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INITIAL POWERS OF STURMIAN SEQUENCES

VALÉRIE BERTHÉ, CHARLES HOLTON, AND LUCA Q. ZAMBONI

Abstract. In this paper we investigate powers of prefixes of Sturmian sequences. We give
an explicit formula for ice(ω), the initial critical exponent of a Sturmian sequence ω, defined
as the supremum of all real numbers p > 0 for which there exist arbitrary long prefixes of ω
of the form up, in terms of its S-adic representation. This formula is based on Ostrowski’s
numeration system. Furthermore we characterize those irrational slopes α of which there
exists a Sturmian sequence ω beginning in only finitely many powers of 2 + ε, that is for
which ice(ω) = 2. In the process we recover the known results for the index (or critical
exponent) of a Sturmian sequence. We also focus on the Fibonacci Sturmian shift and prove
that the set of Sturmian sequences with ice strictly smaller than its everywhere value has
Hausdorff dimension 1.

1. Introduction.

There are a number of recent papers on powers of words occurring in Sturmian sequences
(see for instance [2, 3, 8, 9, 18, 17, 28, 34, 42, 45]). Quantities of interest include the
supremum of powers of factors of a sequence (the index or critical exponent of the sequence),
and the limit superior of powers of longer and longer factors of the sequence. It is well-known
that these numbers are finite if and only if the partial quotients of the continued fraction
expansion of the slope of the Sturmian sequence are bounded (see [33]). An explicit formula
for the index of a Sturmian sequence was given by Vandeth (see Theorem 16 in [45]) in terms
of the partial quotients of its slope.

This paper deals with powers of factors occurring at the beginning of Sturmian sequences,
which we call initial powers. The work is motivated in part by a simple observation about the

Fibonacci Sturmian shift, the shift space of all Sturmian sequences of slope 1+
√

5
2

. This space
is infinite, minimal and uniquely ergodic; one might expect prefix powers to be somewhat

uniform. Yet its characteristic sequence begins in no 3+
√

5
2

≈ 2.62 power at all, while every
sequence outside the shift orbit of the characteristic sequence begins in arbitrarily long words
repeated 3 or more times. This example leads us to define the initial critical exponent of
a sequence ω over a finite alphabet, denoted ice(ω), as the supremum of all real numbers
p > 0 for which there exist arbitrarily long prefixes u of ω such that up is also a prefix of
ω. We obtain an explicit formula for the initial critical exponent of a Sturmian sequence, in
terms of a particular S-adic expansion. For characteristic Sturmian sequences, our formula
for ice has probably been known since [36], though Hedlund and Morse did not address this
question specifically. One can also obtain the formula for ice of a characteristic sequence
using Cassaigne’s formula for the recurrence quotient in [13]. See also [9, 46].
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2 V. BERTHÉ, C. HOLTON, AND L.Q. ZAMBONI

Every Sturmian sequence ω on the alphabet {0, 1} admits a unique S-adic representation
as an infinite composition of the form

ω = T c1 ◦ τa1
0 ◦ T c2 ◦ τa2

1 ◦ T c3 ◦ τa3
0 ◦ T c4 ◦ τa4

1 ◦ · · · ,
where T denotes the one-sided shift map, τ0 and τ1 are the morphisms on {0, 1}∗ defined by

τ0(0) = 0 τ1(0) = 10,

τ0(1) = 01 τ1(1) = 1,

ak ≥ ck ≥ 0 for all k, ak ≥ 1 for k ≥ 2, and if ck = ak then ck−1 = 0. The sequence (ak)k≥1

turns out to be the sequence of partial quotients of the slope (defined as the density of the
symbol 1), while (ck)k≥1 is the sequence of digits in the arithmetic Ostrowski expansion of
the intercept of the Sturmian sequence (see for instance [19, 20, 29, 30, 27, 37, 43, 44] and
the references in [10]). From this point of view, the characteristic (or standard) Sturmian
sequence of a particular slope is the one having ck = 0 for all k. This expansion of ω is
just one of many possible expansions as an infinite composition of morphisms (see work of
Arnoux [40], Arnoux-Fisher [4], Arnoux-Ferenczi-Hubert [6]). In each case these expansions
are intimately linked to the Ostrowski numeration system.

In [3] it is shown that each Sturmian sequence begins in infinitely many squares (see
also [18]), and hence ice(ω) ≥ 2 for all Sturmian sequences ω. We show that the value 2
is attainable, and give the following characterization of those slopes for which there is a
Sturmian sequence with initial critical exponent equal to 2 :

Theorem 1.1. Let α = [0; a1, a2, a3, . . . ] be an irrational number and let Xα be the set of all
Sturmian sequences of slope α. Then there is a Sturmian sequence ω ∈ Xα with ice(ω) = 2
if and only if for each pair of positive integers (s, t) with s > 1 there are only finitely many
indices k for which (ak, ak+1) = (s, t) or (ak, ak+1, ak+2) = (1, 1, t).

We also show how to explicitly construct a Sturmian sequence ω ∈ Xα with ice(ω) = 2 in
case one exists.

Write ind∗(ω) for the limit superior of powers of longer and longer words appearing in a
sequence ω. We show

Theorem 1.2. Let ω be the characteristic Sturmian sequence of slope α. Then

ind∗(α) = 1 + ice(ω).

The paper is organized as follows. After first recalling some basic facts on Sturmian
sequences and on ice, we introduce in Section 2 two S-adic representations of Sturmian se-
quences (additive and multiplicative versions) based on Ostrowski’s numeration system, and
conclude the section with a characterization of primitive substitutive Sturmian sequences.
We derive an explicit formula for ice of Sturmian sequence in Section 3. We study general
properties of ice in Section 4; special attention is given to the Fibonacci shift in Section 4.4:
we study the topological properties of the set of values taken by ice on the Fibonacci Stur-
mian shift following [13] and prove that the Hausdorff dimension of the set of Sturmian
sequences in the Fibonacci Sturmian shift with ice strictly smaller than its everywhere value
(which is also its index) equals 1. We end with a proof of Theorem 1.1 in Section 5.
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2. Preliminaries.

2.1. Definitions and notation. Throughout the paper, α denotes an irrational number in
(0, 1). Consider two two-interval exchange transformations, Rα : [−α, 1− α) → [−α, 1− α)
and R̃α : (−α, 1− α]→ (−α, 1− α], defined by

Rα(z) =

{
z + α if z ∈ [−α, 1− 2α)

z + α− 1 if z ∈ [1− 2α, 1− α)

and

R̃α(z) =

{
z + α if z ∈ (−α, 1− 2α]

z + α− 1 if z ∈ (1− 2α, 1− α]
.

Both can be considered as rotations of angle 2πα, since these are conjugate, after identifica-
tion of points −α and 1−α, to a circle rotation. A Sturmian sequence ω of slope α is simply
the forward itinerary (with respect to the natural partition) of a point x ∈ [−α, 1−α] (called
the intercept) under the action of one of these transformations, i.e., either

∀k ∈ N (ωk = 0⇐⇒ Rk
α(x) ∈ [−α, 1− 2α))

or

∀k ∈ N (ωk = 0⇐⇒ R̃k
α(x) ∈ (−α, 1− 2α]).

It is clear from this interpretation that the slope of a Sturmian sequence is the density of
the symbol 1.
Notation. In all that follows, the coding of the orbit of the point y with respect to the
partition (I, J) under the action of the two-interval exchange E means the sequence υ ∈
{0, 1}N defined by

∀k ∈ N (υk = 0⇐⇒ En(y) ∈ I).

The complexity function p : N → N for a sequence ω is given by

p(n) = the number of distinct factors of ω of length n.

Sturmian sequences are exactly those one-sided infinite sequences with complexity p(n) =
n+1 for every n (see [36, 14]). The set Xα of all Sturmian sequences of slope α is an infinite,
minimal, uniquely ergodic (one-sided) shift space. The characteristic sequence of slope α is
the unique left-special sequence in Xα, i.e. the sequence having more than one T -preimage,
where as before, T denotes the shift on Xα; this is the sequence with intercept 0 (it is the
same for Rα and R̃α) and its two shift preimages code respectively the orbits of −α under

Rα and 1− α under R̃α. For more details on Sturmian sequences, see [31, 40].
We will use in Section 2.3 and 2.4 the notion of induction of a rotation. The induced

transformation of the rotation Rα (or similarly of R̃α) on the interval I of [−α, 1 − α] is
defined as follows. For x ∈ I, we call the first return time of x in I and denote by nI(x) the
smallest integer m > 0 such that Rm

α (x) ∈ I (m is finite since α is irrational). The induced

transformation of Rα on I is the map x → R
nI(x)
α (x) on I.

A sequence is called recurrent if every factor appears infinitely many times, and uniformly
recurrent if every factor appears with bounded gaps. A shift space (X, T ) is said to be
linearly recurrent if there exists a constant K such that for each clopen set U generated by
a finite word u, the return time to U with respect to the shift T is bounded above by K|u|.
For more details, see for instance [22].
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If i ∈ {0, 1} we denote by ı̄ the other symbol in {0, 1}. Thus ı̄ = 1 − i, τi(i) = i, and
τi(̄ı) = īı. Throughout the paper we write θ for the golden mean, (1 +

√
5)/2. We use Greek

letters ω and υ for infinite sequences, and Roman letters u, v, w for finite words. The length
of a word w over the alphabet {0, 1} is denoted by |w|. We write N for the set of nonnegative
integers (0 ∈ N) and N∗ for the set of positive integers.

2.2. Initial critical exponent. Positive integer powers of a finite word w are defined by

w1 = w and wn = wn−1w for n > 1,

and for arbitrary p ≥ 0, the pth power of w is given by

wp = w�p�u

where u is the prefix of w of length �(p− �p�) |w|� . A word is called primitive if it is not an
integer power of some shorter word. The power of a word w in a sequence ω is the largest
p (possibly ∞) so that wp is a factor of ω. The prefix power of a word w in a sequence ω
is the largest p (possibly ∞) so that wp is a prefix of ω. Define the initial critical exponent
of ω, denoted by ice(ω), as the limit superior of the prefix powers of the words ω[0, n) in ω.
We similarly define ind∗(ω) for a sequence ω as the limit superior as n tends to ∞ of the
largest powers of the factors of length n appearing in ω. For a minimal shift space X, we
write ind∗(X) for the common value of ind∗ on sequences of X. We prove some properties of
ice and ind∗ .

Proposition 2.1. Let (X, T ) be a (one-sided) shift space. Then

(1) For any ω ∈ X one has ice(ω) ≤ ice(Tω), and if the inequality is strict then Tω is
the shift image of at least two different members of X.

(2) If (X, T ) is minimal then maxω∈X ice(ω) = ind∗(X).
(3) If X is infinite and minimal then some ω ∈ X has ice(ω) ≤ 1 + θ = (3 +

√
5)/2.

