
HAL Id: lirmm-00122839
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00122839

Submitted on 5 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixing Semantic Networks and Conceptual Vectors :
Application to Hyperonymy
Violaine Prince, Mathieu Lafourcade

To cite this version:
Violaine Prince, Mathieu Lafourcade. Mixing Semantic Networks and Conceptual Vectors : Applica-
tion to Hyperonymy. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 2006, 36 (2), pp.152-160. �10.1109/TSMCC.2006.871135�. �lirmm-00122839�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00122839
https://hal.archives-ouvertes.fr


Mixing Semantic Networks and Conceptual Vectors
Application to Hyperonymy

Violaine Prince
LIRMM-CNRS and University Montpellier 2

161 rue Ada, 34392 Montpellier cedex 5
France

prince@lirmm.fr

Mathieu Lafourcade
LIRMM-CNRS and University Montpellier 2

161 rue Ada, 34392 Montpellier cedex 5
France

lafourcade@lirmm.fr

Abstract

In this paper, we focus on lexical semantics, a key issue
in Natural Language Processing (NLP) that tends to con-
verge with conceptual Knowledge Representation (KR) and
ontologies. When ontological representation is needed, hy-
peronymy, the closest approximation to theis-a relation, is
at stake. In this paper we describe the principles of our vec-
tor model (CVM: Conceptual Vector Model), and show how
to account for hyperonymy within the vector-based frame
for semantics. We show how hyperonymy diverges fromis-a
and what measures are more accurate for hyperonymy rep-
resentation. Our demonstration results in initiating a ’coop-
eration’ process between semantic networks and conceptual
vectors. Text automatic rewriting or enhancing, ontology
mapping with natural language expressions, are examples
of applications that can be derived from the functions we
define in this paper.Keywords: knowledge representation,
cognitive linguistics, natural language processing.

1 Introduction

Natural Language Processing by machines (NLP) has
long been a keystone for the branch of data processing that
deals with Knowledge Representation (KR) and Artificial
Intelligence (AI). Since language stands, for human be-
ings, both as a formalism describing knowledge, and their
favourite mean of communication, NLP has, for decades,
acted as the test for intelligent processing. It is a NLP func-
tion that underlies the Turing test, i.e. the ability of mim-
icking humans in their means of communication. Thus, it
is easy to show that NLP is one of the most fundamental
topics in Cognitive Informatics.

Since the nineties, with the generalization of the world
wide web, a new challenge bursted out, to be tackled by
NLP researchers. A huge amount of textual data is now

available to users, data they need to browse, understand,
summarize and exchange. Therefore, to the problem of in-
telligence in communication, a new issue has been added to
NLP topics: how to deal with important volumes of texts,
that human users do not have the time or the power to an-
alyze. New trends, arising from fields such as Information
Retrieval (IR) and documents design, are now investigated
by NLP techniques.

Within the wide NLP domain,lexical semanticsare a key
issue, since they represent the point of convergence with
conceptual KR and ontologies extracted from web seman-
tics. They also browse the area of lexical resources pro-
cessing, so that many works in both NLP and AI have been
devoted to lexical semantic functions, as a way to tackle
the problem of word sense representation and discrimina-
tion. Among the well established trends in lexical semantics
representations, two trends appeared to be conflictual, until
now: the WordNet approach [13], [4], born from seman-
tic networks, and KR-oriented, and the ”vector approach”,
originated from the Saltonian representation in Information
Retrieval (IR) [19], which has found a set of applications in
NLP, especially with web semantics and documents design.

The first is based on logic and the second on vector-space
algebra. The first is very efficient foris-arelationships (con-
sidered as the conceptual relation often embedded in hyper-
onymy) but is silent, or almost so, about several other inter-
esting lexical functions such as antonymy1 and thematic as-
sociation2. Synonymy has been tackled by NLP researchers
that enhanced the field of textual IR [21], [13], but discrim-
ination between synonymy and hyperonymy has often led
them to look for a more flexible notion such as semantic
similarity [16].

The vector approach is completely at the opposite. Of-

1the opposition semantic relation. Example : ’big’ and ’small’ are re-
lated with antonymy. But so are ’moon’ and ’sun’ although they share
many common traits.

2thematic association is often a ’loose’ association of words or items
belonging to the same topic, whatever the type of the relation.



fering very easily thematic association, it allows several dis-
tinct, fine-grained synonymy [8] and antonymy [22] func-
tions to be defined and implemented, but is unable to differ-
entiate or to valid the existence of hyperonymous relations.

In this paper, we show how to account for hyperonymy
within the vector-based frame for semantics, relying on
a cooperation between semantic networks and conceptual
vectors, and how this can be applied to new functions such
as word substitution, and semantic approximation, that be-
long to the field of semantic similarity. We use a semantic
network to enhance vector learning, and symmetrically we
build customized semantic networks out of hyperonymous
relations between vectors. Experiments have been run on
French, since our team owns a syntactic parser, and a se-
mantic vectors producer for this language. For the time
being, more than200, 000 terms (words and expressions)
are present in our lexical bases, and are regularly processed
and tested with every tool we develop3. Of course, since
methods are generic, they could be easily transposed to any
language for which syntactic parsing and semantic vectors
are provided4. Presenting and discussing our tool for hy-
peronymy is thus an important issue not only for this lexi-
cal base enhancement, but also for all applications that are
derivable from semantic associations in texts.

