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Abstract

Emergence is usually the way in which a collective or-
ganisation behaves differently than the sum of its elements.
We propose here an overview of different ways this paradgm
is used in several fields of Artificial Intelligence and we pro-
pose some theoretical tracks relying on some works in thye
field of Machine Learning.

1 Introduction

Emergence is usually used to denote a collective phe-
nomenon in which the whole organization behaves differ-
ently than the sum of its elements. We shall in this paper
present an overview of different ways this paradigm is used
in Artificial Intelligence. Then, we give some theoretical
tracks. The early attempts of philosophers to propose a the-
ory of emergence lead to point out 3 propositions [8]:

1. that there are levels of existence defined in terms of
degrees of integration;

2. that there are marks which distinguish these levels
from one another over and above the degrees of inte-
gration;

3. that it is impossible to deduce the marks of a higher
level from those of a lower level, and perhaps also
(though this is not clear) impossible to deduce marks
of a lower level from those of a higher.

Emergence, as it appears in the previous proposed defini-
tions, underlies several levels. Between these levels, a fixed
point appears, called autopoiesis [10], in which the upper
level appears from the lower one, but this upper level has a
causal link to the lower one. Examples of such a behaviour
can be found in simulations of termites or ants, or also in
problem solving with ants.

2 Emergence in nature
2.1 A small example

As a first example, let us look at the artificial termites be-
haviour, as simulated in Starlogo I The interest of this sim-

Figure 1. The termites simulation in Starlogo

ulation is first that it is based on very simple agents, and sec-
ond that it exhibits a significant collective behaviour. The
environment is a flat black landscape with yellow pieces of
wood on the ground. Each agent, called a termite, moves
randomly in the environment, as long as there is nothing on
the ground (black points). When there is a piece of wood
on the ground (yellow points), two cases are possible:

o the agent holds nothing : it takes the piece of wood and
continue walking randomly with the piece of wood

e it holds a piece of wood: it looks for a free (black)
place around to put the piece of wood.

The pieces of wood are first randomly distributed, like in
the left part of figure 1. If we wait for enough time, all the
pieces of wood will be connected, and make what we call a
pile: such an almost final state is shown on th right of the
figure.

'Open simulation platform available at

http://education.mit.edu/starlogo/



Let us now explain why this happens. A new pile nec-
essarily results from the division of an existing one, it can
never start from scratch because of the last rule. Such a di-
vision is less probable as the size of the pile increase. Then,
the number of piles decrease over time. As it is finite and
at least one, then it is one after a finite time. There is no
“protection” of existing piles, otherwise it would lead to a
lot of small piles instead of a single big one.

The concept of pile is necessary for this explanation, and
the resulting the causal model involves it as central. Then,
this concept appeared from the observation and has a causal
relation with the pieces of wood. This top-down causal in-
fluence is characteristic of emergence.

2.2 Swarm Intelligence

There are a lot of examples of Swarm Intelligence in na-
ture, the most famous of whch is certainly the way ants be-
have to find food. The usual features which are considered
to be characteristic of this kind of collective intelligence are:

e multiple autonomous agents rather than a single agent

e involve local sensing and actions rather than global
ones

e the control is distributed rather than centralized

o simple rules define the individual behaviour instead of
complex ones

e the organization is bottom up rather than top down

e the system behaviour is emergent rather than pre-
programmed

These characterisctic properties can be illustrated on the ex-
ample of ants, starting with the famous experiment of the
binary bridge. In this experiment, a group of ants generally
find the shortest path from a nest to a food source and back.
This is accomplished by communicating with each other not
directly, but through the environment using pheromones.
Such a way in which the work already done drives the work
to be done is called stigmergy.

Initially at the choice point between two paths, an ant
makes a random decision with a probability of .5 of turn-
ing either left or right. Two ants leave nest by different
paths, two get food and return to nest by different paths
Once ant on shortest path returns, there is almost twice as
much pheromone on that path near the nest. As other ants
follow the shorter path, the pheromone trail is reinforced
causing a positive feedback effect. As less ants follow the
longer path, the pheromone dissipates and still fewer ants
take that path producing a negative pheromone effect.

Another key feature of ant colonies is their ability to
adapt “spontaneously” to changes in the environment. For

Figure 2. The binary bridge experiment

instance, when a stone falls in the middle of a straight path
built by an ant colony, the ants find the shortest way to by-
pass the obstacle, precisely by applying the previous be-
haviour.

If we try to generalize these experiments, we obtain three
key aspects:

e Positive Feedback (auto catalytic)

e The pheromone track is stronger (faster rebuilt) on the
shortest path

e Every ant walks approximately at the same speed

3 Application to combinatorial problems

Let us look now at the way such principles can be applied
to combinatorial problems.

