
HAL Id: lirmm-00120152
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00120152

Submitted on 13 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Longest Common Subsequence Problem for Unoriented
and Cyclic Strings

François Nicolas, Eric Rivals

To cite this version:
François Nicolas, Eric Rivals. Longest Common Subsequence Problem for Unoriented and Cyclic
Strings. Theoretical Computer Science, 2007, 370 (1-3), pp.1-18. �10.1016/j.tcs.2006.10.002�. �lirmm-
00120152�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00120152
https://hal.archives-ouvertes.fr

Accepted Manuscript

Longest common subsequence problem for unoriented and cyclic
strings

François Nicolas, Eric Rivals

PII: S0304-3975(06)00698-0
DOI: 10.1016/j.tcs.2006.10.002
Reference: TCS 6220

To appear in: Theoretical Computer Science

Received date: 16 September 2004
Revised date: 3 July 2006
Accepted date: 9 October 2006

Please cite this article as: F. Nicolas, E. Rivals, Longest common subsequence problem for
unoriented and cyclic strings, Theoretical Computer Science (2006),
doi:10.1016/j.tcs.2006.10.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tcs.2006.10.002

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Longest Common Subsequence Problem

for Unoriented and Cyclic Strings

François Nicolas, Eric Rivals ∗

L.I.R.M.M., U.M.R. 5506
C.N.R.S. – Université de Montpellier II

161, rue Ada
34392 Montpellier Cedex 5

France

Abstract

Given a finite set of strings X, the Longest Common Subsequence problem
(LCS) consists in finding a subsequence common to all strings in X that is of
maximal length. LCS is a central problem in stringology and finds broad applica-
tions in text compression, conception of error-detecting codes, or biological sequence
comparison. However, in numerous contexts words represent cyclic or unoriented
sequences of symbols and LCS must be generalized to consider both orientations
and/or all cyclic shifts of the strings involved. This occurs especially in compu-
tational biology when genetic material is sequenced from circular DNA or RNA
molecules.

In this work, we define three variants of LCS when the input words are unoriented
and/or cyclic. We show that these problems are NP-hard, and W[1]-hard if param-
eterized in the number of input strings. Both results still hold even if the three LCS
variants are restricted to input languages over a binary alphabet. We also settle
the parameterized complexity of our problems for most relevant parameters. More-
over, we study the approximability of these problems: we discuss the existence of
approximation bounds depending on the cardinality of the alphabet, on the length
of the shortest sequence, and on the number of input sequences. For this we prove
that Maximum Independent Set in r-uniform hypergraphs is W[1]-hard if pa-
rameterized in the cardinality of the sought independent set and at least as hard to
approximate as Maximum Independent Set in graphs.

Key words: Longest Common Subsequence, LCS, cyclic string, sequence
comparison, pattern recognition, graph, hypergraph, maximum stable set,
maximum independent set, approximation, parameterized complexity, NP-hard,
W[1]-hard.

Preprint submitted to Elsevier 13 October 2006

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 Introduction

1.1 Longest common subsequence and shortest common supersequence

Let s, t be two words and denote the length of a word s by |s|. s is a subse-
quence of t if s can be obtained by erasing zero or more symbols of t. In that
case, t is a supersequence of s. For a set of words X, finding a word s that
is a subsequence common to all words in X and such that |s| is maximal is
known as the Longest Common Subsequence problem (LCS). The dual
problem of finding a Shortest Common Supersequence for the input X
is denoted SCS. The LCS problem, as well as the SCS problem, find numerous
applications, for instance in string correction, text compression, conception of
error-detecting codes, biological sequence comparison, and many more (see [1]
for a review). Moreover, it is of theoretical interest as a central problem in
stringology and as a simpler version of the more general Multiple Align-
ment problem [2, Chapter 14].

1.2 Examples of cyclic and/or unoriented words

We review some domains in which linear words represent cyclic and/or unori-
ented sequences of symbols.

1.2.1 In computational biology

In nature, inherited information is stored on linear or circular DNA or RNA
molecules [3]. Bacterial genomes are in majority circular, as are chloroplas-
tic and mitochondrial genomes. Viruses often store their genetic material on
circular DNA, especially bacteriophages, which are widely used as vectors
for cloning a gene of another species. Plasmids, small circular DNA molecules
that have the ability to replicate on their own, are extensively used in biotech-
nology [3]. All such cyclic molecules are sequenced and represented as linear
strings by choosing an arbitrary starting point. It follows that the comparison
of two such sequences needs to consider all possible cyclic shifts (also called
conjugates) of one of the sequences. This is cyclic string comparison.

DNA, as well as RNA, are oriented molecules. The double stranded nature

∗ Corresponding author. Both authors are supported by grants from the ACI IMP-
Bio project ”REPEVOL”.

Email address: rivals@lirmm.fr (Eric Rivals).
URL: http://www.lirmm.fr/~rivals (Eric Rivals).

2

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

of DNA relies on the complementarity of the nucleotides, which enables the
hybridization of the two strands: Adenine binds to Thymine and vice versa
(A ↔ T), while Guanine binds to Cytosine and vice versa (G ↔ C). As
the DNA strands have inverse orientation, it follows that their sequence are
reverse and complementary. In the sequencing process, which is now carried
out automatically, the DNA of interest is cloned into a double-stranded vector
and the vector is sequenced. For technical reasons, it is not always possible
to know in which orientation the DNA is inserted into the vector (i.e., on
which strand). Therefore, in some cases, e.g., for Expressed Sequence Tags,
sequences must be compared in each orientation [4]. We call this a comparison
up to a complementary reversal. In this article, we consider only the matter of
orientation and leave aside the complementarity, since the complexity of the
various LCS problems remains essentially the same.

1.2.2 In pattern recognition

Another domain in which cyclic strings arise is pattern representation and
recognition [5–7]. There, the closed contour of a two-dimensional (polygonal)
shape is encoded into a linear string by choosing arbitrarily a start position
on the contour. Determining if two shapes are similar or equal requires to
compare one string with all cyclic shifts of the other. Practically, this type
of comparison is applied, for instance in an industrial context, to recognize
the class of an object currently visible on a conveyor belt. In this context, if
the side on which the object is laid is chosen randomly, the contour may be
encoded in either direction; it is thus necessary to perform an unoriented and
cyclic comparison.

1.3 Known results

A large literature is devoted to LCS and to SCS; we summarize below the
main results.

1.3.1 Comparison of two words

Let s and t be two words with |t| ≤ |s|.

1.3.1.1 Linear case. A well-known algorithm computes a longest com-
mon subsequence (lcs) of s and t in O(|s| |t|) time and O(|t|) space by dynamic
programming [8]. The time bound has been improved to O(|s| |t| / log |s|) time
[9]. The original algorithm has been generalized to compute an optimum align-
ment between s and t with unrestricted cost matrices and unbounded alphabet

3

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

within the same time and space bounds [2, Chap. 12]. For unit costs, one can
compute an optimum alignment between s and t in O(e |s|) time where e is
the optimum alignment cost (i.e., the Levenshtein distance between s and t)
[10]. When the alphabet is bounded, the complexity of O(|s| |t| / log |s|) can
also be achieved to compute an optimum alignment between s and t with an
unrestricted cost matrices [11].

1.3.1.2 Cyclic case. Define a cyclic alignment between s and t, as an
alignment between a cyclic shift of s and a cyclic shift of t. The problem of
finding an optimum cyclic alignment between s and t has been studied. Little
thinking shows that it reduces to finding an optimum alignment between s
and any cyclic shift of t. The application of dynamic programming to com-
pute optimum alignments of all combinations yields a brute-force algorithm in
O(|s| |t|2) time. Maes [12] exhibits an O(|s| |t| log |t|) time algorithm. Schmidt
[13] gives an O(|s| |t|) time algorithm if there exists two positive integers S
and M such that: all insertions, deletions and substitutions cost S, and all
matches cost −M . For unit costs, one can compute an optimum cyclic align-
ment between s and t in O(e |s|) time, where e is the optimum cyclic alignment
cost [14].

1.3.2 LCS in the case of many input strings

LCS can be solved in polynomial time when the number of input strings is
fixed [15]. However, when the number of input strings is unbounded, LCS
becomes intractable.

• Even for binary alphabets, the decision problem associated with LCS is
NP-hard [16], and W[1]-hard when parameterized in the number of input
strings [17].