2 Hyperonymy and is-aRelations

2.1 Defining Hyperonymy

Hyperonymyis a lexical function that, given a termt,
associates tot one or many other terms that are more gen-
eral, such as those used to definet in genusanddifferen-
tiae (in the aristotelian definition). Its symmetrical function
is calledhyponymy. For instance,bird is a hyperonym for
sparrow, tit,eagleand so forth. The latter are co-hyponyms
of bird.

Hyperonymy, in almost all KR papers, is assimilated to
the general argument of theis-a relationship (fundamentals
are given in [1]). Let us remind that theis-a relationship
is such as ifX is a class of objects, andX ′ a subclass of
X, then is − a(X ′, X) is true. The rightmost argument
X is called thegeneralargument whereasX ′ is said to be
thespecificargument. The problem is that linguistic hyper-
onymy is not a ”pure”is-a relation. When the wordhorse
is defined, we find: ”a herbivorous animal, with four legs,
etc. . . ”. A good hyperonym for this definition ofhorseis
herbivorous mammal. Animal is another hyperonym, since
’herbivorous mammal is-a mammalandmammal is-a ani-

3our French lexical base and different tools provided for
thematic association are all gathered at the following URL :
http://www.lirmm.fr/∼ lafourca.

4for English, Roget-based vector representations are definitely ade-
quate.

mal’ is true. However, thematically, ahorseis very close to
aherbivore, whereasherbivoresdo not constitute a class but
a set of individuals that may belong to different lines of the
taxonomy (birds and insects and reptiles could be herbiv-
orous, but also metaphorically, many other things). Thus,
even if, in language, one wants to write thata horse is a
herbivoreeventhoughhorse is-a herbivoreis false.

2.2 Some Specific Linguistic Issues
Related with Hyperonymy

Linguistically, amammalis not as good a hyperonym as
herbivorous mammalfor horse, because it is too vague. Too
many mammals exist, and thus, the more precise the term,
the better it is.Mammal from the equine familyis precise but
non informative to the plain user. If IR is stake, one would
better be close to the language that is generally used. Thus,
herbivorous mammalcould appear as a trade-off. However,
this can ’break’ theis-a chain, because other relations can
be mixed with the general argument. Hereherbivorousacts
as an attribute. But in itself, as a language item,herbivores
exist as the set name of all animates that share this property.
The status of theattributionrelation is not well defined in all
KR-derived models. In fact, attributes are termed as such as
the result of the designer decision, and not because of their
intrinsic properties.

In short, hyperonymy often appears as a complex func-
tion resulting from the composition ofis-a and is-attribute
relations, the latter originally present in the semantic net-
works model, but being abandoned by several formalisms,
because of their ambiguous status.

The second linguistic problem ispolysemy. A word is
not a concept, it may address many concepts, and in many
different ways with different intensities. Ahorseis:

• an animal

• a power unit for motors

• a mean of transportation.

The three ’points of view’ overhorseare not independent
from each other. Historically, the animal has been ridden
by humans and served as a mean of transportation. When
shifting to mechanical devices, people needed to compare
artificial modes of transportation and their original mean.
Thus, they used thehorseas a power unit ascandleshave
been used as a mean of comparison for light intensity.

2.3 WordNet and Hyperonymy:
How KR Tackles Linguistic Issues

WordNet is a built taxonomy of words, and as such, only
capturesis-a relations. Polysemous words having many
definitions, and thus many hyperonyms, are tied with as



manyis-a relations, which explains why WordNet is a net-
work and not a tree. WordNet discards specific relations,
and adresses polysemy only through the modelling of mul-
tiple inheritance inis-a chains: every step of the chain of
classes and subclasses must verify the order relation. As
language has not the same density of items everywhere,
WordNet appears as a network with a certain amount of
gaps in some locations and a fine-grained mesh in other
places. For instance, the closer to the ’root’, the more vague
and scarce the words are. This property is important be-
cause, unlike local ontologies that are balanced in their den-
sities, WordNet is closer to the core of problems that NLP
has to deal with. Vagueness in IR, as well as in indexation,
could be a very bad feature.

2.4 Hyperonymy and Word Definition

As shown before, hyperonyms could be extracted, when
they are not known, from most dictionary-like definitions.
Only general concepts, which tend to play the role of hy-
peronyms (andis-a ) superclasses of many others, are not
defined through aristotelian definition, but are explained by
their hyponyms. This is why, in our CVM (Conceptual Vec-
tor Model) model presented in next section, we consider the
existence of a ”hyperonymy horizon” beyond which defi-
nitions become inversed: hyperonyms are more difficult to
find and less explicative than hyponyms. The wordactionis
almost at the top of the WordNet taxonomy and dictionary
definitions tend to explain it with more specific words.

3 The Conceptual Vector Model (CVM)

Vectors have been used in Information Retrieval for long
[20] and for meaning representation by the LSI model [3]
from latent semantic analysis (LSA) studies in psycholin-
guistics. In NLP, and in the early nineties, [2] has provided
a formalism for the projection of the linguistic notion of
semantic fieldin a vector space, from which our model is
inspired.

