
HAL Id: lirmm-00125485
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125485

Submitted on 19 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the System-on-Chip Realization of a Sensorless
Vector Controller with Microsecond-order Computation

Time
Rachid Beguenane, Jean-Gabriel Mailloux, Stephane Simard, Arnaud

Tisserand

To cite this version:
Rachid Beguenane, Jean-Gabriel Mailloux, Stephane Simard, Arnaud Tisserand. Towards the System-
on-Chip Realization of a Sensorless Vector Controller with Microsecond-order Computation Time.
CCECE’06: Canadian Conference on Electrical and Computer Engineering, May 2006, pp.908-912,
�10.1109/CCECE.2006.277332�. �lirmm-00125485�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125485
https://hal.archives-ouvertes.fr

Towards the System-on-Chip Realization of a
Sensorless Vector Controller with

Microsecond-order Computation Time
Rachid Beguenane∗, Jean-Gabriel Mailloux∗, Stéphane Simard∗, and Arnaud Tisserand†

∗Groupe ERMETIS, Département des Sciences appliquées
Université du Québec à Chicoutimi

Chicoutimi (QC), G7H 2B1, CANADA
rbeguena@uqac.ca, jean-gabriel mailloux@uqac.ca, s.simard@ieee.org

† LIRMM, CNRS-Univ. Montpellier II
161 rue Ada. F-34392 Montpellier, FRANCE

arnaud.tisserand@lirmm.fr

Abstract— The aim of this research is to implement sensorless
vector control algorithms on a single, eventually reconfigurable,
chip, with a computation timing constraint of, at most, 1-6
microseconds, and a concern for implementation cost. In this
article, we discuss the implementation problems and tradeoffs
involved in meeting these goals on Field-Programmable Gate
Arrays (FPGAs). To be able to fit a complete induction motor
vector controller on a single, inexpensive FPGA chip, we estimate
the area/time requirements of each module involved in sensorless
vector control. We discuss, in particular, the tradeoffs of imple-
menting the key modules, the speed and flux observers and the
Clarke and Park transformations. The speed and flux observers
here under consideration are extended Kalman filter-based.

I. INTRODUCTION

Technological progress depends more and more on miniatur-
ization and increasingly fast and powerful computing systems,
and we witness a true revolution in microelectronics. In almost
every field, significant progress now greatly depends on ad-
vances in nanotechnologies and their applications. The design
of lighter, less cumbersome, and more economic application-
specific computing processors becomes required in order to
reach increasingly demanding performances.

The very fast evolution of CMOS integrated circuit fabrica-
tion technologies already makes it possible to design complete
digital systems integrated on the same chip.

The reconfigurable chips known as FPGAs (Field-
Programmable Gate Arrays) currently on the market are man-
ufactured at a level of integration of around 90 nanometers
or less, and usually comprise several millions of gates on the
same chip. They offer considerable advantages for accelerating
the time to market, and reduce the development and production
costs.

In field of electric motor control, with which we are
concerned in this research, the real-time computing capacity
of traditional approaches using PC computers and off-the-shelf
digital signal processors (DSPs), is largely superseded. One
must now turn to nanotechnologies in order to obtain adequate

hardware acceleration. FPGAs, light and relatively inexpen-
sive, are usually more powerful than traditional devices, and
appear therefore ideal for implementing real-time control
systems without involving the considerable costs traditionally
related to the design and fabrication of application-specific
integrated circuits (ASIC).

The semiconductor industry is trying to design digital signal
controllers (DSCs) having a computing time of only a few
microseconds for the precise and robust control of electric
motors. It would actually be possible of increasing the current
operating efficiency of electric motors, now in the order of
approximately 40-60%, up to 90%.