• For unbounded alphabets, LCS is hard to approximate. More precisely, ap-
proximating LCS is at least as hard as approximating Maximum Indepen-
dent Set [18].

The parameterized complexity with respect to several other parameters is also
studied in [19,20], while the average error of approximation algorithms is also
investigated in [18]. More details are given in section 2.3.5.

Complexity and approximability of the variants of LCS where input strings
are cyclic and/or unoriented remain open.

4

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1.3.3 Complexity of SCS

1.3.3.1 Linear words. For two input strings, a shortest common super-
sequence can be deduced from a lcs in linear time. For a bounded number
of input strings, SCS remains polynomial. However, for many input strings,
the problem is NP-complete [16]. It remains true even if the input alphabet is
binary [21] or if all input words have length two [22].

When parameterized by the number of input strings, SCS is W[1]-hard even
for binary alphabets [17].

If the input alphabet is bounded then SCS is approximable within a constant
ratio. Otherwise, it does not admit an approximation algorithm of constant
ratio unless P = NP [18].

1.3.3.2 Cyclic words. The variant of SCS for cyclic strings, denoted
SCCS, was shown to be NP-complete even if restricted to binary alphabet,
or to input words of length three [23]. Conversely to SCS, SCCS is polynomial
when all input words have length two [23].

1.4 Our contribution

In this work, we define three variants of LCS when considering a set of input
words that are i/ unoriented, ii/ cyclic, or iii/ both.

(1) We show that these problems are NP-hard, and W[1]-hard with respect
to the number of input strings, even when restricted to instances over a
binary alphabet (Section 3).

(2) We study their approximability when the input alphabet is unbounded
and conclude that they are at least as hard to approximate as Maximum
Independent Set (Section 4.2). We also prove some new results on the
complexity of the latter (Section 4.1).

(3) As a by-product of our reductions, we settle the parameterized complex-
ity of our three problems for most relevant parameters. Our results are
summarized in Section 5.

Section 2 below gives basic notations, defines the problems and summarizes
useful known results on Maximum Independent Set and on LCS. We con-
clude and list open questions in the last section.

5

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 Notations and definitions

We denote by N the set of non-negative integers. For any a, b ∈ N, [a, b]
denotes the set {n ∈ N : a ≤ n ≤ b}. For any finite set X, we denote by #X
the cardinality of X. Throughout this paper, ε denotes an arbitrarily small
positive real constant.

2.1 Approximability of maximization problems

Let Max be a maximization problem. To any instance x of Max is associated
a set S(x) of feasible solutions. Let (x, s) be a pair where x is an instance
of Max and s ∈ S(x) a solution. To each such pair (x, s) is associated a
measure µ(x, s) ∈ N of the quality of the solution s for the instance x. An
optimal solution of Max on x is a solution s∗ ∈ S(x) with measure µ(x, s∗) =
maxs∈S(x) µ(x, s).

Let ρ be a function that maps an instance of Max to a real number greater
than or equal to 1. An approximation algorithm with bound ρ for Max is a
polynomial algorithm that for each input instance x of Max returns a solution
a ∈ S(x) satisfying ρ(x)µ(x, a) ≥ maxs∈S(x) µ(x, s). We say that Max is
approximable within bound ρ if there exists such an algorithm for the problem
Max.

The decision problem associated with Max, denoted by MaxD, is stated as
follows:

Name: MaxD

Instance: A pair (x, k) where
• x is an instance of Max, and where
• k is a non-negative integer called the acceptance threshold.

Question: Does there exist s ∈ S(x) satisfying µ(x, s) ≥ k?

Throughout this paper, acceptance thresholds are always denoted k.

2.2 Independent sets in graphs and hypergraphs

2.2.1 Definitions

A hypergraph is a pair H = (V(H), E(H)) where V(H) is a finite set and E(H)
is a set of subsets of V(H). The elements of V(H) are the vertices of H and
the ones of E(H) are the hyperedges of H. We denote by |H| := #V(H) the

6

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

number of vertices in H. A hypergraph on V , where V is any finite set, is a
hypergraph H such that V(H) = V .

An independent set of H is a set of vertices of H that fully contains no hy-
peredge of H. In the literature, an independent set is also termed a stable.
We denote by α(H) the independence number or stability of H, that is the
maximum cardinality of an independent set of H, and define the problem:

Name: Maximum Independent Set in Hypergraphs (MISH)

Instance: A hypergraph H on [1, |H|].
Solution: An independent set I of H.

Measure: The cardinality of I.

A r-uniform hypergraph (where r ∈ N \ {0, 1}) is a hypergraph whose hyper-
edges have cardinality r. A graph is a 2-uniform hypergraph. The hyperedges
of a graph are called edges. For any r ∈ N \ {0, 1}, we denote by r-MISH
the restriction of MISH to r-uniform hypergraphs, H. The 2-MISH problem
is usually called Maximum Independent Set or Maximum Stable Set,
and its instances, which are graphs, are denoted by G instead of H.

2.2.2 Known results

The decision problem 2-MISHD associated with 2-MISH is

• NP-complete [24], and
• W[1]-complete when parameterized by its acceptance threshold, k (i.e., the

cardinality of the sought independent set) [25].

The maximization problem MISH is approximable within bound
O(|H| / log |H|) [26]. In the case of 2-MISH, there exists an approxima-

tion algorithm with bound O
(
|G| / log2 |G|

)
[27]. Note that the trivial

algorithm that for each input hypergraph H returns an independent set with
cardinality 1 yields bound |H| for MISH, which is only slightly worse than
the previous ones.

Let δ be a mapping that maps N to the subset of reals between 0 and 1,
inclusive. Further studies on the approximability of 2-MISH show that the ex-
istence of an approximation algorithm with bound |G|δ(|G|) implies the improb-
able inclusion of NP in various complexity classes according to the asymptotic
behavior of δ:

• 2-MISH is not approximable within bound |G|0.5−ε, unless NP = P [28].
• 2-MISH is not approximable within bound |G|1−ε, unless NP = ZPP [28].

• 2-MISH is not approximable within bound |G|1−O((log log|G|)−0.5), unless NP ⊆

7

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

ZPTIME(2O((log n)(log log n)1.5)) [29].

2.3 Words, subsequences and languages

2.3.1 Words and languages

An alphabet Σ is a finite set of letters. A word over Σ is a finite sequence of
elements of Σ. The set of all words over Σ is denoted by Σ?. For a word x,
|x| denotes the length of x. Given two words x and y, we denote by xy the
concatenation of x and y. For every n ∈ N, we denote by xn the nth power of
x that is, the concatenation of n copies of x (note that x0 is the empty word).
A word x is unary if there exits a letter a such that x = a|x|.

For every i ∈ [1, |x|], x[i] denotes the ith letter of x: x = x[1]x[2] . . . x[|x|].
For every letter a, |x|a := #{i ∈ [1, |x|] : x[i] = a} denotes the number of
occurrences of the letter a in x.

The mirror image (also called reversal) of x is the word x̃ := x[|x|] · · ·x[2]x[1].
Two words x and y are conjugates of each other if there exist two words u and
v such that x = uv and y = vu.

Example 1 The mirror images of abcd and ababa are dcba and ababa re-
spectively. The conjugates of abcd are abcd, bcda, cdab, and dabc. The con-
jugates of ababab are ababab and bababa.

A language (over Σ) is any set X of words (over Σ). We denote by σ(X) the
cardinality of the smallest alphabet Σ such that X ⊆ Σ?. We say that X is
unary if σ(X) = 1, and that X is binary if σ(X) ≤ 2.

2.3.2 Subsequences of a word

In addition to the usual notion of subsequence, we define three more types of
subsequences.

Definition 2 (Subsequence, U-, C-, UC-subsequence) Let s and x be
two words. We say that:

(1) s is a subsequence of x if one obtains s by erasing some letters of x
(eventually all or none),

(2) s is an unoriented subsequence (U-subsequence) of x when s or s̃ is a
subsequence of x,

(3) s is a cyclic subsequence (C-subsequence) of x when a conjugate of s is
a subsequence of x,

8

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(4) s is an unoriented cyclic subsequence (UC-subsequence) of x when a
conjugate of s is a U-subsequence of x.