(4) If (X, T ) is minimal with sublinear complexity then ice is shift invariant off of the
union of a finite set of orbits, hence ice is almost everywhere constant with respect to
any ergodic Borel measure.

(5) If (X, T ) is linearly recurrent then ice is almost everywhere equal to ind∗(X) with
respect to any invariant Borel measure.

Proof. Let ω ∈ X. If w is a prefix of ω with prefix power p then the first right conjugate of
w, i.e., the word v obtained from w by moving the first letter to the end, is a prefix of Tω
with prefix power p− 1

|w| . The inequality in (1) follows.

Now suppose the inequality in (1) is strict. Then ice(Tω) > 1. Let vk be an increasing
sequence of prefixes of Tω whose corresponding prefix powers qk converge to ice(Tω). Let a
be the first letter of ω and let b be a common last letter for infinitely many of the vk. By
passing to a subsequence we may assume that qk > 1 and vk ends in b for all k. Note that
a �= b, since otherwise, for all k, the first left conjugate of vk is a prefix of ω with prefix
power qk +

1
|vk| and we obtain a contradiction:

ice(ω) < ice(Tω) = lim
k→∞

qk = lim
k→∞

qk +
1

|vk| ≤ ice(ω).

For each k, Tω begins in vkv
qk−1
k and ω begins in avk, hence avqk−1

k and bvqk−1
k are both

factors of sequences of X. But |vqk−1
k | → ∞ and each vqk−1

k is a prefix of Tω, hence aTω and
bTω both belong to X.
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To prove (2) we need the following:
(2′) For every p ∈ (0, ind∗(X)), every word which appears in sequences of X is a prefix of
some word whose pth power appears in sequences of X.
Proof of (2′). By minimality, if w appears in sequences of X then it appears in bounded
gaps, i.e., there exists N = N(w) such that for all ω in X, at least one of ω, Tω, . . . , TN(w)−1ω
begins in w. Choose η > 0 such that p+ η < ind∗(X), and let v be a word of length greater
than N/η such that vp+η appears in sequences of X. Then one of the first N − 1 right
conjugates of v has the required property.
Proof of (2). By (2′) we can find a sequence wk of words which appear in sequences of X,
such that, for each k, wpk

k is a prefix of wk+1, where pk ≥ 1 and pk → ind∗(X) and |wk| → ∞
as k → ∞. There is a unique ω ∈ X having each wk as a prefix, and the construction
guarantees ice(ω) ≥ ind∗(X). We always have ice ≤ ind∗(X), so this completes the proof.

Part (3) follows from [35].
To prove (4), we use Cassaigne’s result from [12]: The first difference of the complexity

function is bounded if complexity is sublinear. Let C > 0 be an upper bound for the first
difference of the complexity. By minimality, every word w in X of length n has at least
one left extension, that is, a word aw occurring in X for some letter a; hence there can be
no more than C words of length n which have two or more left extensions and the set of
sequences ω in X that have more than one shift preimage has at most C elements.

It suffices to verify part (5) for ergodic measures. Choose a subsequence (nk)k≥0 of the
positive integers such that the sequence of maximal powers pk of words of length nk converges
to ind∗(X). Linear recurrence implies that (pk)k≥0 is a bounded sequence, and for any ε > 0,
the measure of the set of sequences beginning in a word of length nk to power at least pk− ε
is bounded away from 0. This implies that the set of sequences with ice ≥ ind∗(X)− ε is a
set of positive measure. An application of (4) completes the proof. �

The focus of this paper is on the values of ice on the set Xα of all Sturmian sequences of
some fixed irrational slope α. It follows from known results (see for instance [45]) that

ind∗(α) := ind∗(Xα) = 2 + lim sup
k→∞

[ak; ak−1, . . . , a1],

where

[r0; r1, r2, . . . , rn] = r0 +
1

r1 +
1

r2 +
1

· · ·+ 1

rn

.

This implies in particular that any Sturmian sequence contains cubes (see also [9]) and that
a Sturmian sequence has finite index if and only if its slope has bounded partial quotients
(this last result was due to [34]). See [13] for a study of the topological structure of the set
of values taken by the index.

Lemma 2.2. The almost everywhere value of ice on Xα is ind∗(α).

Proof. Suppose first that ind∗(α) = ∞. Let p > 2 and N ≥ 3. There is a primitive word u
of length at least N and a power p′ ≥ Np+1 such that up′ appears in Xα and the exponent
p′ is maximal for words having the same length as u.
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We claim that up′−1 is left special, i.e., both 0up′−1 and 1up′−1 appear in Xα. To see this,
let a be the last letter of u. Since aup′ is the same as the first left conjugate of u to power
p′ + 1

|u| , maximality of p′ implies that this word does not appear in Xα. One of the symbols

b ∈ {0, 1} is such that bup′ appears in Xα, and we have just shown that b �= a. Thus aup′−1

and bup′−1 both appear in Xα, the former as a suffix of up′ and the latter as a prefix of bup′.
It is a property of Sturmian sequences that there is exactly one left special word of each

length and every left special word v has two first return words the sum of whose lengths
is |v| + 2. We know that u is a return word for up′−1, and it is a first return word because
u is primitive and p′ > 3. Therefore the other return word is the prefix of up′−1 of length
(p′ − 2)|u| + 2. This implies that the set of points of Xα beginning in a suffix of up′−1 of
length at least (p′ − 1)|u|/N has measure at least⌈

(N−1)(p′−1)|u|
N

⌉
(p′ − 2)|u|+ 2

≥ N − 1

N

and such points begin in a word of length |u| to power p. The result follows easily from this.
In case ind∗(α) < ∞, the partial quotients of α are bounded and Xα is linearly recurrent

following [22]. Part (5) of Proposition 2.1 applies directly. �

Using the lemma and the formula for ind∗(α) above, we see that the a.e. value of ice
on Xα is greater than 4 unless the partial quotients ak are eventually 1. Furthermore, for
Lebesgue almost every slope α ∈ (0, 1) the partial quotients are unbounded, and thus ice is
a.e. infinite on Xα.

2.3. An additive S-adic representation. Let ω ∈ {0, 1}N be a Sturmian sequence of
slope α. Exactly one of the words ii (i ∈ {0, 1}) is a factor of ω and there is a unique
sequence ω′ such that ω = T b(τi(ω

′)), where b = 0 if ω begins in i and b = 1 otherwise.
The map ω → ω′ on Xα is really just induction on the longer of the two intervals in the
associated two-interval exchange. Specifically, suppose ω codes the orbit of a point x; if x is
in the longer interval then ω′ codes the orbit of x in the induced interval exchange, and if x
is in the other (shorter) interval then ω′ codes the orbit of the preimage of x (which is in the
longer interval) in the induced interval exchange. With this interpretation it is clear that ω′

is also Sturmian. Thus we may iterate this “desubstitution” process to obtain our additive
S-adic expansion:

Proposition 2.3. Let ω be a Sturmian sequence. There exist a sequence of Sturmian se-
quences (ω(n))n≥1 and two sequences (bn)n≥1, (in)n≥1 with values in {0, 1} such that

(1) ω = T b1 ◦ τi1 ◦ · · · ◦ T bn ◦ τin(ω
(n)) for each n,

(2) (in) is not eventually constant,
(3) if in = in+1 and bn+1 = 0 then bn = 0,
(4) if in �= in+1 then bn and bn+1 are not both 1.

Proof. The induction process described above gives us the three sequences satisfying assertion
(1). If (in) were eventually constant, say in = i for all n ≥ N, then ω would contain arbitrary
powers of τi1 ◦ · · · ◦ τiN (i), which is impossible since ω is Sturmian.
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Assertions (3) and (4) are easily deduced from the facts that ω
(n)
0 is the first letter of

T bn+1 ◦ τin+1 , i.e.,

ω
(n)
0 =

{
in+1 if bn+1 = 0,

ı̄n+1 if bn+1 = 1,

and

bn = 1 =⇒ ω
(n)
0 = ı̄n.

�
It is helpful to think of T b1 ◦τi1 ◦· · ·◦T bn ◦τin as a composition of “inflations” (the τim) and

“cuts” (the T bm) where the amount cut after applying τim to ω(m) is less than the inflated

image of the first letter of ω(m), i.e., bm < |τim(ω
(m)
0 )|. Extending this notion of T as the map

which cuts off the first letter of a sequence, we shall abuse notation slightly and write Tw for
the suffix of a word w obtained by deleting the first letter. Let us note that, by definition,∣∣∣T b1 ◦ τi1 ◦ · · · ◦ T bn ◦ τin

(
ω

(n)
0

)∣∣∣ ≥ 1 for all n, hence

T b1 ◦ τi1 ◦ · · · ◦ T bn ◦ τin

(
ω(n)

)
= T b1 ◦ τi1 ◦ · · · ◦ T bn ◦ τin

(
ω

(n)
0

)
, τi1 ◦ · · · ◦ τin

((
ω

(n)
k

)
k≥1

)
,

where, for clarity, we have written , for concatenation. It is possible that∣∣∣T b1 ◦ τi1 ◦ · · · ◦ T bn ◦ τin

(
ω

(n)
0

)∣∣∣ = 1 for all n;

This happens, for example, when in = bn = n mod 2.
The following useful lemma can be proved by straightforward induction.

Lemma 2.4. If υ and υ′ are sequences in {0, 1} beginning in different letters and τ is any
composition of the τi then the longest common prefix of τ(υ) and τ(υ′) has length |τ(01)|−2.

We next show that what we have is indeed an additive S-adic expansion in the sense of
[22, 24]. The important thing is that the sequences (in) and (bn) entirely determine ω – we
do not need to keep track of the ω(n).

Proposition 2.5. Every pair of sequences (in)n≥1, (bn)n≥1 with values in {0, 1} satisfying
(2)–(4) of Proposition 2.3 is the additive S-adic expansion of a unique Sturmian sequence.

Proof. Suppose (in), (bn) satisfies (2)–(4) of Proposition 2.3. If υ, υ′ ∈ {0, 1}N then it follows
from Lemma 2.4 and the previous remarks on cuts and inflations that T b1◦τi1◦· · ·◦T bn◦τin(υ)
and T b1◦τi1◦· · ·◦T bn◦τin(υ

′) have a common prefix of length at least |τi1◦τi2◦· · ·◦τin(in)|−1,
which tends to infinity. Thus ∩∞

n=1T
b1 ◦ τi1 ◦ · · · ◦T bn ◦ τin({0, 1}N) contains of a single point,

ω. We claim that ω is Sturmian. Indeed, if υ is any Sturmian sequence then

ω = lim
n→∞

T b1 ◦ τi1 ◦ · · · ◦ T bn ◦ τin(υ).