From a set of elementary notions,concepts, it is possi-
ble to build vectors (conceptual vectors) and to associate
them to lexical items.5 The hypothesis that considers a set
of concepts as a generator to language has been long de-
scribed in the Roget Thesaurus designed by Oxfordian Lex-
icologists at the end of the 19th century [18] ( we call it
the thesaurus hypothesis) and has been used by researchers
in NLP (e.g. [23]) recently. Polysemous words combine
different vectors corresponding to different meanings. This
vector approach is based on well known mathematical prop-
erties: it is thus possible to undertake formal manipulations

5Lexical items are words or expressions which constitute lexical en-
tries. For instance,↪car↩ or ↪white ant↩ are lexical items. In the following
we will sometimes useword or termto speak about alexical item.

attached to reasonable linguistic interpretations. Concepts
are defined within a thesaurus (in our prototype applied to
French, we have chosen [10] where873 concepts are iden-
tified to compare with the1043 provided by the Roget The-
saurus [18]). To be consistent with the thesaurus hypothesis,
we consider that this set constitutes a generator ’family’ for
words and their meanings. This set is probably not free (no
proper vectorial base)6 and as such, any word would project
its meaning on this space according to the following princi-
ple.

3.1 Principle

Let beC a finite set ofn concepts, a conceptual vector
V is a linear combination of elementsci of C. For a mean-
ing A, a vectorV (A) is the description (in extension) of
activations of all concepts ofC. For example, the different
meanings of↪door↩ could be projected on the following con-
cepts (the set of pairs (CONCEPT[intensity]) are ordered by
increasing values): V(↪door↩) = (OPENING[0.3], BARRIER[0.31],
LIMIT [0.32], PROXIMITY[0.33], EXTERIOR[0.35], INTERIOR[0.37],
. . . )

In practice, the largestC is, the finer the meaning de-
scriptions are. In return, computer manipulation is less easy.
As most vectors are dense (very few null coordinates), the
enumeration of activated concepts is long and difficult to
evaluate. We generally prefer to select the thematically
closest terms, i.e., theneighbourhood. For instance, the
closest terms ordered by increasing distance of↪door↩ are:
V(↪door↩)=↪portal↩, ↪portiere↩, ↪opening↩, ↪gate↩, ↪barrier↩,. . .

To handle semantics within this vector frame, we use the
common operations on vectors. An interesting measure is
the angular distance that accounts for asimilarity measure.
As an example, we present, hereafter, the vector sum, the
scalar product and the angular distance equations.

3.1.1 Vectors Sum

Let A and B be two vectors, we define V as theirnormed
sum:

V = X ⊕ Y | vi = (xi + yi)/‖V ‖ (1)

Intuitively, the vector sum ofA andB corresponds to the
union of semantic properties ofA andB. This operator is
idempotent as we haveA ⊕ A = A. The null vector~0 is
a neutral element of the vector sum and, by definition, we
have~0⊕ ~0 = ~0.

6Let us remind that a vectorial base is a set of generative and free vec-
tors. Two vectors are said to be free if their vector product is equal to zero.
A set of vectors is considered free, if each couple of vectors contained in
it, is free.



3.1.2 Vectors Product

The vector product is equivalent to anormed term to term
product.Let X andY be two vectors, we defineV astheir
normed term to term product:

V = X ⊗ Y | vi =
√

xiyi (2)

This operator is idempotent and~0 is absorbent.

V = X ⊗X = X and V = X ⊗ ~0 = ~0 (3)

Also following an intuitive approach, the vector product
of A andB represents the intersection of semantic proper-
ties ofA andB. This is a crucial feature for hyperonymy
since a hyperonym and its hyponym could be seen as one
’containing’ the properties of the other. But it is also im-
portant in synonymy and may give hints about polysemous
properties of some conceptual vectors (intersections with
many different vectors). A better function for emphasizing
intersection is given in the paragraph about contextualiza-
tion.

3.1.3 Angular Distance

Let us defineSim(A,B) as one of thesimilarity measures
between two vectorsA andB, often used in Information
Retrieval. We can express this function as:

Sim(A, B) = cos( dA, B) =
A ·B

‖A‖ × ‖B‖
with “ ·” as the scalar product. We suppose here that vector
components are positive or null. Then, we define anangular
distanceDA between two vectorsA andB as follows:

DA(A, B) = arccos(Sim(A, B))

with Sim(A, B) = cos( dA, B) =
A ·B

‖A‖ × ‖B‖
(4)

This function constitutes an evaluation of thethematic
proximity as it measures the angle between the two vec-
tors. We would generally consider that, for an angular dis-
tanceDA(A,B) ≤ π

4 , (i.e. less than 45 degrees),A and
B are thematically close and share many concepts. For
DA(A,B) ≥ π

4 , the thematic proximity between A and B
would be considered as loose. Aroundπ

2 , both vectors are
othogonal, and thus tend to diverge very wildly.DA is a
real distance function. It verifies the properties of reflexiv-
ity, symmetry and triangular inequality. In the following,
we will speak ofdistanceonly when these last properties
will be verified, otherwise we will speak ofmeasure.