The high cost and complexity of the required electronics
always constituted a significant impediment to the implemen-
tation of complex algorithms within a dynamic of only a few
microseconds. The DSC technology, traditionally composed of
DSPs coupled to a microcontroller unit or a microprocessor,
is presently reaching its physical limits, with a minimal com-
puting time about 6 microseconds for the most minimalistic
implementation of vector control using a speed sensor. The
challenge to which we attack ourselves here is to realize on
a single chip, without using a speed sensor, and in an even
shorter lapse of time, the most sophisticated vector control
algorithms, where the speed and the flux will not be measured,
but estimated by hardware. We will see the complexity of these
estimates in the following discussion.

II. INDUCTION MOTOR VECTOR CONTOL

The characteristics of the induction motor are basically non-
linear. Vector control, also called flux directed control, is the
first method which makes it possible to artificially give a
certain linearity to the torque control of the induction motor.
Speed sensors are however necessited, in general, for the
implementation of vector control. This does not pose any
problem as long as the induction motor is used for regular
motion control using a position or speed encoder, but whenever

1-4244-0038-4 2006 IEEE
CCECE/CCGEI, Ottawa, May 2006

908

ωr

VSI
PWM
Gating
Driveg

g
g Inverse

Park
Transform

Inverse
Clarke

Transform

Park
Transform

Clarke
Transform

Clarke
Transform

Controller
Speed PI

Rotor Flux
PI Controller

Q-Current
PI Controller

D-Current
PI Controller

g
Decoupling

ω Estimator

Speed Measure

a
a

a aa
a a a aa a a

��
��

f

a
a

a
a

- -

-- -
-

-

-

- -
-
-

...
..........

..........
.......

-

6

66

66

�

666 66

�
�

�
�

�
�

�

�

�

�

�

�

-

-

-

-

6

-

-

6

�

isd

isq

IM

sin θ cos θ

usβ

usα

usq

usd

usα

usβ

isa
isb
isc

usa
usb
usc

isα

isβ

T usa
T usb
T usc

i∗sq

i∗
sd

vsd

vsq

+

−

++ω∗r

Ψ∗r +

−

− −

cos θ

sin θ

Ψr

ω

Rotor
Flux

Estimator

Fig. 1. IM Vector Control Scheme

it is impossible to connect a sensor to the motor shaft, the
implementation proves difficult. It is then necessary to carry
out vector control without using a speed sensor, with all the
difficulties that that poses.

Precise induction motor control requires the independent
control of the components of its input current producing the
field and the couple, as it is the case with the DC motor. The
only theoretical solution which makes it possible to realize
such an independence of control consists in breaking up the
stator current into its components in a domain or a suitable
frame of reference. By taking a synchronously revolving frame
of reference, with the space vector of rotor flux as phasor
of reference, it is mathematically possible to separate the
stator current in two independent components isd and isq,
respectively controlling the field and the torque of the motor.
Decoupling between the effects of the components of the
current then makes it possible to simplify the control of the
mechanical variables of the drive, and to impose on the motor
fast variations of the rotor flux at starting and at constant
power.

A. Induction Motor Model in Park Domain

The electromechanical model of the induction motor in the
Park reference frame (d, q), known as Park domain, synchro-
nously revolving at speed ω, is stated as follows:

usd = Rsisd + σLs
d
dt

isd−σLsωisq +
M

Lr

d
dt

Ψr︸ ︷︷ ︸
Dd

(1)

usq = Rsisq + σLs
d
dt

isq +σLsωisd +
M

Lr
ωΨr︸ ︷︷ ︸

Dq

(2)

d
dt

Ψr = −βrΨr + Mβrisd ; βr =
Rr

Lr
(3)

ω = Ppωr +
Mβr

Ψr
isq (4)

dωr

dt
=

3
2
Pp

M

JLr
Ψrisq −

f

J
ωr −

Tl

J
(5)

with
usd, usq Stator voltage of d-axis and q-axis
isd, isq Stator current of d-axis and q-axis
Ψr Rotor flux modulus
ω Angular speed of the (d, q) reference frame
Ls, Lr Stator and rotor inductances
M Mutual inductance
Rs, Rr Stator and rotor resistances
σ Leakage coefficient of the motor
βr Constant: Lr/Rr

