
HAL Id: lirmm-00120400
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00120400v1

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating the Building of Software Component
Architectures

Nicolas Desnos, Christelle Urtado, Sylvain Vauttier, Marianne Huchard

To cite this version:
Nicolas Desnos, Christelle Urtado, Sylvain Vauttier, Marianne Huchard. Automating the Building
of Software Component Architectures. EWSA: European Workshop on Software Architectures, Sep
2006, Nantes, France. pp.228-235, �10.1007/11966104_18�. �lirmm-00120400�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00120400v1
https://hal.archives-ouvertes.fr


Automating the Building of Software
Component Architectures

Nicolas Desnos1, Sylvain Vauttier1, Christelle Urtado1, and Marianne Huchard2

1 LGI2P / Ecole des Mines d’Alès - Parc scientifique G. Besse - 30 035 Nı̂mes, France
{Nicolas.Desnos, Sylvain.Vauttier, Christelle.Urtado}@site-eerie.ema.fr

2 LIRMM - UMR 5506 - CNRS and Univ. Montpellier 2
34 392 Montpellier cedex 05, France - huchard@lirmm.fr

Abstract. Assembling software components into an architecture is a
difficult task because of its combinatorial complexity. There is thus a
need for automating this building process, either to assist architects at
design time or to manage the self-assembly of components at runtime.
This paper proposes an automatic architecture building process that uses
ports, and more precisely composite ports, to manage the connection of
components. Our solution extends the Fractal component model. It has
been implemented and experiments have been run to verify its good time
performance, thanks to several optimization heuristics and strategies.

1 Introduction and Motivation

Software engineering aims at optimizing the cost of design and maintenance while
preserving both the quality and reliability of the produced software. Component-
based development techniques try to enhance reuse [1–3]. The design process of
an application is led by an architect and decomposes into three steps: he selects
components, defines an architecture by assembling them3 and then uses a tool to
control the consistency of the assembly to determine if the assembled components
are compatible. Components are generally described as a set of interfaces that
define what a component can provide and must require. Component assemblies
are then built by connecting component interfaces together [4–8].

Most existing works do not provide architects with any guidance during the
selection and assembly steps. They rather focus on checking the validity of a
previously built architecture [6, 9–12]. The consistency check techniques cannot
be used in an iterative building process because of the combinatorial complexity
[13]. To guide the architect, we propose an efficient approach to automatically
build potentially valid architectures. It produces a reduced set of preselected
component assemblies on which it is relevant to perform checks to find valid
architectures. It relies on the use of ports, and more precisely of composite ports,
to describe known usages of components. A construction algorithm has been
successfully implemented and experimented in the Fractal component model [7].
3 In these works, we will consider that the selected components need no adaptation

(or might have already been adapted).



The remainder of this paper is organized as follows. Section 2 discusses the
issues raised by the building of valid architectures and introduces a component
model which features primitive and composite ports. Section 3 describes a ba-
sic algorithm to automatically build architectures along with its optimizations.
Section 4 concludes and draws perspectives.

2 Building Valid Architectures

2.1 An Augmented Component Model to Ease Construction

Not to start from scratch, we choose to extend an existing component model
named Fractal [7]4. Classically, a Fractal component is described as a black box
that defines the services the component provides and requires through server
and client interfaces and a content (called the architecture) that allows a
component to be recursively described. Fractal components are assembled into
architectures by connecting client interfaces to server interfaces. This allows
components to collaborate by exchanging messages along these connections.

The Fractal model is first extended with ports. As in UML2 [4], ports are used
to group together the client and server interfaces that are used by a component
in a given collaboration. Ports are thus used to specify various usage contexts for
components. We define two kinds of ports. Primitive ports are composed of in-
terfaces, as in many other component models [4, 6, 10, 12, 14]. Composite ports
are composed of other ports. Composite ports are introduced to structurally rep-
resent complex collaborations. Figure 1 shows an architecture where ATM is an
example of component, Question one of its provided interfaces, Transaction one
of its required interfaces and Money Withdraw its composite port which is com-
posed of the two Money Dialogue and Money Transaction primitive ports. Two
primitive ports are connected together when all the interfaces of the first port are
connected to interfaces of the second port (and reciprocally). A composite port is
connected when all the primitive ports it is composed of (directly or indirectly)
are connected. Component architectures can then be built by connecting together
component ports (what entails interface connections). Next section details how
ports, and more precisely composite ports, make the building of architectures
easier.

2.2 Validity of an Architecture

An architecture is said to be valid if it is both correct and complete.

Correctness. Stating the correctness of an architecture relies on techniques
that verify the coherence of connections, to check whether they correspond to

4 We choose Fractal mainly because it is a hierarchical composition model that sup-
ports component sharing, its structure is simple but extensible and respects the
separation of concerns principle and an open-source implementation exists.



possible collaborations between the linked components. These verifications use
various kinds of meta-information (types, protocols, assertions, etc.) associated
with various structures (interfaces, contracts, ports, etc.).

