y ⊆ P we assoiate the entities owning all theattributes of Y . To that end, we use the mapping ω de�ned by ω(Y ) = {e ∈
E | ∀p ∈ Y, (e, p) ∈ I}. In the example, let Y = {balance}, we have ω(Y ) =
{BasicAccount, T eenagerAccount}, while for X = {BasicAccount}, α(X) =
{balance, overdraft}. A onept is a pair (X, Y ) where X ⊆ E, Y ⊆ P , α(X) =
Y and ω(Y ) = X . In Figure 2, {{BasicAccount, T eenagerAccount}, {balance}}is a onept. Graphially, this onept orresponds to the vertial blok in theolumn balane. More generally, a onept orresponds to a blok of maximalsize in the ontext (the bloks are found in the ontext modulo the order of theolumns and rows). X (resp. Y ) is usually alled the extent (resp. intent) of theonept.The speialization order between onepts orresponds to extent inlusion (orintent ontainment). The onept lattie L = (C,≤L) is the set of onepts pro-vided with the inlusion partial order. In Figure 2, the onept {{BasicAccount},
{balance, overdraft}} speializes the onept {{BasicAccount, T eenagerAc−
count}, {balance}}.The onept at the bottom has no interest as it represents the hypotheti setof entities ontaining all attributes. The onepts at the �rst level orrespondto initial lasses. The unique onept of the seond level stems from the fa-torization of property balane. In our example, it ould generate a new UMLlass fatorizing balane and appearing as a superlass of BasiAount andTeenagerAount (lass BankAount). The top onept gathers attributes om-mon to all entities, in this spei� ase it is an empty set of attributes. This lattieis very simple, but in general, systemati fatorization in real software projetsgenerates too many onepts, whih makes the analysis di�ult to grasp. Themain advantage of using FCA for UML lass diagram reonstrution is that we3
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xFig. 2. A ontext K(left) and the lattie (right) desribing bank aounts.obtain a sort of normal form for lass models. In this normal form, redundany iseliminated (total fatorization is ahieved) and the speialization order betweenlasses exatly mathes the inlusion order between property set of the lasses.Besides that, maximal fatorization is obtained with minimal number of lasses.However, even in this very simple example, relevant abstrations remainundisovered by this naive proess. Let's see arefully at the two attributesbAountList and tAountList. Their types, respetively BasiAount andTeenagerAount, are evidently generalizable by a lass suh as BankAountfatorizing balane. Thus, the idea is to ontinue the proess and deide thatbAountList and tAountList share a ommon abstration, namely list ofaounts. To disover that abstration, we need to go further into the representa-tion of the UML lass diagram, giving the status of entities to UML properties.As a result, UML lasses and UML properties are desribed by harateristisinluding property ownership and lasses used as types for properties. In thefollowing setion we explain how an extension to the theory of Formal ConeptAnalysis, named Relational Conept Analysis (RCA), allows suh informationto be treated.2.2 Class hierarhy refatoring using FCA in a MDE ontextFigure 3 shows an overview of our approah onsisting of 3 model transforma-tions2.1. The �rst transformation, UML2Contexts, turns the original UML 2.0 lassdiagram into a set of binary ontexts and binary relations. It is a trans-formation from a UML 2.0 metamodel [7℄ to a relational ontext familymetamodel.2 All over this paper, we use an objet terminology to refer to model onformane,for example we talk about models that are instanes of meta-models. It an beseen as a terminologial misuse, but sine we are working with an objet-orientedlanguage (Kermeta [5℄) to de�ne the metamodels and the model transformations,this terminology is the most adequate one to our work.4