Pp Number of pole pairs
ωr Rotor speed, or angular frequency

(measured or estimated)
J Inertial momentum
f Friction coefficient
Tl Torque load

B. System Block Diagram

In the following, we develop the mathematical expressions for
the blocs in Fig. 1. The starred (∗) variables are the input
references for the PI controllers. In general, ε denotes the
error signal, and kp, ki, the PI controller parameters. The α
and β subscripts denote the components of the corresponding
variables in the stationnary (α, β) reference frame. The a, b,
and c subscripts denote the components of the corresponding
variables in the stationnary (a, b, c) reference frame. θ is the
angular position of the rotor flux vector, with θ =

∫
ω dt.

a) Speed PI Controller:

i∗sq = kpv
εv + kiv

∫
εv dt ; εv = ω∗r − ωr

b) Rotor Flux PI Controller:

i∗sd = kpf
εf + kif

∫
εf dt ; εf = Ψ∗

r −Ψr

c) Rotor Flux Estimator:

Ψr =
√

Ψ2
rα + Ψ2

rβ

cos θ =
Ψrα

Ψr
; sin θ =

Ψrβ

Ψr

909

ω

VSI
PWM
Gating
Driveg

g
g

EKF-Based
Speed &

Rotor
Flux

Estimators

Inverse
Park

Transform

Inverse
Clarke

Transform

Park
Transform

Clarke
Transform

Clarke
Transform

Controller
Speed PI

Rotor Flux
PI Controller

Q-Current
PI Controller

D-Current
PI Controller

g
Decoupling

ω Estimator

a
a

a aa
a a a aa a a

��
��

f

a
a

a
a

- -

-- -
-

-

-

- -
-
-

...
..........

..........
.......

-

6

66

66

�

666 66

�
�

�
�

�
�

�

�

�

�

�

�

-

-

-

-

6

-

-

6

isd

isq

IM

sin θ cos θ

usβ

usα

ωr

usq

usd

usα

usβ

isa
isb
isc

usa
usb
usc

isα

isβ

T usa
T usb
T usc

i∗sq

i∗
sd

vsd

vsq

+

−

++ω∗r

Ψ∗r +

−

− −

cos θ

sin θ

Ψr

Fig. 2. EKF-based Speed-sensorless IM Vector Control Scheme

with

Ψrα =
Lr

M
(Ψsα − σLsisα)

Ψrβ =
Lr

M
(Ψsβ − σLsisβ)

Ψsα =
∫

(usα −Rsisα)

Ψsβ =
∫

(usβ −Rsisβ)

d) Current PI Controller:

vsd = kpi
εisd

+ kii

∫
εisd

dt; εisd
= ı∗sd − isd

vsq = kpi
εisq

+ kii

∫
εisq

dt; εisq
= ı∗sq − isq

e) Decoupling:

usd = σLsvsd + Dd ; usq = σLsvsq + Dq

with

Dd = −σLsωisq +
M

Lr

d
dt

Ψr

Dq = +σLsωisd +
M

Lr
ωΨr

f) Omega (ω) Estimator:

ω = Ppωr +
Mβr

Ψr
isq

g) Clarke Transformations:

isα = isa

isβ =
1√
3
isa +

2√
3
isb

and

usa = usα

usb = −1
2
usα +

√
3

2
usβ

usc = −1
2
usα −

√
3

2
usβ

h) Park Transformation:(
isd

isq

)
= PT

(
isα

isβ

)
with

PT =
(

cos θ sin θ
− sin θ cos θ

)
i) Inverse Park Transformation:(

usα

usβ

)
= PT−1

(
usd

usq

)
with

PT−1 =
(

cos θ − sin θ
sin θ cos θ

)
When it is necessary to carry out vector control without

using a speed sensor, the speed can be calculated from the
values of the current and voltage of an AC motor. Open-
loop solutions give a certain speed estimate, but inherently
bear a large error. For better results, it is necessary to de-
sign an estimator or a filter. The Kalman filter has a good
dynamic behavior, a good resistance to perturbations, and it
can function at stand still. Designing a filter for an AC motor
remains however a very complex problem which requires the
calculation of the motor model in real time. Moreover, it is
necessary to calculate the filter equations, which normally
implies several matrix multiplications as well as one matrix
inversion. These requirements can nevertheless be satisfied
by a high-performance computing processor. Fig. 2 shows
the speed-sensorless induction motor vector control scheme
including the speed and rotor flux estimator based on an
extended kalman filter (EKF). The tradeoffs involved in the
implementation of this estimator constitute the core of the
present research and require in-depth analysis and careful
considerations which will make the object of a subsequent
study.

910

III. IMPLEMENTATION ANALYSIS

The basic IM vector control scheme (Fig.1) comprises 24
multiplications (including multiplication by a constant and
squaring), 3 divisions, and only one square root operation.
We further observe that the division and square root operators
are localized in close mutual coupling inside the rotor flux
and ω estimators. Because of the fact that cos θ = Ψrα/Ψr

and sin θ = Ψrβ/Ψr, no actual sine or cosine computation is
involved.

Most modern FPGAs embed several tens, even up to a
couple hundreds, of small, ultra-fast, 18x18 VLSI multipliers,
which can readily be used in signal processing applications.
All multiplications involved in an implementation of the IM
vector control scheme can efficiently be implemented using
these embedded multipliers.

The division and square root operators, thanks to their
small number and the modest operand width required, can
efficiently be implemented by traditional hardware modules
without being overcostly in area. An extensive comparative
study of divider implementations on FPGAs, including all
kinds of restoring, non-restoring, and SRT dividers has been
presented in [1]. It is even possible to implement dividers
based on the small embedded 18x18 multiplier blocks [3],
[4].

The matrix operations involved in implementing the EKF-
based estimator are outside the scope of the present article.

We analysed the system of Fig.1 using the Xilinx blockset
in Simulink. This analysis revealed that the required internal
precision would be of at least 32 bits. We will show in the next
section the results of a straightforward FPGA implementation
of this design using System Generator.

IV. AREA AND TIME ESTIMATES

We did a worst case analysis of the system implementation
as a network of on-line modules following the methodology
proposed in [2]. Table II shows our area cost estimates for a
16-bit on-line implementation. The arithmetic modules imple-
mentation data presented in Table I have been taken from [2]
for the on-line (ol-XXX) modules and SRT-DIV, while NR-
SQRT is our home implementation of a non-restoring parallel-
sequential square root. We see from Table III that the on-
line delay on the bottleneck path of the system is about 116
clock cycles. One lap of the whole control loop therefore takes
about 164 clock cycles to complete, taking into account the
required conversions back and forth between standard binary
and redundant number representations. Estimating that this on-
line design could be clocked at 100 MHz on a Virtex-II FPGA,
its total computation time would therefore be of around 1.6
microseconds.

For a crude, but rather convincing, comparision with a 32-
bit parallel arithmetic implementation, the synthesis results of
the VHDL code generated using System Generator, targetting

TABLE I
16-BIT ARITHMETIC MODULES IMPLEMENTATION RESULTS

(MOSTLY FROM [2])

Module δ CLB LUT FF Freq.
(MHz)

ol-ADD 2 3 4 5 -
ol-cMUL 1 14 24 18 89
ol-cMAC 2 16 27 19 86
ol-MUL 4 93 149 139 79
ol-Div 5 115 187 122 57
SRT-DIV N/A 36 58 34 78
NR-SQRT N/A 25 28 43 –

TABLE II
16-BIT ON-LINE IMPLEMENTATION AREA ESTIMATES

LUT FF
4 Error Differences 4 5
Speed PI Controller 55 65
Rotor Flux PI Controller 55 65
Q-Current PI Controller 55 65
D-Current PI Controller 55 65
Decoupling 584 540
Park Transform 604 566
Inverse Park Transform 604 566
Clarke Transform 1 53 42
Clarke Transform 2 53 42
Inverse Clarke Transform 58 48
Rotor Flux Estimator 1039 791
ω Estimator 241 165
TOTAL 3460 3025