Remark 3 For any words x and s one has:

• s is a U-subsequence of x iff s is a subsequence of x or of x̃,
• s is a C-subsequence of x iff s is a subsequence of a conjugate of x,
• s is a UC-subsequence of x iff s is a U-subsequence of a conjugate of x,
• a subsequence of x is both a U-subsequence and a C-subsequence of x,
• a U-subsequence of x and a C-subsequence of x are UC-subsequences of x.

2.3.3 Common subsequences of a language

Let X be a non-empty language. A common subsequence (resp. U-
subsequence, resp. C-subsequence, resp. UC-subsequence) of X is a word
that is a subsequence (resp. U-subsequence, resp. C-subsequence, resp. UC-
subsequence) of each word in X.

Definition 4 (lcs, lcus, lccs, lcucs) For any non-empty language X, we de-
note by lcs(X) (resp. lcus(X), resp. lccs(X), resp. lcucs(X)) the length of a
longest common subsequence (resp. U-subsequence, resp. C-subsequence, resp.
UC-subsequence) of X.

Remark 5 For any non-empty language X, it follows from Remark 3 that

lcs(X) ≤ lcus(X) ≤ lcucs(X) and lcs(X) ≤ lccs(X) ≤ lcucs(X) .

Example 6 One easily checks in the following examples that each of these
inequalities happens to be strict, which guarantees the relevance of Definition 4:

• lcs(X) = 1 < 2 = lcus(X) = lccs(X) = lcucs(X) for X := {01, 10} ,

• lcus(Y) = 2 < 3 = lccs(Y) = lcucs(Y) for Y := {011, 101} ,

• lccs(Z) = 5 < 6 = lcus(Z) = lcucs(Z) for Z := {101001, 100101} .

The examples also illustrate that lccs and lcus are not comparable.

2.3.4 Definitions of the problems

To each of these notions of common subsequence corresponds an optimization
problem. We call respectively

• Longest Common Subsequence (LCS),
• Longest Common Unoriented Subsequence (LCUS),
• Longest Common Cyclic Subsequence (LCCS), and
• Longest Common Unoriented Cyclic Subsequence (LCUCS)

9

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

the following maximization problems:

Name: LCS (resp. LCUS, resp. LCCS, resp. LCUCS)

Instance: A non-empty finite language X.

Solution: A common subsequence (resp. U-subsequence, resp. C-
subsequence, resp. UC-subsequence) s of X.

Measure: The length of s.

2.3.5 Known results about the LCS problem

#X σ(X) k LCSD

– ≤ 2 – NP-complete [16]

bounded – – polynomial [15]

parameter ≤ 2 – W[1]-hard [17]

– parameter parameter F.P.T. (see Section 2.3.5.1)

– – parameter W[2]-hard [20]

parameter – parameter W[1]-complete [20]

parameter parameter – W[t]-hard ∀t ≥ 1 [19]
Table 1
Parameterized complexity of the LCS problem.

2.3.5.1 Classical and parameterized complexity. The parameterized
complexity of LCSD has been studied for any combination of the three follow-
ing parameters:

• the number of input words, #X,
• the cardinality of the input alphabet, σ(X), and
• the acceptance threshold, k (i.e., the length of the sought subsequence).

Known results are summarized in Table 1. In accordance with this table,
LCSD, LCCSD, LCUSD, and LCUCSD are obviously F.P.T. for the aggregate
parameter (σ(X), k). Indeed, one can enumerate all (σ(X))k words of length
k over the input alphabet and check them against each word in X.

2.3.5.2 Approximability. Let b be a mapping that maps N × N × N to
the subset of reals greater than or equal to 1. If LCS is approximable within
bound b (minx∈X |x| , σ(X), #X) then 2-MISH is approximable within bound
b(|G| , |G| , 2 |G|) [18].

10

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 Intractability of LCUS, LCCS, and LCUCS

In this section, we consider the decision problems LCUSD, LCCSD, and
LCUCSD associated with LCUS, LCCS, and LCUCS respectively. We demon-
strate that these problems are

• NP-complete (Theorem 14-(i)), and
• W[1]-hard with respect to the number of input words, #X (Theorem 14-

(ii)).

Moreover, both results hold even if the problems are restricted to binary in-
put languages (i.e., languages X such that σ(X) ≤ 2). We also settle the
parameterized complexity of our LCSD variants for parameter (#X, σ(X))
(Theorem 14-(iii)).

However, note that, as LCS, each of the three problems LCUS, LCCS, and
LCUCS is tractable when the number of input words is bounded.

Proposition 7 LCCSD, LCUSD, and LCUCSD are polynomial when #X is
fixed.

PROOF. By dynamic programming, LCS can be solved in O((#X)
∏

x∈X |x|)
time [15]. For any language X, there are 2#X combinations of the words in
X with a fixed orientation. Therefore, using the above mentioned algorithm
for LCS on each combination, and returning the longest common subsequence
found, solves LCUS in O

(
(#X)2#X ∏

x∈X |x|
)

time, which is polynomial when
#X is fixed.

A similar exploration algorithm considering all possible cyclic shifts of the
words in X can be used to solve LCCS in O

(
(#X)

∏
x∈X |x|

2
)

time. Again,
considering all possible cyclic shifts and all possible orientations of the words
in X yields an algorithm for LCUCS that requires O

(
(#X)2#X ∏

x∈X |x|
2
)

time. These running times are also polynomial when #X is fixed. 2

We now turn to the proof of the intractability results announced at the begin-
ning of the section. All proofs rely on a reduction from LCS. This reduction is
described in Definition 9. As explained in lemmas 8 and 10, we use a “padding
argument” to ensure synchronization.

Lemma 8 (Synchronization lemma) Let a, b be two distinct letters, and
let s, t be two words. Let m, n, p, q be four integers with m, n > 0, and p,
q > |s|. Set u := amsbn and v := aptbq. Then, v or ṽ is a conjugate of u iff
u = v.

11

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

PROOF. Any conjugate of u that is distinct from u adopts one of the three
following forms:

(i). ajsbnam−j with j ∈ [1, m− 1],
(ii). bjamsbn−j with j ∈ [1, n− 1], or

(iii). s2b
nams1 where s1 and s2 are two words such that s = s1s2.

• Assume that v is a conjugate of u. The word v ends by letter b, so it is
not of the form (i), and v begins with letter a, so it is not of the form (ii).
Moreover, as |s| is less than p, v admits a|s|+1 as a prefix, which is not the case
of words of the form (iii). Thus, v is a conjugate of u which is not of any of
these three forms. The only possibility left is u = v.

• Let us suppose that ṽ is a conjugate of u. As ṽ = bq t̃ap begins by letter b,
ṽ is distinct from u and does not adopt form (i). Moreover as ṽ ends by letter
a, it does not adopt form (ii) either. It follows that ṽ has form (iii) and thus,
there exists two words s1, s2 such that s = s1s2 and bq t̃ap = s2b

nams1. Since
by hypothesis q ≥ |s| ≥ |s2|, one has s2 = b|s2| and similarly, p ≥ |s| ≥ |s1|
compels s1 = a|s1|. We obtain that ṽ = b|s2|+nam+|s1| and u = ams1s2b

n =
am+|s1|b|s2|+n, which yields u = v. 2

Definition 9 For any finite language X and any distinct letters a, b, we
define:

MX := max
x∈X

|x| and XUC
a,b :=

{
a2MX+1xb2MX+1 : x ∈ X

}
.

The synchronization lemma enables us to prove the fundamental property of
our gadget:

Lemma 10

lcucs(XUC
a,b) = lccs(XUC

a,b) = lcus(XUC
a,b) = lcs(XUC

a,b) = lcs(X) + 4MX + 2 .

PROOF. One easily checks the following property.

Claim 11 For any non-empty language W and any letter c, one has

lcs(Wc) = lcs(cW) = lcs(W) + 1

where Wc = {wc : w ∈ W} and cW = {cw : w ∈ W}.

12

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Repeatedly applying Claim 11, we get

lcs(XUC
a,b) = lcs(X) + 4MX + 2 .

It remains to show that lcucs(XUC
a,b) = lccs(XUC

a,b) = lcus(XUC
a,b) = lcs(XUC

a,b) or
equivalently, according to Remark 5, that lcucs(XUC

a,b) ≤ lcs(XUC
a,b).