Fig. 3. Overview of our approah2. The seond transformation, InitialContexts2FinalLatties, aims at obtaininga set of onept latties of the �nal lass diagram from the initial set ofontexts. It is a transformation from a relational ontext family metamodelto a onept lattie family metamodel.3. The third transformation, Latties2UML onsists in translating the obtainedonept latties into a UML 2.0 lass diagram using traeability informationfrom the previous transformations.Using a model-driven approah based on Formal Conept Analysis in order torefator models is very fruitful. First, it allows to de�ne a simple sequene ofmodel transformations (in partiular for the seond transformation) withoutusing a omplex algorithm. Seond, the proposed approah an be applied tolassify any kind of onepts as soon as they are de�ned by a metamodel. Indeed,the ore of the approah is the seond transformation, and adapting the approahto another metamodel only requires to develop new transformations to replaethe �rst (UML2Contexts) and the third (Latties2UML) ones. As we have saidin Setion 1, every step of the approah is automated and every transformationis implemented in Kermeta [5℄.3 From UML to formal ontextsIn this setion, we detail the transformation from a UML model to formal on-texts handled by Relational Conept Analysis.3.1 Metamodels involved in the transformationIn our approah we use the small metamodel dedued from the UML 2.0 meta-model (shown in Figure 4) to express lass models. Working with suh a reduedmetamodel is not restritive, sine applying work on model typing and model5



type substitutability presented in [8℄, we an use a model onform to the wholeUML 2.0 metamodel as an entry model of our transformation. In the rest ofthe paper, we will refer indi�erently to the UML 2.0 metamodel or its reduedform. We fous only on lasses, attributes and assoiations in the frameworkof our example: attribute name, lass Class, lass Property, role type whihassoiates their type to properties and role ownedAttribute whih assoiatestheir attributes to lasses. As a simpli�ation, we have restrited the end of roletype to be Class rather than Type, a superlass of Class. ownedAttributeis in fat a derived role in the original UML 2.0 metamodel and we onsideronly �attened models (without inheritane relationships, just for simpli�ationreasons). ClassHierarhy is used as an entry point in the models, while thederived role superlass and the role redefinedProperty are used only in thethird transformation.
Fig. 4. Adaptation of a restrition of the UML metamodelRelational Conept Analysis [6℄ onsiders a family of ontexts rather than asingle one, allowing to separate entities into several ategories. In our example,there are two ategories: Class and Property (see the example of RCF in Fig-ure 6). The ontexts of a family inlude relations that link entities of one kindto entities of another kind. Those relations ome from the assoiations in theunderlying metamodel (here the UML 2.0 metamodel, see Fig. 4). In our exam-ple, we deal with two relations: ownedAttribute and type. This set of ontextstogether with the relations is alled a Relational Context Family (RCF). Theassoiated metamodel is given in Figure 5. More formally, a relational ontextfamily F is a pair (K,R) where:� K is a set of ontexts Kt = (Et, Pt, It) linking entities to attributes (Entity-AttributeContext in Fig. 5). In our example K = {KClass, KProperty}.� R is a set of ontexts Rs expressing relations between entities oming fromdi�erent ontexts of K. Rs is suh that ∃ Kt1, Kt2 ∈ K, Rs ⊆ Et1 × Et2. Rsis represented by InterEntityContext in Fig. 5. In the following, those on-texts will be denoted as relations. In our example,R = {RownedAttribute, Rtype}where RownedAttribute ⊆ EClass ×EProperty and Rtype ⊆ EProperty ×EClass.6



Fig. 5. The Relational Context Family (RCF) metamodel3.2 The transformation from UML to a family of ontextsWe here explain how a UML model is automatially transformed into a relationalontext family. To illustrate this transformation, the result of its appliation onthe UML lass diagram of Figure 1(a) is shown in Figure 6. The Relational Con-
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� Relations of R ome from seleted roles in the assoiations of the souremetamodel. In our example, we obtain the two relationsRtype andRownedAttributeshown in Figure 6. Values for all the relations are dedued from a view ofthe studied model as an instantiation of the UML metamodel (see the objetdiagram of Figure 8).
Fig. 7. Transformation from UML to ontextThose two transformation rules are illustrated in Figure 7.
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Fig. 9. The metamodel for latties
A family of latties is omposed ofonept latties. The onepts of alattie are ordered by the speial-ization relation represented by theassoiation hildren/parents. Aonept is omposed of an extentand an intent that are two sets ofelements.This transformation (summarized in the bottom of Figure 3, and applied onour example in Figure 10) onsists in iterating on the multiple appliation of twosmaller transformations, ontext2lattie and lattie2ontext. Indeed, proessinga RCF involves alternative onstrution of latties (one per ontext) and enrih-ment of the relations R of the RCF by knowledge oming from latties. Theproess stops when a �x point on lattie onstrution is reahed, namely whenno new abstration emerges.More preisely, we de�ne a step of the transformation InitialContext2Final-Latties as a multiple appliation (one appliation per ontext) of the transfor-mation ontext2lattie (part A of the step) followed by a multiple appliation(one appliation per target relation) of the transformation lattie2ontext (partB of the step). In the bottom of Fig. 3 and in Figure 10, a step orrespondsto a round-trip (A followed by B). The initial RCF is named RCF 1 and ownsontexts and relations also numbered 1. RCF 1 generates in step 1 (A) lattiesnumbered 1 with onepts numbered 1, then those latties generate in step 1 (B)a new RCF numbered RCF 2 and so on. This iteration stops when no onept isfound during a step.Part A of step i. The multiple appliation of the sub-transformation on-text2lattie builds one lattie for eah entity-attribute ontext of RCF i. Thesoure model of ontext2lattie is a ontext extended by all the relations with thesame entity set. More formally, the soure model is a ontext Kp = (Ep, Pp, Ip)extended by all relations Ri ∈ RCF i suh that Ri ⊆ Ep × Y (Y is either anentity set Eq at step 1, or the onept set of a lattie at step i, i > 1). Therule of this transformation is illustrated in Figure 11. For example, the Kclassontext is extended by the relation Ri