3.1.4 Contextualization

When two terms are in presence of each other, some of the
meanings of each of them are thus selected by the presence

of the other, acting as acontext. This phenomenon is called
contextualization. It consists in emphasizing common fea-
tures of every meaning. LetX andY be two vectors, we
defineγ(X, Y ) as the contextualization ofX by Y as:

γ(X, Y ) = X ⊕ (X ⊗ Y ) (5)

This function is not symmetrical, translating the non
symmetry between the role of a context and the role of a
contextualized term. As for other mathematical properties:
the operatorγ is idempotent (γ(X, X) = X) and the null
vector is the neutral element. (γ(X,~0) = X ⊕ ~0 = X).
We will notice, without demonstration, that we have thus
the following properties ofclosenessand offarness:

DA(γ(X, Y ), γ(Y, X))

≤ {DA(X, γ(Y, X)), DA(γ(X, Y ), Y )}
≤ DA(X, Y )

(6)

The functionγ(X, Y ) brings the vectorX closer toY
proportionally to their intersection. The contextualization is
a low-cost meaning of amplifying properties that are salient
in a given context. For a polysemous word vector, if the
context vector is relevant, one of the possible meanings is
activatedthrough contextualization. For example,bankby
itself is ambiguous and its vector is pointing somewhere be-
tween those ofriver bankandmoney institution. If the vec-
tor of bankis contextualized byriver, then concepts related
to finance would considerably dim.

3.2 Implemented Lexical Functions: Synonymy
and Antonymy

3.2.1 Synonymy

Two lexical items are in a synonymy relation if there is a
semantic equivalence between them.

Synonymy is a pivot relation in NLP, but remains prob-
lematic, since semantic equivalence is not translatable into
a mathematical equivalence relationship. It does not nec-
essarily verify transitivity [12] and it could be, at least par-
tially, confused with hyperonymy, when equivalence is re-
duced to semantic similarity [16]. A possible solution in a
vector framework is to define a contextual synonymy (also
proposed in [6]) represented by a three argument relation,
which then supports the properties of an equivalence rela-
tionship. The suggested solution is calledrelative synonymy
[8]. The functional representation is the following: arela-
tive synonymyfunction SynR, is defined between vectors
A, B andC, the later playing the role of a pivot, as:

SynR(A, B, C) = DA(γ(A, C), γ(B, C))

= DA(A⊕ (A⊗ C), B ⊕ (B ⊗ C))
(7)



The interpretation corresponds to testing the thematic
closeness of two meanings (A andB), each one enhanced
with what it has in common with a third (C). The advan-
tage of such a solution is that it circumvents the effects of
polysemy in cutting transitivity and symmetry. However, it
does not provide a real distinction between a hyperonym of
a given meaning of a word, and a true synonym of such a
word. This problem is discussed in next section, when in-
troducing more flexible notions such asword substitution.

3.2.2 Antonymy

Two lexical items are in antonymy relation if there is a sym-
metry between their semantic components relatively to an
axis.

Three types of symmetry have been defined, inspired
from linguistic research [14]. As an example, we expose
only the ‘complementary’ antonymy proposed by [22]: The
same method is used for the other types.Complementary
antonymsare couples likeevent/unevent, presence/absence.
Complementary antonymy presents two kinds of symmetry,
(i) a value symmetry in a boolean system, as in the examples
above, and (ii) a symmetry about the application of a prop-
erty (black is the absence of color, so it is “opposed” to all
other colors or color combinations). The functional repre-
sentation is the following: The functionAntiLexS returns
then closest antonyms ofA in the context defined byC in
reference toR. The partial functionAntiLexR has been
defined to take care of the fact that, in most cases, context
is enough to determine a symmetry axis.AntiLexB is de-
fined to yield a symmetry axis rather than a context. In prac-
tice, we haveAntiLexB = AntiLexR. The last function is
theabsolute antonymy function. Their associated equations
are given hereafter.

A, C, R, n → AntiLexS(A, C, R, n)

A, X, n → AntiLexR(A, X, n) = AntiLexS(A, X, X, n)

with X = (C|R)

A, n → AntiLexA(A, n) = AntiLexS(A, A, A, n)

(8)

An implementation of these functions in the CVM is
detailed and commented in [22]. Contrarily to synonymy,
antonymy functions are modelled partially as semantic
graphs and partially with conceptual vectors. Some opposi-
tions are primarily of lexical nature, and can potentially be
extended continuously in the meaning space.

3.3 Conceptual Vectors Construction

Building conceptual vectors is achieved through pro-
cessingdefinitionsfrom different sources (dictionaries, syn-
onym lists, manual indexations, etc). Definitions are
parsed with an NLP parser called SYGMART (available for

French) and the corresponding conceptual vector is com-
puted according to a procedure defined as follows.

After filtering according to various morphosyntactic at-
tributes, we attach to the leaf (terminal node of the con-
ceptual tree) a conceptual vector that is computed from the
vectors of itsk definitions. The most straighforward way
(not the best) to do so is to compute the average vector:
V (w) = V (w.1) ⊕ · · · ⊕ V (w.k). If the word is unknown
(i.e. it is not in the dictionary), the null vector is taken in-
stead.

Vectors are then propagated upward. Consider a tree
nodeN with p dependantsNi(1 ≤ ip). The newly com-
puted vector ofN is the weighted sum of all vectors of
Ni: V (N) = αiN1 ⊕ · · · ⊕ αpNp. Weightsα depend on
the syntactic functions of the node. For instance, agov-
ernor 7 would be given a higher weight (α = 2) than a
regular node (α = 1).The vectors computed fora boat sail
and fora sail boatwould not be identical. Once the vec-
tor of the tree root is computed a downward propagation is
performed. A node vector is contextualized by its parent:
V ′(Ni) = V (Ni)⊕ γ(Ni, N). This is done iteratively until
reaching a leaf. This analysis method shapes, from exist-
ing conceptual vectors and definitions, new vectors. It re-
quires a bootstrap with a kernel composed of pre-computed
vectors, manually indexed for the most frequent or diffi-
cult terms and already defined in [10] . One way to build
a coherent learning system is to take care of the seman-
tic relations beetween items, and among them, synonymy,
antonymy and the most important, hyperonymy. A relevant
conceptual vector basis is obtained after some iterations in
the learning process. At the moment of writing this article,
our system counts more than71, 000 items for French and
more than288, 000 vectors (because vectors may represent
expressions and/or concepts). 2000 vectors are concerned
with antonymy, and almost all of them are concerned with
synonymy and hyperonymy. The computed functions have
allowed to enhance the representation of almost all vectors.