3.1 Ant algorithms

A large amount of work has been driven on the family of
Ant Algorithms, both experimental [2] and theoretical [1].
We can illustrate these aspects on a simple combinatorial
problem, illustrated on figure 3.

In their theoretical survey, Dorigo and Blum pointed out
that, while there are a lot of results about what can be done
with these methods, the proofs do no say anything about the
time required to find a solution.

Then, Frank Neuman and Carsten Witt [7] propose to
apply to compare ACO algorithms to evolutionary compu-



Figure 3. The construction of the graph for 1-
ANT on the ONEMAX problem

tation for simple problems such as ONE-MAX, in order to
obtain results on convergence speed.

This problem is to find a maximum for the pseudo-
Boolean function f : {0,1}"™ — R. The Ant algorithm, on
this simple problem, consist for each ant to choose among
the 2 possible paths at each node. Then, pheromone is up-
dated according to an evaporation factor p, which is very
important, as if it disappears, then the ants will continue to
walk at random.

The way the pheromone track is updated is:

e for used edges 7(e) := Min{%, 213,

(=p)re) 11

o for unused edges 7(e) := Max{ 57, 5.2

We can see that, if p = 0, then the values of 7(e) remains
the same, and the ants continue to choose at random. Then
p appears to have here a similar role to that of cossover op-
erator in evolutionary algorithms. The convergence results
are therefor very similar.

3.2 Emergent Algorithms

These algorithms [3] are based on local and decentral-
ized computing. In the example of routing problem, such
an algorithm guarantees a strict increasing of the similar-
ity (common bits) between current address and destination.
Each agent has a local routing table whose size is loga(N),
where N is the number of bits in the agent’s address. The
row ¢ of this table contains the path from the agent’s address
to an address (preferably, but not necessarily, the nearest)
which has the same : left bits.

For any current node address c, the following algorithm
is applied, given a destination address, d and a path
P =DP1,P2,---Pn’

If (¢ = d) then done

else if (n > 0) then

Route d and the path ps, ps3, ..p,, to ¢’s immediate neighbor
P1-

else if (n = 0) then

Let j = number of leftmost bits in common between d and
c.

Let p = the path in the (5 + 1)** entry in ¢’s routing table;

Route d and the path ps, ps3, ..p,, to ¢’s immediate neighbor
p1.

We can see easily that this algorithm guarantees a strict
increasing of the similarity (common bits) between current
address and destination

In the domaine Graph Coloring there is also a classical
local heuristic where each node take the smallest color not
taken by any of its neighbours. It usually leads to a good
solution. In Graph Coloring with Ants, pieces of good so-
lutions are assembled to produce the final one.

3.3 Emerging mind

In terms of memory organisation: towards emergent
memory A.L. models conscious knowledge and reasoning.
The unconscious knowledge is emergent

e at the micro level (psychology)
e at the macro level (economy)

In Multi-agent systems, it corresponds to the collective be-
havior.

About the emerging mind of the machine, John Cameron
Glasgow [4] pointed out that ” any implementation of hu-
manlike intelligence in a machine will have to include lower
levels, and that the mechanism of that implementation will
have to be emergence rather than construction.”

In a recent work, we studied a language abnd system,
Uniscript [6], designed for storing situated (time and space)
facts and events. A concept of surprise appeared, when an
event leads to a deep reorganization of the memory.

4 Machine Learning and Theory of Emer-
gence

We pointed out in the beginning of this paper the causal
relation betwen the emergent upper level and the lower one.
This suggests a glance at the Machine Learning mecha-
nisms which have in common the fact that what is learned
has a causal relation to the examples, as it is supposed to be
a generalization.

4.1 Possible Worlds Semantics

This Semantics starts from a language L, a set of worlds
W and a binary relation R C W x W.

The language L is supposed to be made of atomic for-
mula, and the 2 operators — and —. The set W of possi-
ble worlds with the R relation is usually called the frame
F = (W, R). The R relation is called the accessibility one
or the influence one. It can be interpreted as the fact that
the worlds are similar, for instance, or that an action exists



to go from one world to the other, or that one world follows
the other (in the temporal sense, for instance).

In this framework, a model M is a triple (L, F,V)
where:

e 1 is a mapping of the formula in L onto the subsets of
W,V :Lw—2W,

e V(f—9)=V(9UV(f)

In the multiagent case, we have one relation for each
agent, and we define a new operator in L: ¢(J, «), which
means “Agent J believes that o”. The usual definition of
such a belief is: s € V(e(J, a)) iff V¢; sRt, t € V(a).