The morphisms τ0 and τ1 are Sturmian (i.e., they take Sturmian sequences to Sturmian
sequences, see [31]) and the complexity of a limit is less than or equal to the limit of the
complexities, hence ω has complexity p(n) ≤ n + 1 and is therefore either Sturmian or
eventually periodic. It follows from the fact that (in) is not eventually constant that ω is
not eventually periodic, so p(n) ≥ n+1 and ω is Sturmian. One checks by induction that ω
has (in), (bn) as its S-adic expansion. �
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Such an expansion will be called the additive Ostrowski S-adic expansion associated with
the sequence ω. We will see below that Ostrowski expansions in the sense of [37] appear in
a natural way when one considers a multiplicative version of these expansions.

2.4. A multiplicative S-adic expansion. A more compact version of the additive S-adic
representation is desirable. As a sequence in {0, 1} we can write

i1i2 . . . = 0a11a20a31a4 . . .

with ai ≥ 1 for i ≥ 2. Let sk =
∑k

j=1 aj and ck =
∑sk

n=sk−1+1 bn. For all n ≥ 1 we have

0 ≤ cn ≤ an and if cn+1 = an+1 then cn = 0. We also have

b1b2 . . . = 0a1−c11c10a2−c21c2 . . . ,

and for k > 0

ω = τa1−c1
0 ◦ (T ◦ τ0)

c1 ◦ τa2−c2
1 ◦ (T ◦ τ1)

c2 ◦ · · · ◦ τak−ck
k−1 mod 2 ◦ (T ◦ τk−1 mod 2)

ck(ω(sk)).

To avoid cumbersome notation we shall henceforth write τn for τn mod 2. We can further
simplify to obtain

ω = T c1τa1
0 ◦ T c2τa2

1 ◦ T c3τa3
0 ◦ · · · ◦ T ckτak

k−1(ω
(sk)).

Let α = [0; a1 + 1, a2, a3, . . . ]. Set

p0 = 0 q0 = 1

p1 = 1 q1 = a1 + 1

and for k ≥ 2,

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2.

Set δ−1 = 1−α, δ0 = α, δ1 = 1−(a1+1)α, and for k ≥ 2, δk = |qkα−pk| = (−1)k(qkα−pk).
One has

∀k ∈ N, δk−1 = ak+1δk + δk+1.

The continued fraction convergents of α are the rational numbers pk/qk, which, as the name
suggests, converge to α. The convergents are in a sense best possible rational approximations
to α. The following lemma can be proved by straightforward induction.

Lemma 2.6. Write |w|j for the number of occurrences of the letter j in word w. Then for
i ∈ {0, 1}

(|τa1
0 ◦ · · · ◦ τak

k−1(i)|0, |τa1
0 ◦ · · · ◦ τak

k−1(i)|1
)
=

{
(qk − pk, pk) i = k mod 2

(qk−1 − pk−1, pk−1) i �= k mod 2.

It follows that the slope of ω is equal to lim pk/qk = α. This means that the ak and
hence the sequence (in) are determined by the slope of ω. Translating the condition on the
sequences (in) and (bn) to a condition on the ck, we have shown how Sturmian sequences of
slope α = [0; a1 + 1, a2, . . . ] are in one-to-one correspondence with sequences (ck) such that
0 ≤ ck ≤ ak and if ck+1 = ak+1 then ck = 0. In fact we have the following:
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Proposition 2.7. Let α = [0; a1 + 1, a2, a3, . . . ]. Let ω be a Sturmian sequence which codes

the orbit of the point x under the action of Rα or R̃α. There exists a sequence of integers
(cn)n∈N where

(1) ∀n,
{
0 ≤ cn ≤ an,

cn+1 = an+1 ⇒ cn = 0,

and a sequence of Sturmian sequences (υ(k)) such that

(2) ∀k, ω = T c1τa1
0 ◦ T c2τa2

1 ◦ T c3τa3
0 ◦ · · · ◦ T ckτak

k−1(υ
(k)),

and

x =
+∞∑
k=1

ck(−1)k−1δk−1 =
+∞∑
k=1

ck(qk−1α− pk−1).

Proof. Let us suppose that ω codes the orbit of x in [−α, 1−α) under the rotation Rα with
respect to the partition ([−α, 1 − 2α), [1 − 2α, 1 − α)) (the R̃α case is similar). We define
two-interval exchanges E(n) for n ≥ 0 as follows:
If n is even then E(n) : [−δn, δn−1)→ [−δn, δn−1) is given by

E(n)(z) =

{
z + δn if z ∈ [−δn,−δn + δn−1)

z − δn−1 if z ∈ [−δn + δn−1, δn−1)
.

If n is odd then E(n) : [−δn−1, δn)→ [−δn−1, δn) is given by

E(n)(z) =

{
z + δn−1 if z ∈ [−δn−1,−δn−1 + δn)

z − δn if z ∈ [−δn−1 + δn, δn)
.

Note that E(0) equals Rα. We also define inductively a sequence of points (x(n))n≥0 where

x(n) ∈
{
[−δn, δn−1) if n is even

[−δn−1, δn) if n is odd
,

and a sequence of nonnegative integers (cn)n≥1 by setting x(0) = x, and for n > 0 :
If n is even then

cn+1 =

{
0 if x(n) ∈ [−δn, δn+1)⌊

x(n)−δn+1

δn

⌋
+ 1 if x(n) ∈ [δn+1, δn−1)

and
x(n) = x(n) − cn+1δn.

If n is odd then

cn+1 =

{
0 if x(n) ∈ [−δn+1, δn)⌈
−x(n)+δn+1

δn

⌉
if x(n) ∈ [−δn−1,−δn+1)

and
x(n) = x(n) − cn+1δn.

Let us check that the admissibility condition (1) holds. We have easily that cn ≤ an for all
n ≥ 1. If c2k+1 �= 0 then x(2k+1) ∈ [δ2k+1 − δ2k, δ2k+1), and thus c2k+2 �= a2k+2. If c2k+2 �= 0
then x(2k+2) ∈ [−δ2k+2,−δ2k+2 + δ2k+1), and thus c2k+3 �= a2k+3.
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Furthermore, for all n ∈ N we have x = x(n) +
∑n−1

k=0 ck+1(−1)kδk and thus

x =

+∞∑
k=0

ck+1(−1)kδk.

This last series converges, since ∀k ≥ 1, 0 ≤ ckδk−1 ≤ ak

qk
≤ 1

qk−1
.

We claim that if n is even then E(n+1) is the induced transformation of E(n) on the interval
[−δn, δn+1). Let us check this. If z ∈ [−δn,−δn + δn+1) then

E(n)(z) = z + δn ∈ [0, δn+1)

and thus the induced transformation agrees with E(n+1) on [−δn,−δn + δn+1). If z ∈ [−δn +
δn+1, δn+1) then (

E(n)
)k

(z) = z + kδn ≥ δn+1 for 1 ≤ k ≤ an+1

and (
E(n)

)an+1+1
= z + (an+1)δn − δn−1 = z − δn+1 ∈ [−δn, 0),

as desired. One similarly checks that for n odd, E(n+1) is the induced transformation on the
interval [−δn+1, δn) of the map E(n).

For n ≥ 1 we let υ(n) be the Sturmian sequence coding the orbit of x(n) in the two-interval
exchange E(n) with respect to natural partition. It follows that υ(n) = T cn+1τ

an+1

n+1 (υ(n+1))
holds for every n. �
Remarks. Such an expansion will be called the (multiplicative) Ostrowski S-adic expansion
associated with the sequence ω. More generally, an expansion of the form

x =
+∞∑
k=0

ck+1(qkα− pk),

where the sequence of integer digits (ck) satisfies the admissibility condition (1) is called an
Ostrowski expansion following [37] (see also [10, 19, 20, 29, 30, 27, 37, 43, 44]). Note that
the characteristic sequence of slope α corresponds to intercept x = 0, having all ck equal to
0.

2.5. The Ostrowski odometer. Let α = [0; a1 + 1, a2, . . . ] and set

Kα = {(cn)n≥1| ∀n ≥ 1 (cn ∈ N, 0 ≤ cn ≤ an) and (cn+1 = an+1 ⇒ cn = 0)}.
It is easy to see that

Kα = {(cn)n≥1| ∀n ≥ 1, cn ∈ N, c1q0 + · · ·+ cjqj−1 ≤ qj − 1}.
Let c = (cn)n≥1 ∈ Kα, set

D(c) = {j ≥ 1; c1q0 + · · ·+ cjqj−1 = qj+1 − 1},
and put m = supD(c) if D(c) is nonempty, and m = −1 otherwise. Note that m = +∞ if
and only if c is of the form

a10a30 . . . or 0a20a4 . . . ,

and if m > 0 then

c =

{
a10a30 . . . am−10cm+1cm+2 . . . if m is even

0a20a4 . . . 0am−10cm+1cm+2 . . . if m is odd.
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Following [25], one can define on the compact set Kα (endowed with the product of the
discrete topologies on the finite sets {0 ≤ c ≤ an}) the addition σ by 1,

σ(c) =

{
0m+1(cm+1 + 1)cm+2 . . . if m <∞,

0∞ otherwise.

The map σ is called the Ostrowski α-odometer. The map σ : Kα → Kα is onto and
continuous, and (Kα, σ) is minimal (for more details, see [25, 7]).

Proposition 2.8. The dynamical systems (Kα, σ) and (Xα, T ) are topologically conjugate.

Proof. The sets Xα and Kα are in one-to-one correspondence via the map Ψ : Xα → Kα,
ω → (cn)n≥1, where (cn)n≥1 is the Ostrowski S-adic expansion of Proposition 2.7.

Suppose ω ∈ Xα and Ψ(ω) = c does not have a tail in common with a10a30 . . . or
0a20a4 . . . . Put m = supD(c) as before and let υ(k) be as in Proposition 2.7. Then cm+1 <
am+1 and

T (ω) = T
(
T c1τa1

0 ◦ · · · ◦ T cmτam
m−1

(
υ(m)

))
= τa1

0 ◦ · · · ◦ τam
m−1

(
Tυ(m)

)
= τa1

0 ◦ · · · ◦ τam
m−1 ◦ T cm+1+1τam+1

m

(
υ(m+1)

)
,

whence Ψ(Tω) = σ(Ψ(ω)). This holds for a dense set of ω ∈ Xα. �
2.6. A characterization of primitive substitutive Sturmian sequences. Let A be a
finite alphabet and A∗ denote the free monoid generated by A for the concatenation, i.e,
A∗ is the set of finite words over the alphabet A. A substitution is a non-erasing morphism
of the free monoid A∗. A substitution τ is said to be primitive if there exists an integer
k such that for all letters a, b in the alphabet A, a is a factor of τk(b). A sequence u is
primitive substitutive if there exist a primitive substitution τ over the alphabet B and a
letter-to-letter projection ϕ : B → A such that u = ϕ(v), where v = τ(v) is a fixed point
of τ . The aim of this section is to characterize primitive substitutive Sturmian sequences.
For characterizations of Sturmian sequences that are fixed points of substitutions, see for
instance [15, 39, 47]. Let us recall the following fact on Ostrowski’s numeration (see for
instance [27]):

Theorem 2.9. Let

x =

+∞∑
k=1

ck+1(qkα− pk),

where the sequence (ck) satisfies the admissibility conditions (1). Suppose α quadratic. Then
(cn) is ultimately periodic if and only if x ∈ Q(α).