3.4 Importance of Hyperonymy in CVM

A framework for hyperonymy is very useful for enhanc-
ing vector construction, since most vectors are built by pars-
ing hyperonymous definitions provided by on-line sources
on the Web. In fact, all lexical functions appear to be a great
help for such as task. Symmetrically, relations between vec-
tors are crucial for a data driven approach : trying to extract
semantic relations in corpora ([23]) and thus building a do-
main ontology, or trying to organize information in corpora
by relying uponis-ahierarchies ([11], [17]).

7the ’leader’ in a syntactic group. For instance, subjects and verbs in
a sentence are governors, whereas complements are definitely not. In a
noun phrase, one of the nouns is a governor, and the other is a subordinate.
Example : in the noun phrase ’grammar school’ , ’school’ is governor.



4 Computing Hyperonymy

As our approach is both data driven and hierarchy-based,
we first try to define the impact of hyperonymy by mea-
suring distances in corpora. These distances help to define
word substitutionandsemantic approximation(with a taxo-
nomical aspect). The theoretical model, both within seman-
tic networks and vector space, is theinclusion model: a
subclass includes the properties of its superclass. We show
in this section how inclusion is dealt with and what results
we have obtained.

4.1 Co-occurrence Model

Corpora are seen by researchers in NLP as set of real in-
stantiations of linguistic phenomena, when compared to in-
tentionally built toy sentences. The co-occurrence of items,
either words or expressions, especially when it is repeated
through a rich set of documents, is a good measure of a se-
mantic relationship between these items [5]. This semantic
relationship is sometimes assumed to be one of synonymy,
closeness, but without a strict and rigorous linguistic defi-
nition. The Church’s formula tends, however, to consider
co-occurring items in a given string of words, and to rely
on the frequency of this co-appearance to draw probabili-
ties of relationship. What we suggest here, is to consider
documents (and not pairs of items) as the unit measure, and
a single co-occurrence in a document is as meaningful as
repeated associations of the same items.

Thus, we define two measures of co-occurrence between
a termw and anhyperonym candidateh:

MT (w, h) =
|H ∩W |
|W |

and MS(w, h) =
|H ∩W |
|H|

(9)

W (resp.H) represents the set of documents in a given
corpus that contains the termw (resp. h). |W |, respec-
tively |H|, is the number of documents considered where
w, respectivelyh appears.|H ∩ W | represents the set of
documents that contains both termsh and w. MT tends
to determine the ratio ofh andw co-occurrence as a pair,
when compared tow. So if w is the reference element, and
W is the relevant set of documents aboutw, thenMT tends
to show how much ofw meaning is available when usingh,
knowing thatw andh do (or not) co-occur in texts.MT is
reminiscent of arecall measure in Information Retrieval.8

MS on the contrary, relates the same numerator, with the
number of documents containingh. So ifh is a possible, but
polysemous, hyperonym ofw, or if h was scarcely related

8Recall is the number of relevant items retrieved among the relevant
records/documents present in the set of records/documents.

to w then|H ∩W | would be small when compared to|H|,
andMS would define thus the relevance of replacingw by
h, without bringing in irrelevant meanings or ideas.MS is
thus our realization of aprecision measure.9

MT andMS are in an inverse relationship, but are neither
symmetrical nor complementary. It is more a question of a
trend.

4.1.1 Hyperonymy, Word Substitution, Taxonomy
Evaluation

If we add the hypothesis thath is possible hyperonym, that
is, we have good reasons to think thatw is-ah is true, then
the measureMS evaluates to which extendw can be re-
placed byh and is thus aword substitution measure. Sim-
ilarily, MT is a taxonomy evaluation, the way one can ap-
proximatehorseby mammalwithout being too vague.

We have run experiments by accessing Google
(www.google.com)and the number of hits returned for each
request. This number of hits corresponds to the cardinal of
the considered set of documents. For example, we have the
following result for the termairplane:

aircraft /MT = 0.2659 MS = 0.025
plane /MT = 0.1237 MS = 0.1741
flying plane /MT = 0.5317 MS = 0.0007
aircraft heavier than air /MT = 0.5238 MS =
0.00004

The bestMS value (whenairplane is the reference) is
for plane, however, it is small, probably because of the em-
bedded polysemy in the term (it also means a flat world,
a two dimensional mathematical space, . . . ). In the gen-
eral context of documents accessed by Google, people tend
to useplane instead ofairplane, when they exactly know
what type of item they are talking about. However it has
the worst value in the taxonomical evaluation: among the
relevant hyperonym candidates, any other is more relevant
thanplane.

On the other side,aircraft heavier than airas well asfly-
ing planehave the bestMT or recall value. In fact, they are
very good definitions or explanations of what is anairplane,
eventhough people tend not to use them much as substitutes.
This might appear strange, at least forflying plane: we in-
terpret this absence of substitution frequency as the result
of an economy principle that underlies most cognitive ac-
tions. If one undergoes the replacement of something by
something else, one hopes at least to gain some cognitive
effort. A shorter form as a substitution candidate is a good
heuristic.