Such a belief can have various interpretations, such as
the knowledge that any action of J makes « true, or that, in
the future, o will always be true, or, in operational context,
that when the program J end, « is true, or that « can be
prooved by J, for instance.

The necessitation rule, which says that when something
is true, then it is necessary (or believed) can be stated as
follows: V(a) C V(e(J,a)). As we shall see later, this
rule is not desirable in multiagent systems.

Goldblatt’s theorem prooves the equivalence of 14 possi-
ble properties of the R relation and 14 possible tautologies
(true in any interpreation) of the corresponding logics [5].

Among them, we are interested in (K), (T) and (U),
then in (4), (D), (5), and (D.). In fact, (K) is derived from
the definitions and does not require any property of the R
relation.

For instance, an agent following (7°) only believes what
is true, while (U) leads to a “confident” agent: it believes
that what it believes is true, ¢(J, ¢(J, a) — «).

4.2 Machine Learning

Some particular cases of R relation are interesting as a
framework for Machine Learning:

e If R is empty, the corresponding agent is called a
Probe. Such an agent believes everything and the op-
posite, because all Goldblatt’s tautologies are true but
(T') and (D).

e If R is full, all tautologies but (D, hold, and the corre-
sponding agent is called a Master.

e If R is reduced to the loops, then each world accesses
itself, and all tautologies are true. Moreover, such an
agent follows the necessity rule. Then all what such
an agent believes is true, and conversely. It is called
an Oracle, and its role in Learning is to provide the
examples.

An Apprentice is an agent able to learn a formulae (3 from
a given set E of examples of a concept to find, say v. We
suppose that E C V(y) C W.

For a formulae (§ learned by our apprentice, we define
R == V(8) x (ENV(6)).

An agent A with this accessibility relation checks
(U),(4),(5), and we have V(5) C V(c(4,7)), then
¢(A, 8 — =) is a tautology. This is close to a what is ex-
pected from an apprentice.

In the general case, we have both positive and negative
examples, given as 2 sets £ and £~. We suppose now
that EY CV(y) CWand E- CV(y) CW.

Our apprentice has learned a formulae 3 and we build

(8) x (B~ NnV(3))

The minimal required properties for IZ3 not to be empty
isthat EYNV(B) # 0 and E- NV(B) # 0, that is, 3 must
be true for at least one positive example and false for at least
one negative example. This is a reasonable assumption.

As V(B) UV(B) = W, the Rg relation is serial, then
the belief of our apprentice has no contradiction (the (D)
tautology).

Ry = V(8) x (E* NV(8)U

4.3 A learning scheme without counter
examples

Some learning problems have intrinsically no negative
examples. For instance, the prediction of earthquake prone
area can only be done by taking as examples the places
where an earthquake already occured. Similarly, undesir-
able web sites (for children) can be learned using examples
of bad sites.

More recently, we investigate a way to learn models for
constraint programming [9], starting from examples of past
solutions. For a timetable problem, for instance, we take
the solutions of past years, and look for regular patterns to
learn a good viewpoint (variables and domains) to state the
constraints of the problem.

In such a case, we can state our learning problem as a
family of classical learning problems. For each attribute de-
scribing the examples, we split the set into positive exam-
ples (the attribute is true) and negative examples (it is false).
Then, we learn to predict this attribute from the others.

A suitable property for such a generalisation operator G
is G(G(X)) = G(X) for a set of examples X.

5 Conclusion

We have proposed a description of learning mechanisms
in such a way that they can lead to a theory of emergence, by
building a visibility relationship between possible worlds.

Then, learning without counterexamples appear as a
good candidate for a formalization of Emergence. We con-
tinue to inverstigate this direction and try to make links with
boolean networks.



Appendix We remind here the correspondance defined by
Goldblatt’s theorem, for the properties we are interested in.
For the others, the reader can refer to Goldblatt’s report [5].

The (K) axiom (distribution rule) holds for any relation

R:
C(aivf - g) - (c(a‘ivf) - c(a’ivg))

Property of the relation Tautology
Reflexive knowledge (T)
Vs(sR;s) clag, ) — f
Weakly reflexive confidence (U)
Vs(tR;s = sR;s) clag, clag, f) — f)
Serial non contradiction (D)
Vs3t(sR;t) clai, f) — —c(a;, —f)
Transitive positiveintrospection (4)
VsViVu(sR;t AtRu = sR;u) c(ai, f) — c(ag, c(ay, f))
Euclidian negative introspection (5)
VsVtVu(sRit A sRyu = tR;u)  c(aq, f) — claq, —e(as, —f)
Pseudo-functional (Do)
VsVtVu(sRit A sRyu = t = u) —c(as, ~f) = clag, f)
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