
HAL Id: lirmm-00125517
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125517

Submitted on 20 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Function Evaluation on FPGAs using On-Line
Arithmetic Polynomial Approximation

Rachid Beguenane, Stephane Simard, Arnaud Tisserand

To cite this version:
Rachid Beguenane, Stephane Simard, Arnaud Tisserand. Function Evaluation on FPGAs using On-
Line Arithmetic Polynomial Approximation. NEWCAS’06: 4th International Northeast Workshop
on Circuits and Systems, Jun 2006, Gatineau, Canada. pp.21-24, �10.1109/NEWCAS.2006.250959�.
�lirmm-00125517�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125517
https://hal.archives-ouvertes.fr

Function Evaluation on FPGAs using On-Line
Arithmetic Polynomial Approximation

Rachid Beguenane∗, Stéphane Simard∗ and Arnaud Tisserand†
∗ ERMETIS, Univ. Québec at Chicoutimi

555, boulevard de l’Université. Chicoutimi (QC), G7H 2B1, CANADA
rbeguena@uqac.ca s.simard@ieee.org

† LIRMM, CNRS–Univ. Montpellier II
161 rue Ada. F-34392 Montpellier, FRANCE

arnaud.tisserand@lirmm.fr

Abstract— This paper presents the first results of a young
collaboration between ERMETIS and LIRMM on hardware
arithmetic operators for digital control and digital signal process-
ing. It presents on-line arithmetic operators for the polynomial
approximation of some functions (e.g., reciprocal, square-root,
sine, cosine, exponential, logarithm). The proposed method is
based on polynomial approximations with sparse coefficients well
suited for FPGA implementation.

I. INTRODUCTION

Digit-serial arithmetic is often proposed to implement algo-
rithms in digital signal processing and digital control applica-
tions [1]. Its main advantages are: small size operators, small
number of communication lines and overlapping of consec-
utive operations (pipeline). Digit-level pipeline and operation
parallelism (enabled by the small size of the operators) may
compensate for the low speed inherent to the digit serial
transmission.

In digit-serial operators, the transmission may begin with the
least significant digit first (LSDF) or with the most significant
digit first (MSDF). Recent works use LSDF arithmetic in a
more a less systolic architecture [2]. In practice the MSDF
mode, or on-line arithmetic, has several advantages:

• accurate analog to digital converters (ADCs) only work
in the MSDF mode;

• all operations can be computed MSDF using a redun-
dant number system (comparison and division cannot be
computed directly in the LSDF mode);

• simpler accuracy management (the significant and useful
digits are produced in the beginning).

Many algorithms and implementations have been proposed
for the main operations such as addition, multiplication, divi-
sion and square root in on-line arithmetic [3, chap. 9]. But for
function evaluation (e.g., sine, cosine, exponential, logarithm),
there are only a few practical results [4]. The purpose of
this paper is the evaluation of functions using polynomial
approximations with sparse coefficients on FPGAs. The spe-
cific formulation of the polynomial evaluation leads to a very
simple architecture well suited for FPGAs.

This paper is organized as follows. Section II presents a
short introduction to on-line arithmetic. Section III recalls
basic notions on polynomial approximation. The proposed

method is presented in Section IV for the evaluation of one
function. The method is illustrated in the case of multiple
functions in Section V. Conclusion is presented in Section VI.

II. BACKGROUND ON ON-LINE ARITHMETIC

On-line arithmetic was introduced in 1977 by Ercegovac
and Trivedi [5]. In on-line arithmetic the operands as well as
the results flow in a digit-serial fashion with MSDF through
arithmetic units. Algorithms for the main operations can be
found in [3, chap. 9] and [6]. In the following, we will
use the radix-2 addition, multiplication and square algorithms
from these references. Important timing characteristics of on-
line operators are their on-line delay (δ) and period (τ), as
illustrated in Fig. 1. The on-line delay δ corresponds to the
latency of the operator (i.e., δ digits of the input(s) are required
to compute the first digit of the result).

δ.τ
τ τ τ τ τ τ τ τ

δ δ

rrrrrrrr1 2 3 4 5 6 7 8
t

invalid

1 2 3 4 5 6 7 8xxxxxxxx

1 2 3 4 5 6 7 8yyyy

x

r

y

i

i+i+

y y y y

0 0

00
operator

Fig. 1. On-Line Operator Timing Characteristics

In order to allow all computations in the MSDF mode, on-
line arithmetic uses a redundant number system [3, chap. 9]. In
this work, we focus on radix-2 algorithms using the borrow-
save (signed) representation and a fixed-point format. In the
borrow-save representation, the value x is represented by∑−m

i=n xi2−i with xi ∈ {−1, 0, 1}. The number of integer bits
m is very small in our target applications, the accuracy is
represented by the number of fractional bits n. The developed
method provides approximations up to 16 bits of accuracy.
The notation ()2 denotes the binary representation of a value.
Bits with a negative weight are denoted by 1.