9Precision is the number of relevant items retrieved among the most ex-
haustive set of records/documents, where some are relevant and the others,
not.



As a larger example, we have run the test for the termhorse.
We have found several meanings forhorses:

• (a) the animal,

• (b) the class of horses or specie,

• (c) horse riding,

• (d) the representation of a horse,

• (e) the wooden horse,

• (f) the manlike women,

• (g) the power unit

• (h) an unreliable person

• . . .

The results of requests and co-occurrence measures are :

mammal /MT = 0.81 MS = 0.0005 (a)
animal /MT = 0.0986 MS = 0.1523 (a)
domestic animal /MT = 0.133 MS = 0.0035 (a)
kind of mammal /MT = 0.0481 MS = 0.00002 (a)
specie /MT = 0.1376 MS = 0.0857 (b)
horses /MT = 0.4673 MS = 0.2954 (b)
equitation /MT = 0.3498 MS = 0.0991 (c)
representation /MT = 0.0399 MS = 0.0505 (d)
toy / MT = 0.1363 MS = 0.0184 (e)
child toy /MT = 0.2387 MS = 0.0004 (e)
wooden horse /MT = 0.2025 MS = 0.0012 (e)
woman /MT = 0.0363 MS = 0.4012 (f)
manlike woman /MT = 0.5692 MS = 0.00003 (f) unit /
MT = 0.033 MS = 0.0647 (g)
arbitrary unit /MT = 0.067 MS = 0.00004 (g)
power unit /MT = 0.1042 MS = 0.0003 (g)

mammalis the most precise for the taxonomy (hyper-
onym used in definition) butanimal is a better susbsitu-
tion term, eventhough it might not be a very good substitute
(MS around15%). specieis too vague, when compared to
horses. child toyhas a best rendering of the meaning in item
(e) thantoybut is not as good as a substitute.

As we have noticed before, short terms are better substi-
tutes, as representatives of the economy principle in linguis-
tics. Taken out of their context, they might appear, from a
taxonomic point of view, quite vague or ambiguous. How-
ever, since they are never isolated, their role as substitutes
is not overburdened by polysemy.

Let us finally notice that ifMT values might sometimes
come close to0.8, this is never the case withMS . Ratios
for substitution continue to be very small. We have run
the same experiments of many other words, and we have
noticed the same difference in scale between the two mea-
sures.

4.1.2 Building and Upgrading a Local Possibleis-aHi-
erarchy

A goodMT measure for a possible hyperonym helps to cre-
ate a localis-a hierarchy by testing values from the most
particular item up to the most general one. For instance, for
horse, we can extract, directly from the text, the knowledge
as ahorse is-aa mammalis better than ahorse is-aanan-
imal on the taxonomical line. Since we can calculate and
show that amammal is-aananimal is true, then it is easy to
create the followingis-a line :
horse≤ mammal≤ animal
where≤ represents anis-a relationship.
However, these different lines have to be merged, and more-
over, sometimes, new meanings (unknown or not encoun-
tered before) have to be added to the existing structure,
transforming it from a tree-like hierarchy into a plain graph.
This graph plays the role of anextracted semantic network,
at least one that has emerged from raw texts, vector forms
and nothing else. Figure 1 shows a portion of the semantic
network forhorse.

cariage

wagon

transport

vehicle/transport vehicle/vector

automobile

horse/transport

horse/mammal

mammal

horse/meat

meat/food

food

artefact

horse/power unit

animal

car/automobile

Figure 1. Hyperonym insertion in the built semantic network.
Adding found hyperonyms can lead to the identification either of:
(1) new salient properties in already existing meanings or (2)new
meanings altogether. Thematic distance is used as a meaning se-
lector.

About new meanings, in fact, two at least are lacking in
the list of item given before.

• (i) a transportation mean (we travelled on horseback)

• (j) a type of food (horsemeat)

In this case, we do create the new meanings (horse/ trans-
portation meanandhorse/meat) and link them to their hy-
peronyms. The problem is that, starting from vectorized
definitions, there is no way to catch these new meanings as
they are not (yet) identified. Thus, to overcome this prob-
lem, we link each of these new meanings as hyperonym to



its closest already existing counterpart. In the above exam-
ple, we have:

• horse/ transportation meanis closer to
horse/mammalthan to horse/power unit. This
relation can be checked on their respective vec-
tor, and (sometimes) by pattern matching on some
part of (encyclopedic) definition.

• horse/meatis closer tohorse/mammalthan to
horse/power unit.

4.1.3 Conclusion about the Co-occurrence Model

These two measures,MT andMS , are particularly useful in
semantic analysis. In fact, building a lexical network on the
basis ofMT andMS allows to recognize loose substitution
hyperonyms (lowMT and highMS). For example, dur-
ing analysis, we can detect that the text thematic coherence
is much stronger when we (re)subsituteaircraft to plane.
Candidates for substitution are determined by the network
structure strengthened by the angular distance between the
candidate and the context. It is an iterated process that is
globally converging ([9]). Thus, for textual analysis, we
process in the reverse way of the text author, who has re-
placed precise terms with more or less vague hyperonyms,
motivated by stylistic considerations (for example, deleting
repetitions).