Let ω be a uniformly recurrent sequence, i.e., a sequence in which every factor occurs
infinitely many times with bounded gaps, and let h be a factor of ω. A return word to h is a
factor ω[i, j), where h occurs in ω starting at the ith and jth places and nowhere between.
Let Ah be the set of return words to h in ω. A sequence υ with the same set of factors as ω
and having h as a prefix can be recoded over the alphabet Ah. The recoded sequence, called
a derived sequence of υ, and is denoted by Dh(υ). One can also associate a derived sequence
with a sequence υ not having h as a prefix as follows. Let p be a prefix of a return word in
Ah such that the sequence pυ starts with h and has the same set of factors as ω. We will
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also call a derived sequence the sequence over Ah obtained by coding the sequence pυ. We
will use the following result [21, 26, 23]:

Theorem 2.10. A uniformly recurrent sequence is primitive substitutive if and only if the
set of derived sequences (up to the alphabet) over all its factors is finite.

Note that an expansion of the form

ω = τa1−c1
0 ◦ (T ◦ τ0)

c1 ◦ τa2−c2
1 ◦ (T ◦ τ1)

c2 ◦ · · · ◦ τak−ck
k−1 ◦ (T ◦ τk−1)

ck(ω(sk)).

can explicitly be written in terms of a standard S-adic expansion, that is, as a limit of
the composition of a finite number of substitutions following [24, 22], by introducing the
morphisms τ ′

i for i ∈ {0, 1} defined by τ ′
i(i) = i and τ ′

i(j) = ji, for j �= i. Indeed we have

ω = τa1−c1
0 ◦ (τ ′

0)
c1 ◦ τa2−c2

1 ◦ (τ ′
1)

c2 ◦ · · · ◦ τak−ck
k−1 ◦ (τ ′

k−1)
ck(ω(sk)).

Proposition 2.11. A Sturmian sequence ω of slope α which codes the orbit of x is primitive
substitutive if and only if α is a quadratic irrational and x ∈ Q(α).

Proof. If α is quadratic and x ∈ Q(α), then by using the S-adic representation on the four
morphisms τi and τ ′

i , i ∈ {0, 1} one obtains that ω is primitive substitutive.
Conversely, suppose ω primitive substitutive. We will use the notation of Proposition 2.7.

The the sequences υ(k) are derived sequences. More precisely,

υ(n+1) = D(n mod 2)an+1 ((n mod 2)cn+1υ(n)).

Indeed (n mod 2)cn+1 has exactly two return words (n mod 2)cn+11 and (n mod 2)cn+1+11,
the second one corresponding to the interval of induction. The derived sequence of a derived
sequence is again a derived sequence (up to the alphabet). Hence following Theorem 2.10,
there are two sequences υ(n) and υ(m) which are equal, hence (an) and (cn) are ultimately
periodic. �

3. Calculating initial powers.

The paradigm for our study is that large initial powers of ω come from large initial powers
of the ω(n). Before giving a more precise statement let us prove a simpler fact. Let ω be a
Sturmian sequence and let in, bn, ω

(n) be defined as in the previous section. Recall that a
word is primitive if it is not an integer power of a shorter word.

Lemma 3.1. If ω begins in a word wr where r > 1, |w| > 2, and w is primitive then there is
a prefix w(1) of ω(1) such that w is a cyclic permutation of τi1(w

(1)). Furthermore, |w(1)| ≥ 2
and w(1) is primitive.

Proof. If b1 = 0 then ω0 = ω|w| = i1. The only place that i1 occurs in the image of a letter

under τi1 is as the first letter. Thus the longest word of the form τi1(ω
(1)
0 )τi1(ω

(1)
1 ) . . . τi1(ω

(1)
j )

which is a prefix of w must in fact be w, so that w(1) = ω(1)[0, j] does the job.
In the case b1 = 1, we have τi1(ω

(1)) = i1ω, and ω0 = ω|w| = ı̄1. Since no sequence in
the image of τi1 can have ı̄1 ı̄1 as a factor, it must be that ω|w|−1 = i1. The same argument

used in the first case produces a prefix w(1) of ω(1) for which τi1(w
(1)) = i1w[0, |w| − 2], and

i1w[0, |w| − 2] is a cyclic permutation of w.
Now |τi1(u)| ≤ 2|u| for any word u, and |τi1(w

(1))| = |w| > 2, so we must have |w(1)| ≥ 2,
and if w(1) were an integer power of some shorter word then w would be also, contrary to
the hypothesis. �
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We are now prepared to prove an important fact about initial powers. Let us recall that
for all k > 0, sk =

∑k
j=1 aj , and

ω = τa1−c1
0 ◦ (T ◦ τ0)

c1 ◦ τa2−c2
1 ◦ (T ◦ τ1)

c2 ◦ · · · ◦ τak−ck
k−1 ◦ (T ◦ τk−1)

ck(ω(sk))

= T c1τa1
0 ◦ T c2τa2

1 ◦ T c3τa3
0 ◦ · · · ◦ T ckτak

k−1(ω
(sk)).

Proposition 3.2. Suppose ω begins in a word w to power r ≥ 2, where |w| ≥ 2, and w
is primitive. Then there is a nonnegative integer m such that w is a cyclic permutation of
τi1 ◦ · · · ◦ τim(01), and ω(m) begins in 01 or 10 to power > �r� − 1. Furthermore, m is one of
the numbers sk − 1 or sk − ck − 1. If r ≥ 3 then m is one of the numbers sk − 1.

Proof. Let w(1) be the prefix of ω(1) given by Lemma 3.1. If |w(1)| > 2 and the prefix power
of w(1) in ω(1) is > 1 then we can apply the lemma again to get a prefix w(2) of ω(2). Continue
in this way as long as possible, at the nth step obtaining a prefix w(n) of ω(n) for which
τin(w

(n)) is a cyclic permutation of w(n−1), stopping after m steps when either |w(m)| = 2 or
the prefix power r′ of w(m) in ω(m) is 1. We claim that |w(m)| = 2, from which it follows that
w(m) is 01 or 10 since w(m) is primitive, hence w is a cyclic permutation of τi1 ◦ · · · ◦ τim(01),
and r′ > 1.

Let us prove that r′ > 1. Write (w(m))∞ for the infinite periodic word w(m)w(m)w(m) . . . .
The longest common prefix shared by (w(m))∞ and ω(m) is (w(m))r

′
, so by Lemma 2.4 the

longest common prefix of

τi1 ◦ · · · ◦ τim((w
(m))∞)

and

τi1 ◦ · · · ◦ τim(ω
(m))

has length

|τi1 ◦ · · · ◦ τim((w
(m))r

′
)|+ |τi1 ◦ · · · ◦ τim(01)| − 2 < |τi1 ◦ · · · ◦ τim((w

(m))r
′+1)|,

since w(m) must contain both a 0 and a 1, by primitivity of w(m).
On the other hand,

T b1 ◦ τi1 ◦ · · · ◦ T bm ◦ τim((w
(m))∞)

and

T b1 ◦ τi1 ◦ · · · ◦ T bm ◦ τim(ω
(m))

have wr as their longest common prefix and thus

τi1 ◦ · · · ◦ τim((w
(m))∞)

and

τi1 ◦ · · · ◦ τim(ω
(m))

have a common prefix of length ≥ r|w|. Putting these inequalities together we have

|τi1 ◦ · · · ◦ τim((w
(m))r

′+1)| > r|τi1 ◦ · · · ◦ τim(w
(m))|

from which we may deduce �r′� ≥ �r� − 1, and if either r or r′ is an integer then r′ > r− 1.
Thus r′ > 1 and hence |w(m)| = 2 as claimed. We thus have proved that ω(m) begins in 01
or 10 to power r′ > �r� − 1.

Let us now examine m more closely. We know that ω(m) begins in 010 or 101; indeed
w(m) = 01 or 10 and r′ > 1. By symmetry we need only to consider former possibility.
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Case 1: im+1 = 0. Since ω(m) begins in 01, then bm+1 = 0 and ω(m+1) must begin in 1.
If im+2 = 0 then this means bm+2 = 1, i.e., m is one of the numbers sk − ck − 1, where
0 < ck < ak. Otherwise im+2 = 1 and m is one of the sk − 1.

Case 2: im+1 = 1. Then bm+1 = 1 and ω(m+1) begins in 00, which means im+2 = 0, and hence
m is one of the sk − 1.

From the first case we see that if m is one of the numbers sk − ck − 1 (0 < ck < ak) then
ω(m) = τ0 ◦ T ◦ τ0(ω

(m+2)) and ω(m+2) begins in 10, which is enough to guarantee that ω(m)

begins in 0100, i.e., r′ = 3/2. This cannot happen if r ≥ 3, since �r′� ≥ �r� − 1. �

Now that we know where prefix powers r ≥ 2 in ω come from we can compute them exactly.

Proposition 3.3. Let w and r be as in Proposition 3.2 and let m, ω(m), and w(m) be as in
its proof. Assume that r is the largest power of w which is a prefix of ω. Then

r =


1ak+2=ck+2

+
Pk+1

j=1 (aj−cj)qj−1

qk
if m = sk − 1

1 +
Pk

j=1(aj−cj)qj−1

qk−ckqk−1
if m = sk − ck − 1 with 0 < ck < ak

where 1ak+2=ck+2
is 1 if ak+2 = ck+2 and 0 otherwise.

Conversely, for each k, ω begins in a cyclic permutation of τa1
0 ◦ τa2

1 ◦ · · · ◦ τak
k−1(01) with

prefix power 1ak+2=ck+2
+

Pk+1
j=1 (aj−cj)qj−1

qk
and for each k such that 0 < ck < ak, ω begins in a

cyclic permutation of the word τa1
0 ◦τa2

1 ◦· · ·◦τak−ck−1
k−1 (01) with prefix power 1+

Pk
j=1(aj−cj)qj−1

qk−ckqk−1
.

Before proving the proposition let us state a lemma to be used in the calculation. It is
proved easily by induction.

Lemma 3.4. Let k > 0 and set i = k mod 2. Then

∣∣τa1
0 ◦ τa2

1 ◦ · · · ◦ τak
k−1(īı)

∣∣ = qk + qk−1 = 2 +
k∑

j=1

ajqj−1,

∣∣τa1
0 ◦ τa2

1 ◦ · · · ◦ τak
k−1(i)

∣∣ = qk,

∣∣T c1 ◦ τa1
0 ◦ · · · ◦ T ck ◦ τak

k−1(i)
∣∣ = qk −

k∑
j=1

cjqj−1,

∣∣T c1 ◦ τa1
0 ◦ · · · ◦ T ck ◦ τak

k−1(īı)
∣∣ = 2 +

k∑
j=1

(aj − cj)qj−1.