Claim 12 We say that two words u and v are conjugate up to a reversal if
v or ṽ is a conjugate of u. The relation of conjugacy up to a reversal is an
equivalence relation.

This claim is easily deduced from the fact that (usual) conjugacy is an equiv-
alence relation [30].

Let v be a common UC-subsequence of XUC
a,b of maximal length lcucs(XUC

a,b).
For any x ∈ X, there exists a subsequence ux of a2MX+1xb2MX+1 such that
v or ṽ is a conjugate of ux. Consider the family of words (ux)x∈X ; for all x,
y ∈ X, we have

• |ux| = lcucs(XUC
a,b) because ux has the same length as v,

• ux is a subsequence of a2MX+1xb2MX+1 by definition,
• uy or ũy is a conjugate of ux, by Claim 12.

Claim 13 ∀x, y ∈ X, ux = uy.

PROOF. Words ux and uy can be written as ux = amsbn and uy = aptbq with
s (resp. t) being a subsequence of x (resp. y), and m, n, p, q ∈ [0, 2MX + 1].
By contradiction, assume p ≤ MX ; then we would have

lcucs(XUC
a,b) = |uy| = p + |t|+ q≤MX + |y|+ 2MX + 1

≤ 4MX + 1

< 4MX + 2 + lcs(X) = lcs(XUC
a,b)

which, by Remark 5, is a contradiction.

We know now that p > MX ≥ |x| ≥ |s| and q > |s| for the same reasons.
Symmetrically, m and n are larger than MX , and thus, they are positive.
Therefore, Lemma 8 with (u, v) := (ux, uy) applies and we get ux = uy. This
concludes the proof of Claim 13. 2

We can now conclude the proof of Lemma 10. By Claim 13, the ux’s (x ∈ X)
are all equal to the same word u, which is a common subsequence of XUC

a,b . (u
can be written as a2MX+1wb2MX+1 with w a longest common subsequence of
X). Therefore, lcs(XUC

a,b) ≥ |u| = lcucs(XUC
a,b), what we wanted. 2

13

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

We can now easily prove the main result of this section.

Theorem 14 The problems LCUCSD, LCCSD, and LCUSD are

(i). NP-complete even if restricted to binary input languages,
(ii). W[1]-hard for parameter #X even if restricted to binary input lan-

guages,
(iii). W[t]-hard for parameter (#X, σ(X)) for any t ∈ N \ {0}.

PROOF. First, note that the decision problems LCUCSD, LCCSD, and
LCUSD are in NP because LCUCS, LCCS, and LCUS are NP-optimization
problems (see [31] for a definition of this complexity class). Indeed, given
a word s, one can check in polynomial time whether s is a common U-
subsequence (resp. C-subsequence, resp. UC-subsequence) of X.

Let us now prove the intractability results. Let X be a non-empty, finite
language and let k ∈ N. If the input language X is unary, then the problems
are polynomial since lcs(X) = lcus(X) = lccs(X) = lcucs(X) = minx∈X |x|.
Now, let us assume that σ(X) ≥ 2 and consider a polynomial function that
associates to X a pair of distinct letters (aX , bX) such that each letter occurs
in at least a word of X. By Lemma 10, the function

(X, k) 7−→ (XUC
aX ,bX

, k + 4MX + 2)

is a valid M-reduction from LCSD to LCUSD, LCCSD, and LCUCSD (an M-
reduction is a many-to-one reduction). Moreover, our reduction is computable
in polynomial time and preserves:

• the number of input words since #XUC
aX ,bX

= #X, and
• the input alphabet size since σ(XUC

aX ,bX
) = σ(X).

This enables us to generalize to LCUSD, LCCSD, and LCUCSD the intractabil-
ity results established so far for LCSD: NP-completeness even when σ(X) = 2
in [16], W[1]-hardness for parameter #X even when σ(X) = 2 in [17], and
W[t]-hardness for parameter (#X, σ(X)) for any t ∈ N \ {0} in [19]. 2

4 Approximability of MISH, LCS, LCUS, LCCS, and LCUCS

In this section, we first study the approximability of the Maximum Indepen-
dent Set problem in hypergraphs. These results in hand, we can prove some
theorems on the hardness to approximate our LCS variants. This section is
divided in two. In Section 4.1, we consider the Maximum Independent Set

14

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

problem in r-uniform hypergraphs (r-MISH) for r ∈ N \ {0, 1, 2}. We show
that

• r-MISHD is W[1]-hard with respect to its acceptance threshold (Theo-
rem 18-(i)), and that

• r-MISH is at least as hard to approximate as 2-MISH (Theorem 18-(ii)).

In Section 4.2, we study the approximability of LCS, LCUS, LCCS, and
LCUCS when the input alphabet is unbounded. We generalize to LCUS,
LCCS, and LCUCS the (loose) approximation bounds previously established
for LCS (Section 4.2.1). We also show that

• LCS and LCUS are at least as hard to approximate as 2-MISH (Sec-
tion 4.2.2.1), and that

• LCCS and LCUCS are at least as hard to approximate as 3-MISH (Sec-
tion 4.2.2.2).

As a by-product, we settle the parameterized complexity of the decision prob-
lems associated to our three LCS variants with respect to their acceptance
thresholds.

4.1 Inapproximability of MISH

Throughout this section, r denotes an element of N \ {0, 1}. Before proving
the main result (Theorem 18) we need several lemmas.

Lemma 15 Let k0 ∈ N. The decision problem 2-MISHD remains W[1]-hard
when parameterized in its acceptance threshold, denoted k, even if restricted
to instances (G, k) whose acceptance threshold k is at least k0.

PROOF. Let (G, k) be an instance of 2-MISHD. We build another instance
(Ĝ, k̂) of 2-MISHD as follows: Ĝ is obtained by adding k0 isolated vertices to
G, and we set k̂ := k+k0. Note that k̂ ≥ k0. Clearly, G admits an independent
set of cardinality k if and only if Ĝ admits an independent set of cardinality
k̂. As our reduction preserves the parameter, our result follows from the W[1]-
hardness of the general 2-MISHD [25]. 2

Lemma 16 Given p ∈ N, there exists a mapping computable in polynomial
time that maps any hypergraph H to an independent set of H, denote it Jp

H ,
having cardinality min{α(H), p}.

15

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

PROOF. Enumerate all O(|H|p) subsets of V(H) whose cardinality is at most
p and memorize those that are independent sets of H. Among these selected
subsets return one of maximal cardinality. For fixed p, this takes polynomial
time. 2

Lemma 17 Let k0 ∈ N and let ρ be a mapping that, to a r-uniform hypergraph
H, associates a real ρ(H) ≥ 1.

We consider the restriction of r-MISH to r-uniform hypergraphs H satisfying
α(H) / ρ(H) ≥ k0. Let us assume that this restriction is approximable within
bound ρ(H). Then, the general r-MISH problem is approximable within bound
ρ(H).

PROOF. Let us denote by Hr
k0,ρ the class of r-uniform hypergraphs H sat-

isfying α(H) / ρ(H) ≥ k0. Let A be an approximation algorithm with bound
ρ(H) for the restriction of r-MISH to Hr

k0,ρ. Let f be a polynomial such that,
for any input H ∈ Hr

k0,ρ, Algorithm A stops after at most f(|H|) steps.

Consider the following algorithm B: For any input r-uniform hypergraph H,
B first runs Algorithm A on H and counts its number of steps.

(i). If before f(|H|) steps algorithm A returns an independent set I of H
of cardinality at least k0, then B returns I.

(ii). Otherwise (i.e., when after f(|H|) steps A did not stop or returned
something else than an independent set of H of cardinality at least k0),
B returns Jk0

H (as defined in Lemma 16).

Algorithm B takes polynomial time since by Lemma 16 case (ii) requires
polynomial time. It remains to show that the approximation bound of B is
ρ(H).

• First, assume that H ∈ Hr
k0,ρ. Algorithm A applied to H stops after at

most f(|H|) steps and, by hypothesis, returns an independent set I of H of
cardinality #I ≥ α(H) / ρ(H) ≥ k0. Then, Algorithm B falls in case (i) and
returns I, which has the desired bound.