OwnedAttribute, while the KProperty on-text is extended by the relation Ri
type. The transformation onsists in buildinga lattie following lassial Formal Conept Analysis. At this step i, the targetmodel (i.e. the lattie model) obtained from the extended ontext Kp is denoted

Li
p = (X i

p,≤Li
p
) where X i

p is the set of onepts and ≤Li
p
is the speializationorder.Part B of step i. The multiple appliation of the sub-transformations lat-tie2ontext builds a set of relations (initial ontexts � in our example KClassand KProperty � are not modi�ed during this transformation). During a lat-9



Fig. 10. Iterative transformation applied to the aounts exampletie2ontext exeution, a relation Ri+1 ⊆ Ep × X i
q is generated. The prinipleis to replae labels of olumns in initial relations by onepts. The rules of thistransformation are shown in Figure 12. Let us onsider the relationR1

j ⊆ Ep×Eq.During part B of step i, R1
j is replaed by Ri+1

j ⊆ Ep ×X i
q, with (e, Cf ) ∈ Ri+1

jif (e, f) ∈ R1
j and f ∈ Extent(Cf ). For example, during part B of step 1,the labels of the olumns of R1

ownedAttribute are replaed by the onepts ofthe lattie L1
Property (see Figure 10). We have (BA, C1

bbabta) ∈ R2
ownedAttributesine (BA, bba) ∈ R1

ownedAttribute and bba ∈ Extent(C1
bbabta). An interpreta-tion is that C1

bbabta is a generalization of bba, more preisely an abstration ofproperties named "balane". Moreover, lass BA owns bba, then BA owns bbageneralizations, inluding C1
bbabta. At the end of this transformation, eah lattieis assoiated with a ontext (via traeability links) and by onstrution to a10



Fig. 11. Transformation rule for ontext2lattie
Fig. 12. Transformation rules for lattie2ontextlass of the UML metamodel; in our example, latties LClass and LProperty areassoiated with metalasses Class and Property.5 E�etive refatoring : oming bak to the UMLOur last transformation, FinalLatties2UML, parses latties and generates UMLelements. This transformation was implemented using the Kermeta language[5℄. The transformation from a set of latties to a UML lass model is spei�edby three types of rules: non-relational, relational, and speialization. Figure 13shows the rules used for the treatment of our example. At the LHS of the arrowsare the patterns of the latties and at the RHS, two views on generated UMLstati models are given: the model as an instane of the UML metamodel andthe equivalent model in the onrete UML syntax.The non-relational rules are the following:� Conepts of the lattie assoiated with metalass M give rise to UML in-stanes of M; for example, onepts of lattie LClass are interpreted as lasseswhile onepts of lattie LProperty are interpreted as properties (more par-tiularly attributes in the restrited metamodel we use). In rules R1 and R2of Figure 13, onept Ci of the lattie LClass is transformed into a UMLlass; while onept Cj of the lattie LProperty is transformed into a UMLattribute.� Non-relational desriptors in the intension of a onept orrespond to at-tributes of metalasses; for example name in the ase of both lasses andproperties. In Figure 13, the names of the lass generated from the onept