Proof of Proposition 3.3. First suppose m = sk − 1. Set i = k mod 2, that is i = ik+1.
The sequence ω(sk) begins in i1ak+2=ck+2

+ak+1−ck+1 ı̄. Indeed, ω(sk+1) = T ck+1 ◦ τ
ak+1

i ω(sk+2); if
ak+2 �= ck+2, then ω(sk+1) begins in ı̄; if ak+2 = ck+2, then ck+1 = 0, and ω(sk+1) begins in i
since ω(sk+2) begins in i and hence ω(sk+1) begins in īı. The longest common prefix of

ω = T c1 ◦ τa1
0 ◦ · · · ◦ T ck ◦ τak

k−1(ω
(sk))

and

T c1 ◦ τa1
0 ◦ · · · ◦ T ck ◦ τak

k−1(i
∞)
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has the following length from Lemma 2.4:∣∣T c1 ◦ τa1
0 ◦ · · · ◦ T ck ◦ τak

k−1(i
1ak+2=ck+2

+ak+1−ck+1)
∣∣+ ∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak

k−1(īı)
∣∣− 2

=
(
1ak+2=ck+2

+ ak+1 − ck+1 − 1
) ∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak

k−1(i)
∣∣

+ |T c1 ◦ τa1
0 ◦ · · · ◦ T ck ◦ τak

k−1(i)|+
∣∣τa1

0 ◦ · · · ◦ τak
k−1(īı)

∣∣− 2

=
(
1ak+2=ck+2

+ ak+1 − ck+1)
) ∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak

k−1(i)
∣∣

+
∣∣T c1 ◦ τa1

0 ◦ · · · ◦ T ck ◦ τak
k−1(īı)

∣∣− 2

=

k∑
j=1

(aj − cj)qj−1 + (1ak+2=ck+2
+ ak+1 − ck+1)qk

=

k+1∑
j=1

(aj − cj)qj−1 + qk(1ak+2=ck+2
).

Thus ω begins in a cyclic permutation of τa1
0 ◦ τa2

1 ◦ · · · ◦ τak
k−1(i) to power∑k+1

j=1(aj − cj)qj−1 + qk1ak+2=ck+2∣∣τa1
0 ◦ τa2

1 ◦ · · · ◦ τak
k−1(i)

∣∣ = 1ak+2=ck+2
+

∑k+1
j=1(aj − cj)qj−1

qk

.

Since τk−1(i) = ı̄i, this power is exactly the value of r.
Next we consider the case m = sk−ck−1 with 0 < ck < ak. Again, set i = k mod 2. From

ω = τa1−c1
0 ◦ (T ◦ τ0)

c1 ◦ τa2−c2
1 ◦ (T ◦ τ1)

c2 ◦ · · · ◦ τak−ck
k−1 ◦ (T ◦ τk−1)

ck(ω(sk)),

it is easy to see that ω(sk−ck) begins in īı and the longest common prefix of

ω = T c1 ◦ τa1
0 ◦ · · · ◦ T ck−1 ◦ τak−1

k−2 ◦ τak−ck
k−1 (ω(sk−ck))

and

T c1 ◦ τa1
0 ◦ · · · ◦ T ck−1 ◦ τak−1

k−2 ◦ τak−ck
k−1 (i∞)

has length∣∣T c1 ◦ τa1
0 ◦ · · · ◦ T ck−1 ◦ τak−1

k−2 ◦ τak−ck
k−1 (i)

∣∣
+
∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak−1

k−2 ◦ τak−ck
k−1 (īı)

∣∣− 2

=
∣∣T c1 ◦ τa1

0 ◦ · · · ◦ T ck−1 ◦ τak−1

k−2 (̄ıak−cki)
∣∣+ ∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak−1

k−2 (̄ı)
∣∣

+
∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak−1

k−2 ◦ τak−ck
k−1 (i)

∣∣− 2

=
∣∣T c1 ◦ τa1

0 ◦ · · · ◦ T ck−1 ◦ τak−1

k−2 (īı)
∣∣+ (ak − ck)

∣∣τa1
0 ◦ τa2

1 ◦ · · · ◦ τak−1

k−2 (̄ı)
∣∣

+
∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak−1

k−2 ◦ τak−ck
k−1 (i)

∣∣− 2

=

k−1∑
j=1

(aj − cj)qj−1 + (ak − ck)qk−1 +
∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak−1

k−2 ◦ τak−ck
k−1 (i)

∣∣

=
k∑

j=1

(aj − cj)qj−1 +
∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak−1

k−2 ◦ τak−ck
k−1 (i)

∣∣ .
We also have ∣∣τa1

0 ◦ τa2
1 ◦ · · · ◦ τak−1

k−2 ◦ τak−ck
k−1 (i)

∣∣ = qk − ckqk−1
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and thus ω begins in a cyclic permutation of τa1
0 ◦ τa2

1 ◦ · · · ◦ τak−1

k−2 ◦ τak−ck
k−1 (i) to power

1 +

∑k
j=1(aj − cj)qj−1

qk − ckqk−1

.

As in the first case, this is exactly the value of r.
To prove the “conversely” part of the proposition, simply note that the formulas for the

lengths above do not depend on r or m at all. �

Corollary 3.5.

ice(ω) = lim sup
k→∞

max

(∑k+1
j=1(aj − cj)qj−1

qk
, 1 +

∑k
j=1(aj − cj)qj−1

qk − ckqk−1

)
.

Proof. Set x(k) = 1ak+2=ck+2
+

Pk+1
j=1 (aj−cj)qj−1

qk
and y(k) = 1 +

Pk
j=1(aj−cj)qj−1

qk−ckqk−1
. One has from

Proposition 3.3,

ice(ω) = max(lim sup
k→∞

x(k), lim sup
k→∞, 0<ck<ak

y(k)).

Observe that

• If ck = ak then y(k) = x(k − 2). Thus, if ck+2 = ak+2 then x(k) = y(k + 2).
• If ck = 0 and ck+1 = ak+1 then y(k) < y(k + 1) = x(k − 1).
• If ck = 0 and ck+1 < ak+1 then y(k) ≤ x(k).

The conclusion follows from these observations. �

4. Some general properties of ice.

4.1. Notation. In all that follows,

x(k) = 1ak+2=ck+2
+

∑k+1
j=1(aj − cj)qj−1

qk
,

x′(k) =

∑k+1
j=1(aj − cj)qj−1

qk
,

y(k) = 1 +

∑k
j=1(aj − cj)qj−1

qk − ckqk−1

.

One has

ice(ω) = lim sup
k→∞

max(x(k), y(k)) = lim sup
k→∞

max(x′(k), y(k)).

4.2. Characteristic sequence. Recall that the characteristic sequence ω of slope α is the
sequence obtained by setting all of the cj equal to 0. We can easily compute ice(ω) from



INITIAL POWERS OF STURMIAN SEQUENCES 17

Corollary 3.5:

ice(ω) = lim sup
k→∞

max

(∑k+1
j=1 ajqj−1

qk
, 1 +

∑k
j=1 ajqj−1

qk

)

= lim sup
k→∞

∑k+1
j=1 ajqj−1

qk

= lim sup
k→∞

qk+1 + qk − 2

qk

= lim sup
k→∞

1 + ak+1 +
qk−1

qk

= 1 + lim sup
k→∞

[ak; ak−1, . . . , a1]

= ind∗(α)− 1.

This quantity is finite if and only if the ak are bounded. One has ice(ω) ≤ 3 if and only if
all but finitely many of the ak are equal to 1, in which case α ∈ Q(θ) and ice(ω) = 1 + θ.

We can recover the shift invariance of ice off the orbit of ω as follows. Let ω(−α) be the
Sturmian sequence of slope α coding the orbit of −α under under Rα, and let ω(1− α) be

the Sturmian sequence of slope α coding the orbit of 1 − α under R̃α. These sequences are
the two shift preimages of the characteristic sequence ω∗, i.e.,

ω(−α) = 0ω and ω(1− α) = 1ω.

Since σ(0a20a4 . . . ) = σ(a10a30 . . . ) = 0000 · · · = Ψ(ω), it follows from Proposition 2.8 that

Ψ(ω(−α)) = 0a20a4 . . . and Ψ(ω(1− α)) = a10a30 . . . .

Corollary 3.5 shows that for c ∈ Kα, ice(Ψ
−1(c)) depends only on the tail of c, which is

by definition the same as that of σ(c) unless c ∈ {a10a30 . . . , 0a20a4 . . . }. Thus ice = ice ◦T
on Xα \ {ω(−α), ω(1− α)}.

By Corollary 3.5,

ice(ω(−α)) = lim sup
k→∞

max(a2k+1 +
q2k−1

q2k

, 1 + a2k−1 +
q2k−3

q2k−2

),

and

ice(ω(1− α)) = lim sup
k→∞

max(a2k+2 +
q2k

q2k+1
, 1 + a2k +

q2k−2

q2k−1
).

This implies ice(ω(−α)) ≤ ice(ω) and ice(ω(1− α)) ≤ ice(ω). One may have equality as in
the Fibonacci case (α = θ = [1; 1, 1, . . . ]), as well as a strict inequality as for instance for
α = [0; 3, 1, 3, 1, . . . ].

4.3. The “keep one” sequence. The aim of this section is to prove that there exists a
Sturmian sequence of slope α with very little repetition at the beginning, even if α has
unbounded partial quotients (and thus Xα has arbitrarily large powers in its language).

Proposition 4.1. For every irrational slope α there exists a Sturmian sequence ω ∈ Xα

such that ice(ω) ≤ 1 + θ.



18 V. BERTHÉ, C. HOLTON, AND L.Q. ZAMBONI

Proof. This is a special case of (3) of Proposition 2.1, but we find it interesting to specifically
give the S-adic expansion of such a point ω. Set ck = ak − 1 for all k and let ω ∈ Xα be the
corresponding Sturmian sequence. We claim that ice(ω) ≤ θ + 1. By Corollary 3.5,

ice(ω) = lim sup
k→∞

max

(∑k+1
j=1 qj−1

qk

, 1 +

∑k
j=1 qj−1

qk−1 + qk−2

)

= lim sup
k→∞

max

(
1 +

∑k
j=1 qj−1

qk
, 1 +

∑k
j=1 qj−1

qk−1 + qk−2

)

= 1 + lim sup
k→∞

∑k
j=1 qj−1

qk−1 + qk−2
.

Our next lemma completes the proof. �

Lemma 4.2. The continued fraction convergents qj satisfy∑k
j=1 qj−1

qk−1 + qk−2
< θ.