TABLE III
ESTIMATED ON-LINE DELAY OF THE BOTTLENECK PATH

Module ol-delay
Clarke Transformation 19
Rotor Flux Estimator 38
Park Transformation 23
ω Estimator 36
TOTAL 116

TABLE IV
SYSTEM GENERATOR SYNTHESIS RESULTS FOR VIRTEX II XC2V2000-4

Slices 6484
Flip-flops 4700
LUTs 11086
MULT18x18 50

TABLE V
NUMBER OF CLOCK CYCLES ON THE BOTTLENECK PATH FOR THE

SYSTEM GENERATOR DESIGN

Module N Cycles N Cycles
Variant A Variant B

Clarke Transformation 3 3
Rotor Flux Estimator 77 15
Park Transformation 6 6
ω Estimator 34 3
TOTAL 120 27

911

a Virtex II xc2c2000-4 FPGA, are presented in Table IV. The
dividers and square root operators used in this design are all
sequential, based on the non-restoring algorithm. On lap of
the complete control loop of an implementation of this design
using the minimum possible number of registers takes 131
clock cycles at a maximum frequency of 50 MHz. The total
computation time is therefore of about 2,5 microseconds.

In addition, two variants of this design have been evaluated
where each arithmetic module outputs are registered. The first,
Variant A, uses sequential dividers and square root operators,
while the second, Variant B, uses a 1-clock version of the same
operators. Variant A can be clocked up to around 100 MHz and
takes 120 clock cycles to complete one lap of the whole control
loop. The maximum frequency of Variant B is about 8 MHz,
and one lap takes 27 clock cycles. From this data, a simple
calculation tells us that the computation time of Variant A is
about 1.2 microseconds, while that of Variant B is about 3.4
microseconds.

V. CONCLUSION

For the basic IM vector control scheme using a speed sensor,
our analyses and estimations showed that, thanks to the ab-
sence of actual sine and cosine functions computations, and to
the localized, small number of dividers (3 of them) and square
root operators (only 1) involved, an FPGA implementation in
parallel arithmetic using the embedded multipliers present in
modern FPGAs has the potential to outperform one in on-line
arithmetic, while not being overcostly in area. Even at twice
the number of bits of precision than used in the on-line design,
the parallel designs compare advantageously with the on-line
one, both in area cost and computation time.

On-line arithmetic might reveal superior characteristics,
however, when implementing the sensorless, EKF-based, vec-
tor control scheme, because of the intrinsic complexity of
the matrix operations involved and the consequently increased
system size. This will make the object of a further study.

ACKNOWLEDGMENTS

This research is funded by a grant from the National Sciences
and Engineering Research Council of Canada (NSERC).

CMC Microsystems provided development tools and support
through the System-on-Chip Research Network (SOCRN)
program.

REFERENCES

[1] G. Sutter, G. Bioul, and J.-P. Deschamps, “Comparative Study of SRT-
Dividers in FPGA,” FPL 2004, LNCS 3203, pp. 209–220, 2004.

[2] R. Galli and A. Tenca, “A Design Methodology for Networks of Online
Modules and Its Application to the Levinson–Durbin Algorithm,” IEEE
Trans. on VLSI, Vol. 12, No. 1, Jan. 2004.

[3] B.R. Lee and N. Burgess, “Improved Small Multiplier Based Multipli-
cation, Squaring and Division,” Proc. 11th Annual Symposium on Field-
Programmable Custom Computing Machines (FCCM’03), 2003.

[4] J.-L. Beuchat and A. Tisserand, “Small Multiplier-Based Multiplication
and Division Operators for Virtex-II Devices,” FPL 2002, LNCS 2438,
pp. 513–522, 2002.

912