A first level of correctness, called syntactic correctness, can be verified by
comparing the types of the connected interfaces [5, 7]. This ensures that com-
ponents can ”interact” because the signatures of the functionalities to be called
through the required interface match the signatures of the functionalities of
the provided interface. A second level of correctness, called semantic correct-
ness [15, 9], can then be verified to determine if the connected components can
”collaborate” i.e. exchange sequences of messages that are coherent with each
other’s behavior. Semantic verifications require that protocols – valid sequences
of messages – be defined. The semantic correctness of the connection between
two ports is handled as a classic comparison of their associated protocols. This
is a time-consuming process because of the highly combinatorial complexity of
the algorithms used to compare all the possible message sequences [13].

Completeness. A component architecture is built to achieve some functional
objectives [1, 15, 16]. Functional objectives are defined as a set of functionalities
to be executed on selected components. The set of connections in the architecture
must be sufficient to allow the execution of collaborations that reach (include)
all the functional objectives. Such an architecture is said to be complete.

Starting from a set of components corresponding to the functional objectives,
a naive algorithm can be to try to build an architecture where all the interfaces
of all the components are connected, so that all the execution scenarios may be
executed. When no solution exists in the current architecture to connect an inter-
face, the repository is searched for a component that has a compatible interface.
If one exists, it is added to the architecture and the interfaces are connected.
If several connections are possible, they represent alternative building paths to
be explored. In case a dead end is reached, the construction is backtracked to
a previous configuration, in order to try alternative connection combinations.
The problem with this building process is the size of the solution space to be
explored. It is amplified by the cost of the semantic verifications that must be
calculated for any candidate connection between two components. Therefore, the
automatic construction of valid architectures still is an open problem. We then
have studied different ways to reduce the complexity of the building process.

3 Taming the Complexity of Automation

3.1 Using Composite Ports to Connect Components

To reduce the complexity, the building process can try to connect only the inter-
faces that are useful to reach the functional objectives. However, the proper use
of a functionality of a component is not independent from other functionalities.
The behavior protocol of a component specifies the different valid execution
scenarios where a functionality is called. The execution of a scenario requires



the connection of all the interfaces that it uses: regarding the scenario, these
interfaces are said to be dependent. Thus, a given functional objective can
be reached only when precise sets of (dependent) interfaces, corresponding to
valid scenarios, are connected. An analysis of the behavior protocol of a com-
ponent could be used to determine those scenarios but a means is required to
capture and to express this information in an explicit and simple way, in order to
ease the connection process. Ports are introduced as a kind of structural meta-
information, complementary to interfaces, that group together the interfaces of
a component corresponding to a given valid scenario. Ports could be produced
automatically, by the analysis of behavior protocols or be manually added by
the designer in order to document a given usage of the component.

Port connections make the building process more abstract (port-to-port con-
nections) and more efficient (no useless connections). Considering a port that
needs to be connected, the availability of a compatible port is an important is-
sue. The more numerous interfaces are in a given port, the more specific the port
type is and the less chances exist to find compatible ports. Composite ports are
used to solve this issue: they allow short scenarios, composed of few interfaces,
to be described as small primitive ports that are then composed together to de-
scribe more complex scenarios. Large flat primitive ports can then be replaced by
small primitive ports hierarchically structured into larger composite ports. The
result is that smaller ports are less specialized and thus provide more connection
possibilities. From a different point of view, a primitive port can be considered
as the expression of a constraint to connect a set of interfaces both at the same
time and to a unique component. A composite port is the expression of a con-
straint to connect a set of interfaces at the same time but possibly to different
components. As they relax constraints, composite ports increase the amount of
possible connection combinations. Moreover, composite ports provide a means
to precisely specify how interfaces must be connected: to a unique component –
for functionality calls to produce cumulative effects – or to distinct components.

3.2 Building Quasi-valid Architectures

Semantic verifications are very expensive. Our approach keeps semantic verifi-
cations separated from the building process so as not to waste time verifying
the semantics of connections as long as the completeness of the architecture
cannot be guaranteed. To achieve this, a quasi-valid architecture is first built.
A quasi-valid architecture is a syntactically correct and complete architecture.
The connection of a port enforces the completeness of an architecture, regarding
the execution of a scenario. Once all the ports corresponding to the functional
objectives are connected, an architecture is quasi-valid. Quasi-validity is a pre-
condition for an architecture to be valid.