Proof. Our proof is far from elegant and requires consideration of several cases. Let fn be
the Fibonacci sequence f0 = 0, f1 = 1 and fn+1 = fn + fn−1. Also, set a′1 = a1 + 1 and
a′n = an for n ≥ 2.

If all of the a′j, j = 1, . . . , k − 1, are equal to 1 then qj = fj+1 for 0 ≤ j ≤ k and∑k
j=1 qj−1

qk−1 + qk−2
=

fk+2 − 1

fk+1
< θ,

since fk+2/fk+1 is one of the continued fraction convergents for θ.
Otherwise we let 5 ∈ {1, 2, . . . , k − 2} be the greatest index for which a′� �= 1, or we set

5 = 1 if a′1 = · · · = a′k−2 = 1 (and thus a′k−1 > 1). We have

qr = fr−�+1q� + fr−�q�−1 for 5 ≤ r ≤ k − 2,

and from the recursive definitions,
Pk

j=1 qj−1

qk−1 + qk−2
=

(fk−	+2 − 1)q	 + (fk−	+1 − 1)q	−1 + (a′
k−1 − 1)qk−2 +

P	
j=1 qj−1

fk−	+1q	 + fk−	q	−1 + (a′
k−1 − 1)qk−2

=
(fk−	+2 − 1 + (a′

k−1 − 1)fk−	−1)q	 + (fk−	+1 + (a′
k−1 − 1)fk−	−2)q	−1 +

P	−1
j=1 qj−1

(fk−	+1 + (a′
k−1 − 1)fk−	−1)q	 + (fk−	 + (a′

k−1 − 1)fk−	−2)q	−1

=
(fk−	+2 + (a′

k−1 − 1)fk−	−1)q	 + (fk−	+1 − a′
	 + (a′

k−1 − 1)fk−	−2)q	−1 +
P	−2

j=1 qj−1

(fk−	+1 + (a′
k−1 − 1)fk−	−1)q	 + (fk−	 + (a′

k−1 − 1)fk−	−2)q	−1

≤ (fk−	+2 + (a′
k−1 − 1)fk−	−1)q	 + (fk−	+1 − (a′

	 − 1) + (a′
k−1 − 1)fk−	−2)q	−1

(fk−	+1 + (a′
k−1 − 1)fk−	−1)q	 + (fk−	 + (a′

k−1 − 1)fk−	−2)q	−1
,

since q0+ · · ·+q�−3 < q�−1. We shall use the fact that a+b
c+d

is between a
b
and c

d
for any positive

real numbers a, b, c, d.
If a′k−1 > 1 then, since fn+1+m

fn+m
< θ for any positive integers m,n,

fk−�+2 + (a′k−1 − 1)fk−�−1

fk−�+1 + (a′k−1 − 1)fk−�−1

< θ
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and
fk−�+1 − (a′� − 1) + (a′k−1 − 1)fk−�−2

fk−� + (a′k−1 − 1)fk−�−2
< θ,

and the desired inequality follows.
We are left to consider the possibility that a′k−1 = 1 and a′� > 1. The inequality above

simplifies to ∑k
j=1 qj−1

qk−1 + qk−2
≤ fk−�+2q� + (fk−�+1 − (a′� − 1))q�−1

fk−�+1q� + fk−�q�−1
.

If k − 5 is even then
fk−	+2

fk−	+1
< θ and

fk−	+1−(a′
	−1)

fk−	
≤ fk−	+1−1

fk−	
< θ, and the desired inequality

follows. In case k−5 is odd, we have k−5 ≥ 3 and
fk−	+1

fk−	
< θ. Since (a′�−1)q�−1 >

a′
	−1

a′
	+1

q� ≥ 1
3
q�,

we have ∑k
j=1 qj−1

qk−1 + qk−2
≤ (fk−�+2 − 1

3
)q� + fk−�+1q�−1

fk−�+1q� + fk−�q�−1

and the observation that
fn− 1

3

fn−1
< θ for n ≥ 5 completes the proof. �

Remarks. By Proposition 3.3, all prefix powers r ≥ 2 in the “keep one” Sturmian sequence
of slope α are of the form

1 +

∑k
j=1 qj−1

qk

or 1 +

∑k
j=1 qj−1

qk−1 + qk−2

.

Thus, by Lemma 4.2, the Sturmian sequence obtained this way begins in no 1 + θ power at

all. It is easy to show that lim supk→∞ 1 +
Pk

j=1 qj−1

qk−1+qk−2
< 1 + θ unless (an) has arbitrarily long

strings of consecutive ones. It follows that ice(“keep one”) ≤ 1+ θ with equality if and only
if every sequence of slope α has ice ≥ 1 + θ.

4.4. The Fibonacci case. We prove some characteristic properties of the Fibonacci Stur-
mian shift X 1

θ
, which we henceforth denote by Xθ.

Proposition 4.3. (1) The function ice is shift invariant on Xθ and ice(ω∗) = 1 + θ,
where ω∗ denotes the characteristic sequence.

(2) Every ω in Xθ begins in arbitrarily large cubes except those ω in the Z-orbit of the
characteristic sequence ω∗ (see also [9]).

(3) One has

ice(Xθ) ={2 + θ −
∑
i≥1

γiθ
−i; ∀i γi ∈ {0, 1}, γiγi+1 = 0;

∀k ∈ N,
∑
i≥1

γiθ
−i ≤

∑
i≥1

γi+kθ
−i}.

The set ice(Xθ) is a compact subset of [1 + θ, 2 + θ], with empty interior; it is un-
countable. The set Q(θ) ∩ [1 + θ, 2 + θ] is dense in ice(Xθ).

(4) Let ω be a Sturmian sequence and (ck) be its Ostrowski expansion. One has ice(ω) <
2+ θ if and only if (ck)k≥1 does not contain arbitrarily long strings of consecutive 0s.
Let ω(x) be a Sturmian sequence of intercept x. More precisely,

dimH{x ∈ [1− θ, 2− θ]; ice(ω(x)) < 2 + θ} = 1.
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Remarks. One easily checks that if γ ∈ {0, 1}N
∗
with γiγi+1 = 0 for all i, then for any given

k ∑
i≥1

γiθ
−i ≤

∑
i≥1

γi+kθ
−i ⇐⇒ (γi)i≥1 ≤lex (γi+k)i≥1 = T k(γi),

≤lex denoting the lexicographic order.
Following the third assertion, an element ice(ω) of ice(Xθ) is of the form 2+θ−∑i≥1 γiθ

−i.

Furthermore, there exists a unique sequence γ in {0, 1}N
∗
with γiγi+1 = 0 for all i, and

γ ≤lex T k(γ) for all k, such that ice(ω) = 2+θ−∑i≥1 γiθ
−i. Indeed if γ does not ultimately

end in 0101 . . . , then (γi)i≥1 is the θ-expansion of 2 + θ − ice(ω) in the sense of [38, 41] and
its θ-expansion is not finite since γ ≤lex T k(γ) for all k; otherwise, if the the θ-expansion of

2 + θ − ice(ω) is finite, and say, equals
∑l

i=1 εiθ
−i, with εl = 1, then γ equals

ε1ε2 . . . εl−101010101 . . .

Let us note that the set of sequences γ′ with values in {0, 1} that satisfy γ′ ≤lex T k(γ′) for
all k has been proved in [1] to be the set of kneading sequences for one parameter families of
maps of the interval, piecewise increasing with a single discontinuity. The set of sequences
γ that we consider here is a subset consisting of the sequences γ with values in {0, 1} such
that

∀k ∈ N, γ ≤lex T k(γ) ≤lex (10)∞.

Let ϕθ : {0, 1}N
∗ → R, γ = (γi)i≥1 →

∑
i≥1 γiθ

−i. In other words,

ice(Xθ) = 2 + θ − ϕθ({γ ∈ {0, 1}N∗
; ∀k ∈ N, γ ≤lex T k(γ) ≤lex (10)∞}).

Proof. The proof of Assertion 3 is directly inspired from [13]. The computation of the
Hausdorff dimension is due to A. Rémondière (private communication).

We have proved the first assertion in Section 4.2.
Let us prove the second assertion. Let ω be a Sturmian sequence of slope θ not belonging

to the Z-orbit under the action of the shift T of the characteristic sequence ω∗. Let (ck) ∈
{0, 1}N be its Ostrowski expansion following Proposition 2.7. By assumption, the pattern
001 appears infinitely often in the sequence (ck). Fix an integer k for which ck = 1, ck−1 = 0,
ck−2 = 0. One has

y(k) = 1 +
qk−2 + qk−3 +

∑k−3
j=1(1− cj)qj

qk−2
.

One easily proves by induction that for any positive integer l

l∑
j=1

cjqj−1 ≤ ql − 1,

l∑
j=1

(1− cj)qj−1 ≥ ql−1 − 1,

hence

y(k) ≥ 2 +
qk−3 + qk−4

qk−2

= 3.

Let us prove the third assertion (which follows [13] in a similar situation). Let us first
observe that for any Sturmian sequence ω in Xθ, then

ice(ω) = lim sup
k→∞

y(k).
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It is a direct consequence of the following:

• if ak+1 = ck+1 = 1, then ck = 0, and y(k) = x′(k) + 1;
• if ck+1 = ck = 0, then y(k) = x′(k);
• if ck+1 = 0 and ck = 1, then ck−1 = 0, and y(k) = 1 + x′(k − 2).

Furthermore,

ice(ω) = lim sup
k→∞

2 +

∑k−2
j=1(aj − cj)qj−1

qk−2
= 2 + θ − lim inf

k→∞

∑k−2
j=1 cjqj−1

qk−2
.

Indeed, one has:

• if ck = 0, then y(k) ≤ 1 + qk+qk−1

qk
≤ 1 + θ;

• if ck = 1, then

y(k) = 2 +

∑k−2
j=1(aj − cj)qj−1

qk−2

≥ 2 +
qk−2 + qk−3 −

∑k−2
j=1 cjqj−1

qk−2

≥ 2 + θ −
∑k−2

j=1 cjqj−1

qk−2

≥ 1 + θ.

Let us prove that

ice(Xθ) = S :={2 + θ −
∑
i≥1

γiθ
−i; ∀i γi ∈ {0, 1}, γiγi+1 = 0;

∀k ∈ N,
∑
i≥1

γiθ
−i ≤

∑
i≥1

γi+kθ
−i}.

Let (ki) be an increasing sequence of indices with cki
= 1 such that

ice(ω) = 2 + θ − lim
i→∞

∑ki−2
j=1 cjqj−1

qki−2
.

By compactness (König’s lemma, see for instance [31]), the sequence of words (ckij
−2 . . . c1)i∈N

admits a limit point in {0, 1}N that we denote by (γi)i≥1.
One checks by normal convergence that

ice(ω) = 2 + θ −
∑
i≥1

γi

θi
,

and that the sequence (γi)i≥1 satisfies the following: for all i ≥ 1, γi = 1 implies γi+1 = 0.
Furthermore, one has

∀k ∈ N,
∑
i≥1

γiθ
−i ≤

∑
i≥1

γi+kθ
−i.