Ci and of the attribute generated from the onept Cj ome from values ofdesriptor name in onept intensions.The generi relational rule is as follows. When a onept Cv is the value of arelation R in the intension of a onept C (i.e. when (C, Cv) ∈ R), then a link is11
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Final property latticeFig. 14. The �nal lattiesThen we reognize initial attributes in the remaining onepts. Speializationlinks and redefined onstraints stem from lattie partial order.6 Disussion: Advantages, Limitations, and Related WorkOne of the main parameters in this approah is the disovery and hoie of ap-propriate UML elements and desription of those elements to build signi�antabstrations. Tehnial desription, e.g. visibility for attributes, is rather inade-quate sine it generates generalizations whih have no semantis for the design.Nevertheless this desription has to be preserved and even sometimes general-ized in �nal step. Multipliities are a good example: they are not interesting inthe main transformation, but they should be re-injeted in the last UML modeland even generalized.One advantage is that the urrent spei�ation of the approah is easilytransposable to a large set of UML elements (assoiations, parameters, oper-ations, et.). We are urrently working on speifying the entire proess at ahigher level (M3) in the four-layered metamodeling hierarhy. This would allowto better demonstrate that �rst and seond transformations an be done for anyother modeling language, just by speifying whih are entities, attributes andrelations.Another feature of our approah is that the tehnique will be useful if the de-signer an easily �ne-tune the seletion of those entities, attributes and relations,beyond traeability issues. The designer should be given the possibility to hoosethe subset of UML elements he onsiders as relevant for a RCA appliation.13



A last problem is determining a reasonable bound on the iteration number,sine at eah iteration, abstrations are further and further from the modelelements whih have triggered the generalization. Too abstrat elements an beless useful.When speifying the metamodels and implementing the transformations, thehoie of the Kermeta language appeared as a good hoie. Indeed, its om-patibility with MOF made it possible to use a single language for the wholeimplementation and its imperative syntax made the transformation implemen-tation easy enough, whereas expressing them with a delarative syntax wouldhave been very di�ult. FCA has been used in various software engineeringtasks, as shown in surveys like [9,10℄. Coneptual model onstrution has beenstudied with the support of FCA, as database shema onstrution [11,12℄, lasshierarhy onstrution or restruturing using lass features [2,3,13,14,15,16℄ orbased on feature usage [4℄. Nevertheless, FCA usage has not yet been studiedin the ontext of Model Driven Engineering, even if several ontributions wereproposed onerning model refatoring. A survey of software refatoring an befound in [17℄, and a setion is dediated to model refatoring. The majority of theontributions on refatoring addresses the ode level, but the reent interest formodel-driven approahes led to several works on model refatoring, in partiularUML refatoring [18℄. Most of the researh fouses on small and atomi modeltransformations (adding a lass, adding an assoiation), exept the ommunityworking on design pattern appliation by model refatoring (for example [19℄).7 ConlusionThis paper presents an approah to automatially detet and build relevant ab-strations in a UML lass model. This method is founded on Relational ConeptAnalysis, an extension of Formal Conept Analysis. It proeeds by suessiveappliations of model transformations, based on di�erent metamodels (UML2.0, ontext, and lattie metamodels) and implemented with the model-orientedlanguage Kermeta. The appliation of our approah results in introduing ab-strations for lasses (with speialization links), attributes, methods and so on,in a lass model. In fat, any kind of model element an be abstrated, but onlya few of them lead to relevant abstrations. Future work will onsist in propos-ing to the �nal users the way to parameterize the appliation by the metamodelelements. We are also working on de�ning our model transformations totallyindependently from the UML 2.0 metamodel, to be able to apply it on any en-try metamodel. Finally, we are starting a ollaboration with natural languageexperts to improve the refatored lass diagram with relevant names for theabstrations, and to resolve problems due to synonymy, homonymy and hyper-onymy.Aknowledgements: Gabriela Arévalo gratefully aknowledges the �nanial supportof the Swiss National Foundation for the Projet: �Advaned Objet-Oriented ReverseEngineering using Formal Conept Analysis� SNF Projet No. PBBE2-111194. We alsoaknowledge the useful omments from the anonymous reviewers of this paper.14
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