• Now assume that H /∈ Hr
k0,ρ. In case (i), B returns an independent set of H

of cardinality at least k0, while in case (ii), B returns an independent set of H
of cardinality min{α(H), k0}. In both cases, B returns an independent set of H
of cardinality at least min{α(H), k0}. One has k0 > α(H)/ρ(H) by hypothesis,
and α(H) ≥ α(H)/ρ(H) since ρ(H) ≥ 1. Thus, min{α(H), k0} ≥ α(H)/ρ(H),
what we wanted. 2

16

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Theorem 18 Let r ∈ N \ {0, 1}, k0 ∈ N, and let b be a mapping that to any
integer associates a real greater than or equal to 1.

(i). The decision problem r-MISHD is W[1]-hard when parameterized in
its acceptance threshold, k. Moreover, this result still holds even if r-
MISHD is restricted to instances (H, k) whose acceptance threshold k is
at least k0.

(ii). If r-MISH is approximable within bound b(|H|) then 2-MISH is approx-
imable within bound b(|G|).

PROOF. For any graph G, consider the set of r-subsets of V(G) that contains
at least an edge of G. We denote by Hr

G the r-uniform hypergraph on V(G)
whose set of hyperedges is this above mentioned set. The proof relies on the
three following properties of Hr

G.

Claim 19 Any independent set of G is also an independent set of Hr
G.

PROOF. Any edge of Hr
G contains an edge of G. 2

Claim 20 Any independent set of Hr
G whose cardinality is at least r is an

independent set of G.

PROOF. Any subset of V(G) of cardinality at least r, containing an edge e
of G also encloses hyperedges of Hr

G containing e. 2

Claim 21 The mapping that to a graph G associates the hypergraph Hr
G is

computable in polynomial time.

PROOF. For a fixed r, one can enumerate the
(
|G|
r

)
= O(|G|r) r-subsets of

V(G) and select those that contain an edge of G in polynomial time. 2

Note that Hr
G and G do not have the same independent sets.

Example 22 For r = 3 and G = ([1, 4] , {{1, 2}, {1, 3}, {2, 4}}), one has:

H3
G = ([1, 4] , {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}) .

The edge {1, 2} of G is an independent set of H3
G, but not of G.

We can now finish the proof of Theorem 18.

17

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(i). Let us demonstrate that the restriction of r-MISHD to instances (H, k)
satisfying k ≥ k0 is W[1]-hard for parameter k.

Without loss of generality, one can assume k0 ≥ r. We proceed by reduction
from the restriction of 2-MISHD to instances (G, k) such that k ≥ k0.

Let (G, k) be an instance of 2-MISHD such that k ≥ k0. We build the instance
(Hr

G, k) of r-MISHD.

Claim 21 guarantees that this construction takes polynomial time. Moreover,
claims 19 and 20 guarantee that for any vertex set I of cardinality k, G admits
I as an independent set if and only if Hr

G also admits I as an independent set.
Hence, we have shown that our transformation, which preserves acceptance
thresholds, is a Karp-reduction. The W[1]-hardness of r-MISHD follows from
Lemma 15.

(ii). Let us prove that r-MISH is at least as hard to approximate as 2-MISH.

Assume there exists an approximation algorithm with bound b(|H|) for r-
MISH. We describe an approximation algorithm B with bound b(|G|) for the
restriction of 2-MISH to graphs such that α(G) / b(|G|) ≥ r. Then, applying
Lemma 17 (with k0 := r) will enable us to conclude.

Let G be an input graph satisfying α(G) / b(|G|) ≥ r. Algorithm B proceeds
as follows.

(1) Compute the r-uniform hypergraph Hr
G,

(2) Compute I, an independent set of Hr
G whose cardinality is at least α(Hr

G)/
b(|Hr

G|), and return I.

Algorithm B takes polynomial time: Step 1 because of Claim 21, and Step 2 by
hypothesis. It remains to show that Algorithm B admits the correct bound,
i.e., that I is an independent set of G of cardinality #I ≥ α(G) / b(|G|).
As G and Hr

G share the same vertex set, one has |Hr
G| = |G|. Moreover,

α(G) ≤ α(Hr
G) because of Claim 19. It follows that the set I computed during

Step 2 satisfies

#I ≥ α(Hr
G)

b(|Hr
G|)

=
α(Hr

G)

b(|G|)
≥ α(G)

b(|G|)
.

As we restricted ourselves to input graphs G such that α(G) / b(|G|) ≥ r,
Claim 20 guarantees that the set I returned by Algorithm B is an independent
set of G. This concludes the proof of Theorem 18. 2

Note that [32] uses the transformation G 7→ Hr
G described in the preceding

proof to show a similar result about the Graph Coloring problem.

18

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4.2 Approximability of LCS, LCUS, LCCS, and LCUCS

4.2.1 Approximation algorithms

In propositions 23 and 25, we generalize to LCUS, LCCS, and LCUCS the
approximation bounds σ(X) and (minx∈X |x|) / log (minx∈X |x|) announced
for LCS in [18] and [26], respectively. Note that an approximation bound of
minx∈X |x| for LCS, LCUS, LCCS, and LCUCS is trivial. Indeed, for any non-
empty, finite input language X, return

• a letter common to each word in X if such a letter exists, and
• the empty word otherwise.

Proposition 23 Each problem among LCS, LCUS, LCCS, and LCUCS ad-
mits an approximation algorithm with bound σ(X).

PROOF. Consider the LongRun algorithm [18], which maps any non-empty,
finite language X to a maximal common unary subsequence LR(X) of X.
Among all letters that occur in at least a word of X, LongRun chooses a
letter a that maximizes the quantity `a := minx∈X |x|a, and returns LR(X) :=
a`a . All this requires polynomial time. Moreover, LR(X) is a solution of the
instance X of the problems LCS, LCUS, LCCS, and LCUCS.

It remains to prove that Long Run has bound σ(X), i.e., that LR(X) has
length at least lcs(X) / σ(X) (resp. lcus(X) / σ(X), resp. lccs(X) / σ(X),
resp. lcucs(X) / σ(X)). By Remark 5, it suffices to prove that |LR(X)| ≥
lcucs(X) / σ(X). For this sake, we use the following simple claim:

Claim 24 In any word s (it contains σ({s}) distinct letters), there exists a
letter whose number of occurrences in s is at least |s| / σ({s}).

Let s be a common UC-subsequence of X of maximal length lcucs(X).
Claim 24 implies the existence of a letter, say b, such that

|s|b ≥
|s|

σ({s})
≥ |s|

σ(X)
=

lcucs(X)

σ(X)
.

So, the unary word b|s|b is a common subsequence of X and we obtain

|LR(X)| ≥
∣∣∣b|s|b∣∣∣ = |s|b ≥

lcucs(X)

σ(X)
.

2

Proposition 25 Each problem among LCS, LCUS, LCCS, and LCUCS ad-
mits an approximation algorithm with bound `/ log ` where ` := minx∈X |x|.

19

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

PROOF. It suffices to apply Halldòrsson’s approximating via partitioning
method [26].

(1) Select a word x ∈ X of minimal length ` and factorize it under the form
x = y1y2 . . . yp where
• p is a positive integer smaller than or equal to `/ log `,
• for any i ∈ [1, p], yi is a word of length |yi| = O(log `).

(2) For each i ∈ [1, p], enumerate the subsequences (resp. U-subsequences,
resp. C-subsequences, resp. UC-subsequences) of yi, and memorize those
that are solutions of our problem.

(3) Among the words selected at Step 2, return one of maximal length.

2

4.2.2 Inapproximability of LCS, LCUS, LCCS, and LCUCS

In the remaining of this paper, we consider implicitly that any integer is a
symbol and that all letters are drawn from the linearly ordered set N.

Definition 26 (S↑) Let S be a finite subset of N. We denote by S↑ the unique
word over S that is increasing and has length #S.

The following lemma enables us to obtain the results on the hardness of ap-
proximation in the unoriented case with the same argument as in the oriented
case (see Theorem 29 and Theorem 35). Indeed, in a word satisfying certain
conditions, a long enough U-subsequence of this word also is a subsequence of
it.

Lemma 27 Let w be a word that can be written as the concatenation of n
increasing words.

(i). Any U-subsequence of w that is increasing and whose length is at least
n + 1 is a subsequence of w.

(ii). Any UC-subsequence of w that is increasing and whose length is at least
n + 2 is C-subsequence of w.

PROOF. Let w1, w2, . . . , wn be n increasing words such that w =
w1w2 . . . wn.