Indeed for k ∈ N

ice(ω) ≥ 2 + θ − lim
i→∞

∑ki−k−2
j=1 cjqj−1

qki−k−2

= 2 + θ −
∑
i≥1

γi+kθ
−i.

Furthermore the set of factors of (γi) is included in the mirror image of the set of factors
of the sequence (ck) (the mirror image of a factor w1w2 . . . wn is wnwn−1 . . . w1).
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Conversely, let (γi)i≥1 ∈ {0, 1}N
∗
be a sequence such that γiγi+1 = 0 for all i, and ∀k ∈

N,
∑

i≥1 γiθ
−i ≤∑i≥1 γi+kθ

−i.

• Let us assume that γ is a recurrent sequence, that is, every factor of γ appears
infinitely often. Let (wn)n≥1 be a sequence of factors of γ, such that for all n, wn

contains as a factor all the factors of length n, and wn is a suffix of wn+1; such a
sequence of words can be constructed since γ is recurrent. The sequence of words
(w̃n) admits a limit point (ck) ∈ {0, 1}N∗

; by construction, the set of factors of (ck) is
exactly the mirror image of the set of factors of γ. Let ω be the Sturmian sequence
associated with the sequence (ck)k≥1 according to Proposition 2.7. There exists a
strictly increasing sequence of integers (ki) such that(cki−2 . . . c1) converges towards
γ. Then one has

ice(ω) ≥ 2 + θ − lim
i→∞

∑ki−2
j=1 cjqj−1

qki−2
= 2 + θ −

∑
i≥1

γi/θ
i.

Furthermore ice(ω) is obtained for a sequence γ′ that has the same set of fac-
tors as γ, i.e., there exists a strictly increasing sequence of integers (nk) such that
γ′ = limk→∞ T nk(γ); one has

∑
i≥1 γ

′
i/θ

i ≥ ∑i≥1 γi/θ
i, since ∀k ∈ N,

∑
i≥1 γiθ

−i ≤∑
i≥1 γi+kθ

−i, and hence

ice(ω) ≤ 2 + θ −
∑
i≥1

γi/θ
i.

• Suppose now that γ is not recurrent. Let u be the longest prefix of γ such that
u appears infinitely often in γ. Such a word exists, otherwise γ equals 10000 . . . or
01111 . . . , and both sequences are excluded by the conditions on γ. Let (ni)i∈N be the
increasing sequence of indices of successive occurrences of u; set vi = γ1γ2 . . . γni−1.
Let us define the sequence c = (ck)k∈N∗ as c = ṽ1ṽ2 . . . ; one easily checks that (ck)
contains no 11; let ω be the corresponding Sturmian sequence. Let ki = n1+· · ·+ni−i,

for i ∈ N. One has limi→∞
Pki−2

k=1 cjqj−1

qki−2
=
∑

i≥1 γiθ
−i, and thus ice(ω) ≥ 2 + θ −∑

i≥1 γi/θ
i. One also has ice(ω) ≤ 2+ θ−∑i≥1 γi/θ

i. Indeed, let γ′ (with ∀k, γ′ ≤lex

T k(γ′) ≤lex
(10)∞) be the (unique) sequence that satisfies ice(ω) = 2+θ−∑i≥1 γ

′
iθ

−i.
It remains to prove that the set of factors of γ′ is included in the set of factors of
γ. Let w be a factor of γ′; w̃ appears infinitely often in (ck); by definition of u, the
occurrences of w̃ are ultimately included in words ṽk.

Now it is easy to deduce the topological properties of S. The set S is easily seen to be a
closed set. Indeed, Sk := ϕθ({γ ∈ {0, 1}N∗

; γ ≤lex T k(γ) ≤lex (10)∞}) is a closed set, and
so does S as S = 2 + θ − ∩kSk.

The set S is uncountable. Take for the sequences γ sequences which start with 0001 and
which then do not contain any more the pattern 0001, that is, which are built over the
patterns 01 and 001.

Let 2 + θ −∑i≥1 γiθ
−i ∈ S. Any interval centered at this point will contain a point of

the form 2 + θ −∑i≥1 γ
′
iθ

−i such that there exists an integer k with γ′
iθ

−i > γ′
i+kθ

−i; if the
pattern 00 occurs infinitely often in γ, exchange it for a sufficiently large occurrence by the
pattern 10; otherwise, γ ends in 0101 . . . , and exchange this ending by 10000 . . . .
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Any periodic sequence with period a prefix of a sequence γ produces an element of Q(θ),
hence the set Q(θ) ∩ [1 + θ, 2 + θ] is dense in ice(Xθ).

Consider now the fourth assertion. Let us first prove that ice(ω) < 2 + θ if and only if
(ck)k≥1 does not contain arbitrarily long strings of consecutive 0s. Assume that (ck)k≥1

contains arbitrarily long strings of consecutive 0s, then lim infk→∞
Pk−2

j=1 cjqj−1

qk−2
= 0, and

ice(ω) = 2 + θ. Conversely, if ice(ω) = 2 + θ, then γ = 0 and (ck) contains arbitrarily long
strings of consecutive 0s, since γ is a limit point of the sequence of words (cncn−1 . . . c1)n≥1.

With the notation of Section 2.4, if α = θ − 1 = [0; 1, . . . , 1, . . . ], then δn = 1/θn+1, and
hence ∑

k≥1

ck(−1)k−1δk−1 =
∑
k≥1

ck(−1)k−1θk.

Let ϕ̃θ : {0, 1}N
∗ → R, γ = (γi)i≥1 → ∑

i≥1 γi(−1)i−1θ−i. We are thus considering the
Hausdorff dimension of the set

{x ∈ [1− θ, 2− θ]; ∃(ck) ∈ {0, 1}N
∗
, x =

∑
k≥1

ck(−1)k−1θk,

∀k, ckck+1 = 0, (ck) contains bounded strings of consecutive 0s}
= ϕ̃θ({(ck) ∈ {0, 1}N

∗
; ∀k ckck+1 = 0, (ck) contains bounded strings of consecutive 0s}).

For p ≥ 3, let

Cp = ϕ̃θ({(ck) ∈ {0, 1}N∗
; ∀k ckck+1 = 0, (ck) does not contain 0p}).

These sets are closed and

{x ∈ [1− θ, 2− θ]; ice(ω) < 2 + θ} = ∪p≥3Cp.

Let us first note that the sequence (dimH Cp) is non-decreasing, since for all p ≥ 3, Cp ⊂
Cp+1. Hence one has dimH(∪p≥3Cp) = limp→∞ dimH Cp. Indeed dimH(∪p≥3Cp) ≥ dimH Cp, for
any p ≥ 3. Conversely, if d > limp→∞ dimH Cp, then the d-dimensional Hausdorff measure of
Cp equals zero, and so does the measure of ∪p≥3Cp, hence dimH(∪p≥3Cp) ≤ limp→∞ dimH Cp.

For i = 0, 1, let

Ci
p ={x ∈ [1− θ, 2− θ]; ∃(ck) ∈ {0, 1}N∗

,

x =
∑
k≥1

ck(−1)k−1θk; ∀k, ckck+1 = 0, (ck) does not contain 0p, c1 = i}.

One has

Cp = C0
p ∪ C1

p ,

C1
p = 1/θ − 1/θC0

p ,

C0
p = ∪1≤k≤p−1(−1)k/θkC0

1 ,

C0
p = ∪1≤k≤p−1(−1)k/θk+1 + (−1)k+1/θk+1C0

p .

For 1 ≤ k ≤ p−1, let sk : R → R, t → (−1)k/θk+1+(−1)k+1/θk+1t, be the similarity of ratio
1/θk+1; the set of similarities s1, . . . , sp−1 satisfies the open set condition [32] (take as open
set ]1−θ, 2−θ[ = ]−1/θ, 1/θ2[). Fix p ≥ 3; if dp denotes the Hausdorff dimension of Cp, then∑p

k=2(1/θ
dp)k = 1; in particular dp > 0; furthermore if up = 1/θdp , then up+1

p −u2
p−up+1 = 0.
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Let d∞ denote the limit of the non-decreasing sequence (dp); d∞ > 0; let u∞ = 1/θd∞; 1 >
u∞ ≥ 1/θ; The sequence (up) tends to 0, since (dp) tends to d∞ > 0. Hence −u2

∞−u∞+1 = 0,
and u∞ = 1/θ.

�

5. Smallest prefix powers.

Now we turn our attention to minimizing ice over Xα and proving Theorem 1.1, which we
recall below.
Theorem 1.1 Let α = [0; a1, a2, a3, . . . ] be an irrational number and Xα be the set of all
Sturmian sequences of slope α. Then there is a Sturmian sequence ω ∈ Xα with ice(ω) = 2
if and only if for each pair of positive integers (s, t) with s > 1 there are only finitely many
k for which (ak, ak+1) = (s, t) or (ak, ak+1, ak+2) = (1, 1, t).

We note that if min(ice(Xα)) = 2 then α has unbounded partial quotients and only
finitely many strings of more than than two consecutive 1s in the sequence of partial quotients
(ak)k≥1. Furthermore the set of α satisfying the assumptions of the theorem has zero measure.
In particular, no Sturmian shift with a quadratic slope can contain a sequence of ice equal to
2, and by Proposition 2.11, there are no substitutive Sturmian sequences ω with ice(ω) = 2.

5.1. Some first restrictions. Given the partial quotients ak of α we must choose the ck

(satisfying the admissibility condition (1)) so as to minimize the lim sup in Corollary 3.5. A
couple of observations will help narrow the playing field:

• If ak − ck > 2 for infinitely many k then ice(ω) ≥ 3. Indeed if ak − ck ≥ 3, then

x′(k − 1) ≥ (ak−ck)qk−1

qk−1
≥ 3.

• Given a sequence (ck) we can define a new sequence c′k by setting

c′k =

{
ck if ak = ck or ak+1 = ck+1

ak − 1 otherwise.

The sequence c′k also satisfies the admissibility condition (1) and determines a Stur-
mian sequence of slope α, and the only quantities in the formula of Corollary 3.5
which are increased by substituting the c′k for the ck are the ones of the form

y(k) = 1 +
Pk

j=1(aj−cj)qj−1

qk−ckqk−1
where k is an index for which c′k �= ck, in which case

c′k = ak − 1 > ck and

1 +

∑k
j=1(aj − c′j)qj−1

qk − c′kqk−1

= 1 +

∑k
j=1(aj − c′j)qj−1

qk−1 + qk−2

< 1 +

∑k
j=1(aj − c′j)qj−1

qk−1

≤
∑k

j=1(aj − cj)qj−1

qk−1

so that ice of the new sequence is no greater than that of the given sequence.