We wrote an algorithm that automatically builds quasi-valid architectures.
The building process uses a set containing the ports that still have to be con-
nected – the functional objective set (FO-set). The FO-set contains only primi-
tive ports: composite ports are systematically decomposed into the set of prim-
itive ports they are directly or indirectly composed of. The FO-set is initialized



with the ports that correspond to the functional objectives. One of the primitive
ports is picked up from the FO-set and a compatible port is searched for. If a
compatible unconnected port is found, the ports are connected together. If the
compatible port belongs to a component that does not yet belong to the archi-
tecture, the component is added to the architecture. If the chosen compatible
port belongs to a composite port, all the other primitive ports that composed
the composite port are added to the FO-set. This way, no port dependencies
– and therefore no interface dependencies – are left unsatisfied. The building
process is iterated until the FO-set is empty. All the initial primitive ports that
represent functional objectives are then connected along with all ports they are
recursively dependent upon: the resulting architecture is quasi-valid.

Figure 1 shows the example of an architecture built by our algorithm. It
starts with a FO-set that contains the Money Withdraw primitive port of the
Client component. This port is taken out of the FO-set and a connection is
searched for. It is connected to the compatible Money Dialogue primitive port
of the ATM component. As this latter port belongs to the Money Withdraw com-
posite port, it depends on the Money Transaction primitive port which is thus
added to the FO-set before the building process iterates. The Money Transaction
primitive port of the ATM component is now considered for connection. It is
compatible with the Money Transaction primitive port of the Bank component
which belongs to the composite port Money Withdraw. After connection, the
other primitive port of this composite port, Request Data, is in turn added to
the FO-set. At the next iteration, the Request Data primitive port of the Bank
component is connected with the compatible primitive port Provide Data of the
Database component. As this primitive port does not belong to a composite port,
no primitive port is to be added to the FO-set. The FO-set is now empty: the
architecture of Fig.1 is quasi-valid.

Fig. 1. A quasi-valid architecture built with the support of composite ports



Several special situations can occur during this process. When several free
compatible ports are candidate for connection, they correspond to alternate so-
lutions that are to be explored. Conversely, when no free compatible port is
found the building algorithm has reached a dead end. The construction is then
backtracked to a previous situation where unexplored connection possibilities ex-
ist. Our algorithm is implemented as the searching of a construction tree using a
depth-first policy. Breadth search is used to explore all the alternate construction
paths. This complete exploration of the construction tree is used to guarantee
that any possible solution is always found.

3.3 Strategies, Heuristics and Experiments

The performance of the building algorithm has been measured. For this purpose,
we have implemented a small environment that generates random component
sets which provide different building contexts, in size and complexity. Once a
component set is generated, an arbitrary number of ports can be chosen as
functional objectives and the building algorithm be launched. Our experiments
show that the combinatorial complexity of the building process is very high. To
be able to use our approach in demanding situations, such as the deployment
and configuration of components at runtime, we have studied various heuristics
that speed up the building process.

Building Minimal Architectures. A first strategy is to try to find not all
the possible architectures but only the most interesting ones. Minimality is an
interesting metrics for the quality of an architecture [17]. We apply this minimal-
ity criterion to the number of connection. Less connections entail less semantic
verifications, less interactions and therefore less conflict risks. Less connections
also entail more evolution capabilities (free ports). To efficiently search for min-
imal architectures, we have added a branch-and-bound strategy to our building
algorithm. The bound is the maximum number of connections allowed for the
construction of the architecture. When this maximum is reached when exploring
a branch of the construction tree, the rest of the branch can be discarded as any
new solution will be less optimal than the previously found (pruning).

Min Domain Heuristic. This heuristic is used to efficiently choose ports from
the FO-set. The port for which a minimum of free compatible ports exists is
chosen first. This minimizes the effort to try all the connection possibilities:
in case of repeated failures, this allows impossible constructions to be detected
sooner.

Minimum Effort Heuristic. In the branch-and-bound strategy, every time
the bound is lowered, the traversal of the tree is speeded up. To connect a
primitive port, the algorithm first chooses the free compatible primitive port
that belongs to the ”smallest” composite port. It corresponds to the choice of
the less dependent ports, that minimize future efforts to connect them.



No New Dependency Heuristic. When a compatible port can be found in
the FO-set its connection will add no new dependency, and furthermore, satisfy
two dependencies at once. Indeed, when a port belongs to the FO-set, the other
primitive ports it depends on are already in the FO-set.

Look-ahead Strategy. Calculi can be used to predict if the traversal of the
current construction branch can lead to a minimal solution. They are based on
an estimate of the minimum number of connections required to complete the
building. A soon as the sum of the existing connections with this estimate is
greater than the bound, the current branch can be pruned. A simple example of
this estimate is the number of ports in the FO-set divided by two.