(i). Let s be an increasing U-subsequence of w such that |s| ≥ n + 1. We
show that s is a subsequence of w.

20

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

By hypothesis, either s is a subsequence of w or s̃ is subsequence of w. So,
it suffices to demonstrate that the latter eventuality is forbidden. By contra-
diction, assume that s̃ is a subsequence of w = w1w2 . . . wn. Then, we can
factorize s̃ under the form s̃ = s1s2 . . . sn where si is a subsequence of wi for
all i ∈ [1, n].

• Since si is a subsequence of the increasing word wi, si is increasing.
• Besides, s̃ is decreasing as the mirror image of the increasing word s. Thus,

si is decreasing as a subsequence of s̃.

From that we deduce that si is of length at most 1, since the only words that
are both increasing and decreasing are reduced to a single letter or to the
empty word. Hence, we have |s| = |s̃| = |s1| + |s2| + · · · + |sn| ≤ n which
contradicts the hypothesis |s| ≥ n + 1.

(ii). Let t be an increasing UC-subsequence of w such that |t| ≥ n + 2. Let
us prove that t is a C-subsequence of w.

By hypothesis, t is a U-subsequence of a some conjugate w′ of w. Any conjugate
of w may be written as the concatenation of (at most) n+1 increasing words.
So, Point (i) applies with n+1 instead of n and w′ instead of w. It yields that
t is a subsequence of w′ and thus, a C-subsequence of w. 2

The following example shows the bounds of Lemma 27 are tight.

Example 28 Let w := 1623534125. w can be written as the concatenation of
n := 4 increasing words: 16, 235, 34, and 125.

• 2356 is an increasing U-subsequence of w of length n, but not a subsequence
of w.

• 12356 is an increasing UC-subsequence of w of length n + 1 but not a C-
subsequence of w.

4.2.2.1 Inapproximability of LCS and LCUS. It is shown in [20] that
LCSD is W[2]-hard when parameterized in its acceptance threshold, k. In the
following theorem, we state a somehow weaker result (LCSD is W[1]-hard
with respect to k), but we exhibit a parameter and approximation preserving
reduction from 2-MISH that is simpler than the one of [20] and can be adapted
to LCUSD.

Theorem 29 Let b be a mapping that maps N×N×N to the subset of reals
greater than or equal to 1.

21

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(i). The problems LCSD and LCUSD are W[1]-hard when parameterized in
their acceptance threshold, k.

(ii). If either LCS or LCUS are approximable within bound
b (minx∈X |x| , σ(X), #X) then 2-MISH is approximable within bound
b(|G| , |G| , |G|2).

PROOF. First, we describe how we transform a graph G into an instance XG

of LCS (resp. of LCUS). Let G be a graph on [1, |G|]. To any edge E ∈ E(G),
we associate a word denoted xG,E defined by

xG,E := ([1, |G|] \ E)
x E↑ [2] E↑ [1] ([1, |G|] \ E)

x .

In xG,E, the prefix and suffix ([1, |G|] \ E)
x is the ordered set of vertices except

the ones linked by E. In between, the latter are written in reverse alphabet
order (E↑ [2] E↑ [1]). We can now define the instance XG of LCS or LCUS:

XG := {xG,E}E∈E(G) ∪ {([1, |G|]
x)p}p∈[1,|G|2−#E(G)] .

In addition to the xG,E’s (E ∈ E(G)), XG contains several powers of the word
[1, |G|]

x, which represents the whole ordered set of vertices of G. Actually,
only [1, |G|]

x to the power one is useful to force the monotony of common
U-subsequences of XG, while the other powers permit us to set the cardinality
of XG to |G|2.

Our proof relies on the following claims stating properties of XG.

Claim 30 Given a graph G on [1, |G|], the language XG can be computed in
polynomial time.

PROOF. Trivial. 2

Claim 31 One has minx∈XG
|x| = σ(XG) = |G| and #XG = |G|2.

PROOF. All words of XG are over alphabet [1, |G|] and the shortest word of
XG is [1, |G|]

x. Moreover,

#XG = #{xG,E}E∈E(G) + #{([1, |G|]
x)p}p∈[1,|G|2−#E(G)]

= #E(G) + |G|2 −#E(G)

= |G|2 .

Note that E(G) has cardinality at most
(
|G|
2

)
= 1

2
|G| (|G| − 1) and thus, less

than |G|2. 2

22

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Claim 32 For any independent set I of G, I↑ is a common subsequence of
XG of length #I.

PROOF. Since I is a subset of V(G) = [1, |G|], I↑ is a subsequence of
([1, |G|]

x)p for each p ∈ N \ {0}.

Let E ∈ E(G). Since I is an independent set, the two extremities of E cannot
be both in I. If none occurs in I then I↑ is a subsequence of ([1, |G|] \ E)

x and
thus, of xG,E. Assume a unique extremity v of E = {E↑ [1], E↑ [2]} belongs
to I and occurs in I↑ at position i: v = I↑ [i]. Then, the prefix of length i− 1
and the suffix of length #I − i of I↑ are both subsequences of ([1, |G|] \ E)

x.
As v can be picked up in E↑ [2] E↑ [1], we obtain that I↑ is a subsequence of
xG,E. This completes the proof of Claim 32. 2

Claim 33 Let s be a common subsequence of XG. The set of letters occurring
in s is an independent set of G of cardinality |s|.

PROOF. Since s is a subsequence of [1, |G|]
x, s is increasing and contains

|s| distinct letters.

Let E ∈ E(G). As s is an increasing subsequence of xG,E and the extremities of
E = {E↑ [1], E↑ [2]} occur in xG,E in decreasing order, s cannot includes both
E↑ [1] and E↑ [2]. Hence, the set of letters occurring in s is an independent
set of G. 2

Claim 34 Let s be a common U-subsequence of XG of length at least 5. The
set of letters occurring in s is an independent set of G of cardinality |s|.

PROOF. As either s or s̃ is a subsequence of [1, |G|]
x, s is either increasing

or decreasing. Since the same letters occur in s and s̃, we can, if necessary
change s in s̃ to assume that s is an increasing subsequence of [1, |G|]

x.

Let E ∈ E(G). We know that s is a U-subsequence of xG,E of at least 5
letters. Note that xG,E can be written as the concatenation of 4 increasing
words: ([1, |G|] \ E)

x, E↑ [2], E↑ [1] and ([1, |G|] \ E)
x again. (If E↑ [1] = 1

or if E↑ [2] = |G|, xG,E may be written as the concatenation of less than 4
increasing words.) By Lemma 27, s is a subsequence of xG,E. Hence, s is a
common subsequence of XG and Claim 33 applies. 2

With these properties in hand, we can now prove points (i) and (ii) of Theo-
rem 29.

23

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(i). Let us show that LCSD and LCUSD are W[1]-hard for parameter k.

Consider the mapping R that, to any instance (G, k) of 2-MISHD, associates
the ordered pair R(G, k) := (XG, k). By Claim 30, R is computable in poly-
nomial time.

For any instance (G, k) of 2-MISHD, claims 32 and 33 guarantee that (G, k)
is a positive instance of 2-MISHD iff (XG, k) is a positive instance of LCSD.
Hence, the mapping R is a Karp-reduction from 2-MISHD to LCSD, and since
R preserves the acceptance threshold, LCSD is W[1]-hard for parameter k.

Moreover, if k is at least 5, then (G, k) is a positive instance of 2-MISHD

iff (XG, k) is a positive instance of LCUSD (claims 32 and 34). Hence, R
also induces a Karp-reduction to LCUSD from the restriction of 2-MISHD to
instances (G, k) satisfying k ≥ 5. Therefore, Lemma 15 applies with k0 := 5:
LCUSD is W[1]-hard for parameter k.

(ii). Let us now prove that LCS and LCUS are at least as hard to approxi-
mate as 2-MISH.

Let A be an approximation algorithm with bound b (minx∈X |x| , σ(X), #X)
for LCS or LCUS. For each non-empty, finite input language X, A returns a
word s that is

• either a common subsequence of X such that b (minx∈X |x| , σ(X), #X)×|s|
is at least lcs(X),

• or a common U-subsequence of X such that b (minx∈X |x| , σ(X), #X)× |s|
is at least lcus(X).