Consequently, in our quest to minimize ice over Xα we need only consider sequences where
for each k

• ck ∈ {0, ak − 1, ak},
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• if ck = 0 then ak = 1 or ck+1 = ak+1,
• if ak ≥ 2 then ck > 0 (and hence ck+1 < ak+1).

5.2. Special slopes. We describe those slopes α for which Xα has a sequence with ice
equal to 2. First we rule out some of the noncontenders. As before, α = [0; a1+1, a2, a3, . . . ],

x(k) = 1ak+2=ck+2
+

Pk+1
j=1 (aj−cj)qj−1

qk
, x′(k) =

Pk+1
j=1 (aj−cj)qj−1

qk
and y(k) = 1 +

Pk
j=1(aj−cj)qj−1

qk−ckqk−1
.

Proposition 5.1. If (s, t) is a pair of integers with s > 1 such that (ak, ak+1) = (s, t) for
infinitely many k then every ω ∈ Xα has ice(ω) ≥ 2 + 1

2(s+1)(t+1)+1
.

Proof. Fix an index k for which ak > 1. There are four cases to consider:

(1) Suppose ak+1 = ck+1. We have ck = 0 and

y(k + 1) = 1 +

∑k
j=1(aj − cj)qj−1

qk−1

≥ 1 + ak.

(2) Suppose ak+2 = ck+2. We have

y(k + 2) = 1 +

∑k+1
j=1(aj − cj)qj−1

qk

≥ 1 + ak+1 +
ak−1qk−2

qk

≥ 1 + ak+1 +
1

2ak + 1
.

(3) Suppose ak+2 − ck+2 ≥ 2. We have

x(k + 1) ≥ ak+2 − ck+2 +

∑k+1
j=1(aj − cj)qj−1

qk+1

≥ ak+2 − ck+2 +
akqk−1

qk+1

≥ ak+2 − ck+2 +
1

2ak+1 + 1
.

(4) Suppose ck+2 = ak+2 − 1 and ck+1 < ak+1. We have

y(k + 2) = 1 +
qk+1 +

∑k+1
j=1(aj − cj)qj−1

qk+1 + qk

≥ 1 +
qk+1 + qk +

∑k
j=1(aj − cj)qj−1

qk+1 + qk

≥ 2 +
ak−1qk−2

qk+1 + qk

≥ 2 +
1

2(ak + 1)(ak+1 + 1) + 1
.

In every case, one of x(k+1), y(k+1) and y(k+2) is at least 2+ 1
2(ak+1)(ak+1+1)+1

. The result

follows from this fact and Proposition 3.3. �
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Proposition 5.2. If t is an integer such that (ak, ak+1, ak+2) = (1, 1, t) for infinitely many
k then every ω ∈ Xα has ice(ω) ≥ 2 + 1

8t+1
.

Proof. Fix an index k for which ak = ak+1 = 1. We can save ourselves some labor by noting
that in our proof of Proposition 5.1 the assumption ak > 1 was used only in the first of
the four cases; in each of the last three cases the same estimates are valid and we see that
one of x(k + 1) and y(k + 2) is at least 2 + 1/9 ≥ 1/(8ak+2 + 1) = 1/(8t + 1). In the case
that ck+1 = ak+1 we must have ck+2 < ak+2; if we replace k with k + 1 in our proof of
Proposition 5.1 (Case 2, 3 and 4 applied on ck+3), the argument shows that one of x(k + 2)
and y(k + 3) is at least 2 + 1/(4(ak+2 + 1) + 1) ≥ 1/(8ak+2 + 1) = 1/(8t+ 1). �

Finally, we can prove the main theorem.

Proof of Theorem 1.1. One direction follows from the preceding propositions. Let us prove
the converse. Let α be as in the statement of the theorem. We shall define the sequence (ck)
and check that the Sturmian sequence it represents has ice equal to 2. Since ice does not
depend on the first values of ck, we will define (ck) for k large enough such that the pattern
111 no longer appears in ak, ak+1, . . . . We just require that the first values of (ck) satisfy the
admissibility condition (1). Here it is:

ck =




ak − 1 if ak > 1, ak−1 > 1,

ak − 1 if ak > 1, ak−1 = ak−2 = 1,

ak if ak > 1, ak−1 = 1, ak−2 > 1,

0 if ak = 1 and ak−1 > 1

ak if ak = 1 and ak−1 = 1

We verify the admissibility condition: If ck = ak then either ak > 1, ak−1 = 1 and ak−2 > 1
or ak = 1, ak−1 = 1 and thus ak−2 > 1; in both cases we have ck−1 = 0.

Note that ak − ck ∈ {0, 1} for all k ≥ 1, hence x′(k) ≤ y(k) for every k ≥ 1. Assume that
ice(ω) > 2. Then there exist ε > 0 such that one of the following four possibilities holds for
infinitely many integers k :

A: ak > 1 and ck = ak − 1;
B: ak > 1 and ck = ak;
C: ak = ak−1 = 1;
D: ak = 1 and ak−1 > 1.

Case A: Suppose ak > 1 and ck = ak − 1. Then either ak−1 > 1 or ak−1 = ak−2 = 1. Then

2 + ε ≤ y(k) ≤ 1 +

∑k
j=1(aj − cj)qj−1

qk−1 + qk−2

,

therefore

(1 + ε)(qk−1 + qk−2) ≤
k∑

j=1

qj−1 ≤ qk−1 + qk−2 + qk−3 +

k−3∑
j=1

qj−1.

Since
k−3∑
j=1

qj−1 ≤
k−3∑
j=1

ajqj−1 ≤ qk−3 + qk−4,
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we have

ε(qk−1 + qk−2) ≤ 2qk−3 + qk−4,

hence

ε(ak−1qk−2 + ak−2qk−3) ≤ 3qk−3 ≤ 3qk−2.

In particular, ε(ak−1qk−2) ≤ 3qk−2 and ε(ak−2qk−3) ≤ 3qk−3 hold for infinitely many k,
therefore there exists a pair of integers (s, t) such that (ak−2, ak−1) = (s, t) for infinitely
many k. It follows from our assumption on α that s = 1. There are two cases to consider:

• s = t = 1, and thus for infinitely many k,

ak > 1, ak−1 = ak−2 = 1, ck = ak − 1, ck−1 = ak−1,

ak−3 > 1, ck−2 = 0, ck−3 ≥ ak−3 − 1,

and

2 + ε ≤ y(k) ≤ 1 +
qk−1 + qk−3 + qk−4 +

∑k−4
j=1(aj − cj)qj−1

qk−1 + qk−2

= 1 +
qk−1 + qk−2 +

∑k−4
j=1(aj − cj)qj−1

qk−1 + qk−2
,

and thus

ε(qk−1 + qk−2) ≤ 2qk−4.

As

qk−1 + qk−2 = qk−2 + qk−3 + qk−3 + qk−4 = 3qk−3 + 2qk−4 ≥ (3ak−3 + 2)qk−4,

we see that

ε(3ak−3 + 2)qk−4 ≤ 2qk−4.

Since this inequality holds for infinitely many k, there exists an integer s > 1 such
that ak−3 = s and ak−2 = 1 for infinitely many k, a contradiction.

• s = 1 and t > 1. We thus have ak > 1, ak−1 = t > 1, ak−2 = 1, and ck = ak − 1.
One can assume ak−3 > 1, by assumption on α (the pattern 11t appears only finitely
many times). Hence ck−1 = ak−1 and ck−2 = 0. We thus obtain

2 + ε ≤ y(k) ≤ 1 +
qk−1 + qk−3 + qk−4 +

∑k−4
j=1(aj − cj)qj−1

qk−1 + qk−2

= 1 +
qk−1 + qk−2 +

∑k−4
j=1(aj − cj)qj−1

qk−1 + qk−2

,

that is,

ε(qk−1 + qk−2) ≤ 2qk−4.

As

qk−1 + qk−2 = tqk−2 + qk−3 + qk−3 + qk−4 = (t+ 2)qk−3 + (t+ 1)qk−4,

one gets

ε((t+ 2)ak−3 + (t+ 1))qk−4 ≤ 2qk−4.

Since this inequality holds for infinitely many k, there exists an integer t′ such that
ak−3 = t′, ak−2 = 1 and ak−1 = t for infinitely many k, a contradiction.
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Case B: Suppose ak > 1, ak−1 = 1 and ak−2 > 1. Then ck = ak and ck−1 = 0. We have

2 + ε ≤ y(k) = 1 +
qk−2 +

∑k−2
j=1(aj − cj)qj−1

qk−2

= 2 +

∑k−2
j=1(aj − cj)qj−1

qk−2

,

hence

εqk−2 ≤ qk−3 +

k−3∑
j=1

(aj − cj)qj−1 ≤ 3qk−3,

and
εak−2qk−3 ≤ 3qk−3.

Since this inequality holds for infinitely many k, there exists an integer s > 1 such that
ak−1 = 1 and ak−2 = s for infinitely many k, a contradiction.

Case C: Suppose ak = 1 and ak−1 > 1. Then ck = 0. One has

2 + ε ≤ y(k) ≤ 1 +
qk−1 + qk−2 +

∑k−2
j=1(aj − cj)qj−1

qk

= 1 +
qk +

∑k−2
j=1(aj − cj)qj−1

qk

,

hence
εqk ≤ qk−2 + qk−3,

and
ε(ak−1 + 1)qk−2 ≤ ε(qk−1 + qk−2) ≤ 2qk−2.

This last inequality holds for infinitely many k. It follows that for some s > 1 we have ak = 1
and ak−1 = s for infinitely many k, a contradiction.

Case D: Suppose ak = 1 and ak−1 = 1. Then, by hypothesis, ak−2 > 1, ck = 1 and ck−1 = 0.
We have

2 + ε ≤ y(k) = 1 +
qk−2 + qk−3 +

∑k−3
j=1(aj − cj)qj−1

qk−2
,

that is,
εqk−2 ≤ 3qk−3,

and
εak−2qk−3 ≤ 3qk−3.

Since this inequality holds for infinitely many k, there once again exists an integer s > 1
such that for ak−1 = 1 and ak−2 = s for infinitely many k, contrary to hypothesis. �
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Théorie des Nombres de Bordeaux 5 (1993), 123–137.
[16] D. DAMANIK, D. LENZ, Uniform spectral properties of one-dimensional quasicrystals, I. Absence of

eigenvalues, Comm. Math. Phys. 207 (1999), 687–696.
[17] D. DAMANIK, D. LENZ, The index of Sturmian sequences, Europ. J. Combinatorics 23 (2002), 23–29.
[18] D. DAMANIK, R. KILLIP, D. LENZ, Uniform spectral properties of one-dimensional quasicrystals, III.

α-continuity, Comm. Math. Phys. 212 (2000), 191–204.
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