Experimental Results: an Outline. Experiments show that performance
mainly depends on the number of initial functional objectives. This is logical
since more functional objectives implies not only a larger search space but also
more constraints, thus more failures and backtracks. For example, series of exper-
iments have been run with a library of 38 generated components. Each compo-
nent had at most 4 primitive ports and at most 2 composite ports. Each primitive
port had at most 5 interfaces. Starting with 5 initial functional objectives, the
following typical results are obtained. A basic construction algorithm, imple-
mented in Java and executed on a standard computer, without any of the above
optimizations, is able to find 325 000 quasi-valid architectures, when stopped
after 15 hours. This gives an idea of the gigantic size of the search space. Among
those quasi-valid architectures, the largest ones are composed of 48 connections.
The smallest architecture found is composed of 18 connections. As a compari-
son, the optimized construction algorithm finds the only minimal architecture
composed of 7 connections in less than a second. This motivates our proposal for
an efficient building approach. It is difficult to build quasi-valid architectures,
because the more frequent ones are rather large (around 40 connections in the
above example). It is even more difficult to build minimal ones, because they are
scarce in a large search space.

4 Conclusion and Perspectives

While other works focus on the validation of complete architectures, our work
studies the building process of architectures and proposes a practical solution
to automate it. It enables the candidate architectures, on which validation al-
gorithms are to be applied, to be systematically searched for. Besides the many
optimization strategies and heuristics used for the traversal of the construction
space, the use of ports, and particularly of composite ports, is prominent in our
approach. As they express the dependencies that exist between interfaces, ports
provide a simple means to evaluate the completeness of an architecture. Finally,
being composed of interfaces, they provide means to abstract the many con-
nections of interfaces to single connections and thus reducing the combinatorial
complexity of the building.



A perspective for this work is to integrate it to a component-based develop-
ment framework, for example as part of a trading service, to provide a means to
manage the self-assembling of components in open, dynamic systems (autonomic
computing).

References

1. Crnkovic, I.: Component-based software engineering - new challenges in software
development. Software Focus (2001)

2. Garlan, D.: Software Architecture: a Roadmap. In: The Future of Software Engi-
neering. ACM Press (2000) 91–101

3. Brown, A.W., Wallnau, K.C.: The current state of CBSE. IEEE Software 15(5)
(1998) 37–46

4. OMG: Unified modeling language: Superstructure, version 2.0 (2002)
http://www.omg.org/uml/.

5. OMG: Corba components, version 3.0, http://www.omg.org/docs/formal/02-06-
65.pdf (2002)

6. Traverson, B.: Abstract model of contract-based component assembly (2003) AC-
CORD RNTL project number 4 deliverable (in french).

7. Bruneton, E., Coupaye, T., Stefani, J.: Fractal specification - v 2.0.3 (2004)
http://fractal.objectweb.org/specification/index.html.

8. Plásil, F., Balek, D., Janecek, R.: SOFA/DCUP: Architecture for component trad-
ing and dynamic updating. In: Proceedings of the Int. Conf. on Configurable Dis-
tributed Systems, Washington, DC, USA, IEEE Computer Society (1998) 43–52

9. Plásil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.
Softw. Eng. 28(11) (2002) 1056–1076

10. Hacklinger, F.: Java/A - Taking Components into Java. In: IASSE. (2004) 163–168
11. Faŕıas, A., Sudholt, M.: On components with explicit protocols satisfying a notion

of correctness by construction. In Meersman, R., Tari, Z., et al., eds.: On the Move
to Meaningful Internet Systems: Int. Conf. CoopIS, DOA, and ODBASE Proc.
Volume 2519 of LNCS., Springer (2002) 995–1012

12. de Boer, F.S., Jacob, J.F., Bonsangue, M.M.: The OMEGA component model.
Deliverable of the IST-2001-33522 OMEGA project (2002)

13. Inverardi, P., Wolf, A.L., Yankelevich, D.: Static checking of system behaviors
using derived component assumptions. ACM Trans. Softw. Eng. Methodol. 9(3)
(2000) 239–272

14. Aldrich, J., Chambers, C., Notkin, D.: Archjava: connecting software architecture
to implementation. In: Proceedings of ICSE, Orlando, Florida, USA, ACM Press
(2002) 187–197

15. Dijkman, R.M., Almeida, J.P.A., Quartel, D.A.: Verifying the correctness of
component-based applications that support business processes. In Crnkovic, I.,
Schmidt, H., Stafford, J., Wallnau, K., eds.: Proc. of the 6th Workshop on CBSE:
Automated Reasoning and Prediction, Portland, Oregon, USA (2003) 43–48

16. Inverardi, P., Tivoli, M.: Software Architecture for Correct Components Assembly.
In: Formal Methods for the Design of Computer, Communication and Software
Systems: Software Architecture. Volume 2804 of LNCS. Springer (2003) 92–121

17. Cechich, A., Piattini, M., Vallecillo, A., eds.: Component-Based Software Quality:
Methods and Techniques. Volume 2693 of LNCS. Springer (2003)

View publication statsView publication stats

https://www.researchgate.net/publication/221105849