In both case, s is a common U-subsequence of X (Remark 3) and satisfies

b
(
min
x∈X

|x| , σ(X), #X
)
× |s| ≥ lcs(X) ,

since lcus(X) is greater or equal to lcs(X) (Remark 5).

We now describe an approximation algorithm B with bound b(|G| , |G| , |G|2)
for the restriction of 2-MISH to graphs G such that α(G)/b(|G| , |G| , |G|2) ≥ 5.
This will enable us to apply Lemma 17 (with r := 2 and k0 := 5) and conclude.
Let G be the input graph. Algorithm B proceeds as follows.

(1) Compute language XG.
(2) Run Algorithm A on XG to obtain a common U-subsequence s of XG of

length at least:
lcs(XG)

b (minx∈XG
|x| , σ(XG), #XG)

.

24

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(3) Return the set I of letters occurring in s.

Algorithm B is polynomial, i.e., B takes O
(
|G|O(1)

)
time. Indeed, Step 1 is

polynomial because of Claim 30, and so is Step 2 since A is a polynomial time
algorithm.

Let us now prove the approximation bound claimed for B. Claims 31 and 32
yield b (minx∈X |x| , σ(X), #X) = b(|G| , |G| , |G|2) and lcs(XG) ≥ α(G) re-
spectively. Hence, s is of length at least:

lcs(XG)

b (minx∈XG
|x| , σ(XG), #XG)

=
lcs(XG)

b(|G| , |G| , |G|2)
≥ α(G)

b(|G| , |G| , |G|2)
.

As we restricted ourselves to input graphs G such that α(G) /
b(|G| , |G| , |G|2) ≥ 5, Claim 34 applies: the set I returned by Algorithm B is
an independent set of G of cardinality #I = |s| ≥ α(G)/b(|G| , |G| , |G|2). 2

4.2.2.2 Inapproximability of LCCS and LCUCS. To demonstrate
the difficulty to approximate LCCS and LCUCS, we exhibit a parameter and
approximation preserving reduction from 3-MISH. This reduction resembles
the one we used to obtain similar results for LCS and LCUS in Theorem 29.
This section is devoted to the proof of the following theorem.

Theorem 35 Let b be a mapping that maps N×N×N to the subset of reals
greater than or equal to 1.

(i). The problems LCCSD and LCUCSD are W[1]-hard when parameterized
in their acceptance threshold, k.

(ii). If either LCCS or LCUCS are approximable within bound
b (minx∈X |x| , σ(X), #X) then 3-MISH is approximable within bound
b(|H| , |H| , |H|3).

PROOF. The gadget is similar to the one of the proof of Theorem 29. Given
a 3-uniform hypergraph H on [1, |H|], we set xH,E :=

(([1, |H|] \ E)
x)2 E↑ [3] (([1, |H|] \ E)

x)2 E↑ [2] (([1, |H|] \ E)
x)2 E↑ [1]

for every hyperedge E ∈ E(H) and

XH := {xH,E}E∈E(H) ∪ {([1, |H|]
x)p}p∈[1,|H|3−#E(H)] .

The word [1, |H|]
x compels a conjugate of any common C-subsequence of XH

to be increasing. For any hyperedge E = {E↑ [1], E↑ [2], E↑ [3]} of H, xH,E

25

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

prevents any increasing common C-subsequence of XH to contain simultane-
ously E↑ [1], E↑ [2], and E↑ [3]. This yields Claim 39. We include the other

words in XH , the ([1, |H|]
x)p with p ∈

[
2, |H|3 −#E(H)

]
, to set the cardinal-

ity of XH to |H|3.

As for Theorem 29, we synthesize the useful properties of XH in five claims.

Claim 36 Given a 3-uniform hypergraph H on [1, |H|], the language XH can
be computed in polynomial time.

PROOF. Trivial. 2

Claim 37 One has minx∈XH
|x| = σ(XH) = |H| and #XH = |H|3.

PROOF. All words of XH are over alphabet [1, |H|] and the shortest word
of XH is [1, |H|]

x. Moreover,

#XH = #{xH,E}E∈E(H) + #{([1, |H|]
x)p}p∈[1,|H|3−#E(H)]

= #E(H) + |H|3 −#E(H)

= |H|3 .

Note that E(H) is of cardinality at most
(
|H|
3

)
= 1

6
|H| (|H| − 1)(|H| − 2) and

thus, less than |H|3. 2

Claim 38 For any independent set I of H, I↑ is a common C-subsequence
of XH of length #I.

PROOF. Since I is a subset of V(G) = [1, |H|], I↑ is a subsequence of
([1, |H|]

x)p for each p ∈ N \ {0}.

Let E ∈ E(H). Since I is an independent set of H, at least one of the three
vertices linked by E does not appear in I. W.l.o.g., let us assume E↑ [3] /∈ I.
Then, I↑ is a subsequence of the word

([1, |H|] \ E)
x E↑ [1] ([1, |H|] \ E)

x E↑ [2] ([1, |H|] \ E)
x

and thus, a C-subsequence of its conjugate

E↑ [2] (([1, |H|] \ E)
x)2 E↑ [1] ([1, |H|] \ E)

x ,

26

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

which is itself a subsequence of xH,E. Hence, I↑ is also a C-subsequence of xH,E,
and therefore, a common C-subsequence of XH . This completes the proof of
Claim 38. 2

Claim 39 Let s be a common C-subsequence of XH . The set of letters occur-
ring in s is an independent set of H of cardinality |s|.

PROOF. It exists a conjugate of s that is a subsequence of [1, |H|]
x. Let us

change s into this conjugate. We get that s is increasing and, thus, |s| distinct
letters occur in s.

Let E ∈ E(H). Since E↑ [1] < E↑ [2] < E↑ [3], the three vertices linked by E
never appear in increasing order in any conjugate of xH,E. Thus, at least one
of them is not occurring in s. Hence, we have shown that the set of letters
occurring in s is an independent set of H. 2

Claim 40 Let s be a common UC-subsequence of XH of length at least 11.
The set of letters occurring in s is an independent set of H of cardinality |s|.

PROOF. It exists either a conjugate of s or a conjugate of s̃ that is a subse-
quence of [1, |H|]

x. Hence, we can assume that s is a subsequence of [1, |H|]
x

and thus, is increasing.

Let E ∈ E(H). We know that s is a UC-subsequence of xH,E of at least 11
letters. Note that xH,E can be written as the concatenation of 9 increasing
words:

• twice ([1, |H|] \ E)
x,

• E↑ [3],
• twice ([1, |H|] \ E)

x,
• E↑ [2], and again
• twice ([1, |H|] \ E)

x followed by
• E↑ [1].

By Lemma 27-(ii), s is a C-subsequence of xH,E.

Hence, s is a common C-subsequence of XH and one can apply Claim 39 to
conclude the proof of Claim 40. 2

We now prove points (i) and (ii) of Theorem 35 from the preceding claims, in
the same way as we deduced points (i) and (ii) of Theorem 29 from claims 30,
31, 32, 33, and 34.

27

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(i). Let us show that LCCSD and LCUCSD are W[1]-hard for parameter k.

Consider the mapping R that, to any instance (H, k) of 3-MISHD, associates
the ordered pair R(H, k) := (XH , k).

• By claims 36, 38 and 39, R is a Karp-reduction from 3-MISHD to LCCSD.
• By claims 36, 38, and 40, R induces a Karp-reduction to LCUCSD from the

restriction of 3-MISHD to instances (H, k) satisfying k ≥ 11.

Hence, Theorem 18-(i) (applied with r := 3) ensures that LCCSD and
LCUCSD are W[1]-hard for parameter k.

(ii). Let us now prove that LCCS and LCUCS are at least as hard to ap-
proximate as 3-MISH.

Let A be an approximation algorithm with bound b (minx∈X |x| , σ(X), #X)
for LCCS or LCUCS.

Consider the following algorithm B. Let H be a 3-uniform hypergraph.

(1) Compute language XH .
(2) Run Algorithm A on XH to obtain a common UC-subsequence s of XH

of length at least:

lccs(XH)

b (minx∈XH
|x| , σ(XH), #XH)

.

(3) Return the set I of letters occurring in s.