4.2 Inclusion Model

Inclusion, as a general idea, is what appears as common
to both semantic networks in KR, and vector modelling in
NLP when dealing hyperonymy. It is derived from a set
theory approach, and suggests the following ;

If A is an hyperonym of B, then the properties of A are
included in the properties B.
In KR, this means thatA and B are in a super/subclass
relationship (classicalis-a ). However, another definition
also appears :
A is an hyperonym of B, if B has the same properties than
A, and if B properties are instances of A properties
Examples:
’to cut’ is a hyperonym of’to saw’. The latter provides the
value of the action instrument (here thesaw).
horsesas the generic value of the specie, is a hyperonym of
horsethe individual (element (b) in the list of meanings for
horse).

In KR this assets a set-member relationship (classical
member − of ), where the properties of A are instantiated
by values belonging to the description of B.

As seen here, in fact, if KR tends to consideris-a hyper-
onyms only, unfortunately, NLP, at least in corpora, tends to

consider also themember − of relationship as a clue to a
hyperonymy-hyponymy relationship. In fact, this is one of
the cases where hyperonymy and hyponymy are symmetri-
cal. In usage, ifto cutacts as a good explanation ofto saw
the other way round is not true.

Thus, only in a restricted approach, theis-a and
member − of hyper/hyponymies are symmetrical. This
symmetry, relevant to the Inclusion Model, dissapears in the
Co-Occurrence Model (MS is not equal to1−MT ).

However, inclusion does exist, and could bring useful
properties.

4.2.1 The Inclusion Measure

In a vector space approach, inclusion can be mesured
through vector intersection and distance:

H(A,B) ⇒
DA(V (A), γ(V (A) V (B)))

≤ DA(V (B), γ(V (A), V (B)))
(10)

For example, we have the following measure between
horse/mammalandmammal:

DA(V (horse), γ(V (horse) V (mammal))) = 0.41
DA(V (mammal), γ(V (horse) V (mammal))) = 0.25

From this result, we deduce thatmammalproperties are
included in horse Morover, if we know thathorse and
mammalare in a hyperonymic relation (either through a
very goodMT value, or otherwise), thenmammalis the
hyperonym. The relationship between Inclusion and Co-
occurrence Models is obvious : highMT values for can-
didates provide an assumption about a good hyperonymic
relationship, which in turn is cheched and thus validated (or
invalidated) by the inclusion measure defined above.

4.2.2 Limits of the Inclusion Measure Scope

The model, restricted to the sole inclusion measure, oper-
ates very well for vectors that has been computed from hy-
peronymic definitions. But for very general terms, where
definitions tends to be hyponymic (a collection of exam-
ples), the inclusion vector is reversed. More precisely, this
is called thehorizon limit. The horizon is constituted by
leaves (terminal concepts) of the taxonomy on which the
vector space is defined.

When the definition leads to a new vector, vectors of the
terms present in this definition are mixed. Thus, the vec-
tor is flat compared with the main involved concept(s). We
have a formal measure forflatnesswhich is the variation
coefficientVC :



VC(X) =
s(X)
µ(X)

with s2(X) =
∑

(xi − µ(X))2

n

(11)

VC is the ratio between the standard deviations of the
vector component, and the meanµ. This a unitless value.
By definition, VC is only defined for non null vectors. If
VC(A) = 0 then the vectorA is flat, that is, all components
have the same value. At the maximum value ofVC (around
29 whenn = 873), we have a boolean vector (only one
component is activated with1 while all others are zeros).

Cv(v)

abstraction level

29 :  max horizon

0

Conceptual horizon for the Larousse thesaurus
(n = 873)

Strong hyponyms Strong hyperonyms

c4:medicine

c4:existence

c4:mammals

horse

foal
filly

animal

vehicle

concrete object
action

living being

CvMax(v) with n = 873 leaf concept
 area

0 1

Figure 2. Graphical representation of the conceptual horizon.
The horizon stands at the highest level of the variation coefficient
which is the lowest level of the thesaurus hierarchy. On the left
side, we have terms that are strictly specialization (by mixing) of
concepts. On the right side, we have generalization of concepts,
which similarly by vector mixing tend to lower the variation coef-
ficient of vectors.

Over the horizon, we do have:

H(A,B) ⇒
DA(V (A), γ(V (A) V (B)))

≥ DA(V (B), γ(V (A), V (B)))
(12)

4.2.3 The Conceptuality of a Vector : Beneath or Be-
yond the Concepts Hill ?

A very important issue is to be tackled: How is it possible to
assess on which side of theconcepts hill 10 a given vector
stand? By itself, the variation coefficient just evaluates the
general shape of the vector and itsconceptualityrelatively
to the concept set. We have two ways to solve this problem:

10the graphical representation in the preceding figure shows a reversed
parabol as a representation of the concept horizon, thus the metaphor of
the ’hill’ looks relevant.

1. the first is focusing on a lexical approach mixing lex-
ical functions and information to vectors. The Co-
occurence Model is a possible answer and, more gen-
erally, semantic graphs11 as well. The Co-occurrence
Model might be consolidated with an inclusion mea-
sure.

2. A second approach is to include, as a dimension of the
vector space, every concept of the hierarchy and not
only the leaves. This solution is only partial, because
it cannot address the adjoining problem of polysemy
when working on the lexical item level and not on the
acception (conceptual) level.

We have undertaken the first approach, on a restricted
scale (see discussion). The second one has been until now
discarded, but before rejecting it completely, we would like
to evaluate its true usefulness.