Relying on claims 36, 37, 38 and 40, it is easy to prove that B is an approx-
imation algorithm with bound b(|G| , |G| , |G|3) for the restriction of 3-MISH
to hypergraphs H such that α(H) / b(|H| , |H| , |H|2) ≥ 11. Then, applying
Lemma 17 (with r := 3 and k0 := 11) yields the desired statement and con-
cludes the proof. 2

5 Conclusion

Our investigation provides the first hardness and approximability results con-
cerning LCS for cyclic and unoriented strings.

28

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5.1 Summary of our results

5.1.1 Parameterized complexity

Theorem 18-(i) shows that, for any r ∈ N \ {0, 1, 2}, r-MISHD is W[1]-hard
with respect to its acceptance threshold. Note that 2-MISHD is W[1]-complete
for this parameter [25].

Our results concerning the complexity of LCUSD, LCCSD and LCUCSD are
summarized in Table 2.

#X σ(X) k LCUSD / LCCSD / LCUCSD

– ≤ 2 – NP-complete (Theorem 14)

bounded – – Polynomial (Proposition 7)

parameter ≤ 2 – W[1]-hard (Theorem 14)

– parameter parameter F.P.T. (see Section 2.3.5.1)

– – parameter W[1]-hard (Theorems 29 / 35 / 35)

parameter – parameter Open

parameter parameter – W[t]-hard ∀t ≥ 1 (Theorem 14)
Table 2
Parameterized complexity of LCUS, LCCS and LCUCS.

5.1.2 Approximability

H̊astad has shown that 2-MISH is not approximable within bound |G|1−ε,
unless NP = ZPP [28]. Hence, Jiang and Li’s reduction from 2-MISH to LCS
ensures that LCS is hard to approximate within

max
{
min
x∈X

|x|1−ε , σ(X)1−ε, (#X)1−ε
}

[18] (see also Section 2.3.5.2).

Moreover, we deduce from Theorem 29-(ii), that LCUS is hard to approximate
within bound

max
{
min
x∈X

|x|1−ε , σ(X)1−ε, (#X)0.5−ε
}

.

On the other hand, Theorem 18-(ii) enables us to generalize H̊astad’s result:
for any r ∈ N\{0, 1}, r-MISH is hard to approximate within |H|1−ε. Hence, by
Theorem 35-(ii), LCCS and LCUCS are hard to approximate within bound

max
{
min
x∈X

|x|1−ε , σ(X)1−ε, (#X)1/3−ε
}

.

29

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5.2 Open questions

It is shown in [20] that LCSD is W[1]-complete for parameter (#X, k), but
the complexity of LCUS, LCCS and LCUCS for this parameter is unknown.

The problem 2-MISH gave rise to numerous publications, some of which are
referenced in here, but fewer works concern MISH and r-MISH with r ∈
N\{0, 1, 2}. Specifically, both the existence of a t ∈ N\{0} such that 3-MISHD

parameterized in its acceptance threshold k belongs to W[t], and the existence
of an approximation algorithm for 3-MISH with bound o(|H| / log |H|) are
open.

• The existence of a positive real constant δ, such that one problem among
LCS, LCUS, LCCS or LCUCS is approximable within bound (#X)δ is open.

• For any σ ∈ N, we demonstrated (Proposition 23) that the problems LCS,
LCUS, LCCS and LCUCS restricted to instances for which σ(X) ≤ σ admit
an approximation algorithm with bound σ, but the existence of a Polynomial
Time Approximation Scheme requires further studies.

References

[1] D. Sankoff, J. B. Kruskal (Eds.), Time Warps, String Edits and Macromolecules:
the Theory and Practice of Sequence Comparison, 2nd Edition, CSLI
Publications, 1999.

[2] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Computer Science
and Computational Biology, Cambridge University Press, 1997.

[3] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular
Biology of the Cell, Garland, New York, 1983.

[4] M. D. Adams, J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Polymeropoulos,
H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F. Moreno, et al., Complementary
DNA sequencing: expressed sequence tags and human genome project, Science
252 (5013) (1991) 1651–1656.

[5] H. Bunke, U. Buehler, Applications of approximate string matching to 2D shape
recognition, Pattern Recognition 26 (12) (1993) 1797–1812.

[6] G. Peris, A. Marzal, Fast cyclic edit distance computation with weighted edit
costs in classification, in: Proceedings of the 16th International Conference on
Pattern Recognition (ICPR’02), Vol. IV, IEEE Computer Society, 2002, pp.
184–187.

30

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[7] A. Marzal, G. Peris, Normalized cyclic edit distances: An efficient algorithm,
in: Proceedings of the 10th Conferencia de la Asociación Española Para la
Inteligencia Artificial (CAEPIA’03), Vol. 3040 of Lecture Notes in Computer
Science, Springer-Verlag, 2004, pp. 435–444.

[8] D. S. Hirschberg, Algorithms for the longest common subsequence problem,
Journal of the Association for Computing Machinery 24 (4) (1977) 664–675.

[9] W. J. Masek, M. S. Paterson, A faster algorithm computing string edit
distances, Journal of Computer and System Sciences 20 (1) (1980) 18–31.

[10] E. W. Myers, An O(nd) difference algorithm and its variations, Algorithmica
1 (2) (1986) 251–266.

[11] M. Crochemore, G. M. Landau, M. Ziv-Ukelson, A subquadratic sequence
alignment algorithm for unrestricted scoring matrices, SIAM Journal on
Computing 32 (6) (2003) 1654–1673.

[12] M. Maes, On a cyclic string-to-string correction problem, Information
Processing Letters 35 (2) (1990) 73–78.

[13] J. P. Schmidt, All highest scoring paths in weighted grid graphs and its
application to finding all approximate repeats in strings, SIAM Journal on
Computing 27 (4) (1998) 972–992.

[14] G. M. Landau, E. W. Myers, J. P. Schmidt, Incremental string comparison,
SIAM Journal on Computing 27 (2) (1998) 557–582.

[15] S. Y. Itoga, The string merging problem, BIT Numerical Mathematics 21 (1)
(1981) 20–30.

[16] D. Maier, The complexity of some problems on subsequences and
supersequences, Journal of the Association for Computing Machinery 25 (2)
(1978) 322–336.

[17] K. Pietrzak, On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems, Journal of
Computer and System Sciences 67 (4) (2003) 757–771.

[18] T. Jiang, M. Li, On the approximation of shortest common supersequences
and longest common subsequences, SIAM Journal on Computing 24 (5) (1995)
1122–1139.

[19] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, H. T.
Wareham, Parameterized complexity analysis in computational biology,
Computer Applications in the Biosciences (CABIOS) 11 (1) (1995) 49–57.

[20] H. L. Bodlaender, R. G. Downey, M. R. Fellows, H. T. Wareham, The
parameterized complexity of sequence alignment and consensus, Theoretical
Computer Science 147 (1–2) (1995) 31–54.

[21] K.-J. Räihä, E. Ukkonen, The shortest common supersequence problem over
binary alphabet is NP-complete, Theoretical Computer Science 16 (2) (1981)
187–198.

31

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[22] V. G. Timkovskii, Complexity of common subsequence and supersequence
problems and related problems, Cybernetics 25 (1990) 565–580.

[23] M. Middendorf, More on the complexity of common superstring and
supersequence problems, Theoretical Computer Science 125 (2) (1994) 205–228.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 2nd Edition, The MIT Press and McGraw-Hill Book Company,
2001.

[25] R. G. Downey, M. R. Fellows, Parameterized Complexity, Monographs in
Computer Science, Springer, 1999.

[26] M. M. Halldòrsson, Approximations of weighted independent set and hereditary
subset problems, Journal of Graph Algorithms and Applications 4 (1) (2000)
1–16.

[27] R. Boppana, M. M. Halldòrsson, Approximating maximum independent sets by
excluding subgraphs, BIT Numerical Mathematics 32 (2) (1992) 180–196.

[28] J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathematica 182
(1999) 105–142.

[29] L. Engebretsen, J. Holmerin, Towards optimal lower bounds for clique and
chromatic number, Theoretical Computer Science 299 (1–3) (2003) 537–584.

[30] M. Lothaire (Ed.), Combinatorics on Words, 2nd Edition, Cambridge
Mathematical Library, Cambridge University Press, 1997.

[31] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
M. Protasi, Complexity and Approximation, 2nd Edition, Springer-Verlag,
2003.

[32] M. Krivelevich, B. Sudakov, Approximate coloring of uniform hypergraphs,
Journal of Algorithms 49 (1) (2003) 2–12.

32