Figure 3. Graphical representations of the vectors of the terms
↪poulain↩ (in English ’foal’ ), ↪cheval↩ (’horse’), ↪Mammif̀eres↩
(’mammals’ ) and ↪animal↩. The variation coefficient increases
from left to right and top to bottom until the third vector
(↪Mammif̀eres↩) (’mammals’) and then begins to decrease for the
fourth one (↪animal↩). Concepts are represented horizontally and
their activation values vertically. If a not null vector is flat, then all
concepts are equally activated. In this case the variation coefficient
VC is null.

4.3 Discussion

The experiments we have conducted (another example is
given in the annex) on a collection of a few hundred nouns
(and compound nouns), revealed the problem of the concep-
tual horizon. This horizon stands at the lowest level of the
concepts hierarchy (in the hierarchy we use [10] for French
language, which corresponds to the depth4. For the Roget,

11among them, conceptual graphs or UNL based graphs are possible
representations



this might go to depth6 sometimes). Because of the na-
ture of vector composition, the inclusion model should be
inverted when terms stand beyond this horizon.

Detecting the conceptual horizon crossing is done
through lexical models. More precisely, it can be achieved
through the Co-occurence Model but also when identifying
hyponyms. The detailed presentation of hyponyms identi-
fication is beyond the scope of this paper, but it is enough
to say that more abstract terms (corresponding to large tax-
onomic classes) contain a large number of hyponyms. Ac-
cording to the Co-Occurence Model hyperonymy and hy-
ponymy functions are not strictly symmetrical, both in their
usage and behavior in corpora. In fact, if, in a semantic net-
work in KR, hyperonymy and hyponymy are strictly sym-
metrical, language tends to assign different roles to hyper-
onyms and to hyponyms. For instance, if hyperonyms could
begood explanations through definitions, hyponyms are
the best possible explanations through examples. And
very obviously, examples do not have the same relationship
to assertion than definitions, and ’the best possible’ is not
even symmetrical to ’good’... However, both hyperonyms
and hyponyms (of a given item) often co-appear in texts,
and thus can be used together to strengthen the built net-
work.

An application of our model, still under development,
is a paraphrase tool, useful for stylistic goals. From a
given text, the system produces a new text where terms are
substituted by hyperonyms (or quasi synonyms). Initial re-
sults show that the most natural paraphrases are those which
maximize the substitution value but not the taxonomic rele-
vance. Such a tool could be used not only to globally assess
the practical validity of our approach but also as a partial
preprocess to Machine Translation.

5 Conclusion

In this paper we have tried to show how to account for
hyperonymy within the vector-based frame for semantics,
relying on a cooperation between semantic networks and
conceptual vectors. After having assessed the importance of
lexical functions such as synonymy and antonymy for lex-
ical choice and conceptual vectors construction and usage,
we have focused on hyperonymy, more difficult to discrim-
inate in a numeric approach such as ours.

As our method is both data driven and hierarchy-based,
we first tried to define the impact of hyperonymy by mea-
suring distances in corpora. These distances help to define
word substitution and semantic relevance (with a taxonom-
ical aspect). The theoretical model, both within semantic
networks and vector space, being theinclusion modelwe
showed how inclusion has been dealt with and what results
we have obtained.

Although being satisfactory, these results tend to reflect

the multifaceted properties of hyperonymy: by being more
complex than anis-a relation, hyperonymy needs to be con-
strained by the task to perform. If text correction or expla-
nation are at stake, thenword substitutionis a good usage
to apply hyperonymic properties. If taxonomy building is
the goal, thensemantic relevanceis a better candidate. So,
the same way other lexical functions such as synonymy and
antonymy have been restricted by adding a notion ofrelativ-
ity when confronted to text bases, also hyperonymy appears
not to be absolute, as theis-a relation is not either. It seems
better to split it into its functions and to define it accord-
ing to processing goals. Regarding applications, specific
terminological database building as well as domain based
ontologies for web browsing are achievable with semantic
relevance. User-helping tools as linguistic assistance fit into
the field of word substitution.

In a way, lexical functions, sometimes as theoretical as
hyperonymy may appear to the non specialist, may have a
great impact on NLP based tools for everyday assistance to
computers users.
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6 Annex

MeasuringMT andMS for the French termpeinture:

art /MT = 0.133 MS = 0.6913 (a)
art de peindre /MT = 0.649 MS = 0.0016(a)
ouvrage /MT = 0.2248 MS = 0.0955 (b)
ouvrage d’un artiste /MT = 1.0 MS =
0.00001(b)
matìere /MT = 0.2543 MS = 0.1644 (c)
produit /MT = 0.2301 MS = 0.1755 (c)
produit à base de pigments /MT = 1.0 MS =
0.00004 (c)
produità base de pigments en suspension /MT =
1.0 MS = 0.00004 (c)
produità base de pigments en suspension dans un
liquide / MT = 1.0 MS = 0.00004 (c) couche
/ MT = 0.1443 MS = 0.0876 (d)
couche de couleur /MT = 0.4939 MS =
0.0004 (d)
description /MT = 0.2049 MS = 0.1216 (e)

The termpeinturecould be: (a) theart, (b) painting,
(c) the coloring matter, (d) thecolor layer, and (e) ade-
scription. We can see that very precise terms are not good
substitutes (see different cases for (c)). And inversely best
substitutes are often more general and possibly polysemous
terms.