In the first phase of our collaboration, we use the results
from the BigSky environment [7] and the article [6]. In a near
future we plan to develop our own library of on-line arithmetic
operations in order to measure the impact of the radix and digit

211-4244-0417-7/06/$20.00 ©2006 IEEE

coding. BigSky generates a description of networks of on-
line arithmetic circuits based on a library of basic operations.
Table I presents estimations of the main characteristics of the
on-line operators used below. The parameter N is the total
number of digits (i.e., N = n+m). These values are extracted
(or extrapolated for those marked with ≈) from [7] and [6].
The implementations results from [7] have been obtained on
Virtex FPGAs from Xilinx (small device, lowest speed grade,
no package impact).

area speed on-line
operation # inputs # slices MHz delay

addition 2 3 253 2

addition k 2k − 2 n.a. �log2 k� + 1

multiplication 2 7N + 1 101 3

mult. by cst. 1 ≈ 4N + 3 ≈ 140 2

square 1 5N + 3 135 3

TABLE I

ESTIMATION OF THE MAIN CHARACTERISTICS OF SOME ON-LINE

OPERATORS (EXTRACTED OR EXTRAPOLATED FROM [7] AND [6])

III. BACKGROUND ON POLYNOMIAL APPROXIMATION

In this work we use polynomial approximations to evaluate
functions. A detailed presentation of polynomial approxima-
tions and other function evaluation methods can be found
in [8]. Function f is evaluated with the argument x in the
domain [a, b]. The input x and the result f(x) are in fixed-point
format. The integer d denotes the degree of the approximation
polynomial P . In our current applications, the approximation
of standard functions require polynomials up to degree 5 (less
than 24 bits of accuracy on small intervals).

In order to measure the theoretical approximation error εth

due to the use of the polynomial P to evaluate the function
f on [a, b], we use the distance (estimated using the Maple
infnorm function):

εth = ||f − P ||∞ = max
a≤x≤b

|f(x) − P (x)|.

The polynomial approximations used in the following are
based on the minimax polynomial approximation as a starting
point. The degree-d minimax polynomial approximation to f
on [a, b] is the polynomial P ∗ that satisfies:

||f − P ∗||∞ = min
P∈Pd

||f − P ||∞,

where Pd is the set of polynomials with real coefficients and
degree at most d. Minimax approximations can be computed
thanks to an algorithm due to Remes [9] (implemented in the
Maple minimax function).

IV. PROPOSED METHOD

When using polynomial approximations, the size of the
multipliers is the main limitation at the circuit level. We
propose to replace some large multiplications by additions
thanks to polynomial approximations with sparse coefficients
(i.e., with a lot of 0s). In order to illustrate our method,

we will use an example in the following: f(x) = cos(x),
x ∈ [0, π/4], N = n = 16 bits, m = 0 and d = 3, so
P (x) = p0 + p1x + p2x

2 + p3x
3 and x = 0.x1x2 . . . x16.

The starting point of our method is the best polynomial
approximation to f using the minimax polynomial Pth. For
the cosine example, Maple provides the minimax polynomial:

Pth = 0.999886 + 0.004690x − 0.530309x2 + 0.063046x3.

This polynomial leads to a theoretical approximation accu-
racy of 13.10 bits (εth = 0.0001135).

Since the constant coefficient p0 is not involved in any
multiplication, there is no need to convert it to a sparse
coefficient. The integer αi denotes the number of non-zero
bits in coefficient pi.

The conversion of the minimax coefficients to sparse co-
efficients is performed using a simple iterative algorithm. At
each iteration, the power of 2 the nearest to the coefficient is
subtracted or added (depending on its sign) to the coefficient.
This iteration is applied to the remainder until the target
precision is reached or enough digits have been used (maximal
value allowed for αi).

For a given n-digit format (relative error 2−n) and at
most αi non-zero digits, this algorithm provides the canonical
signed digit (CSD) representation of the value truncated to
n digits with αi digits. This representation ensures that the
number of non-zero digits in the recoded value is minimal.
Using this recoding on a n-bit unsigned value, the number
of non-zero digits is bounded by (n + 1)/2 and it tends
asymptotically to an average value of n/3 + 1/9, as shown
in [10].

Table II presents the conversion result of the coefficient
p2 = −0.530309 to sparse values in the CSD representation
for several values of α2. The last line corresponds to the
standard binary value (b.v.) of |p2|.

α2 result accuracy (# bits)

1 (0.1000000000000000)2 5.04

2 (0.1000100000000000)2 10.05

3 (0.1000100001000000)2 14.78

4 (0.1000100001000010)2 17.60

b.v. -(0.1000011111000010)2 17.60

TABLE II

CSD CONVERSION OF p2 FOR SEVERAL VALUES OF α2

We denote by (α1, α2, . . . , αd) the decomposition with
coefficient pi on αi non-zero bits for all values of i (all
the monomials pix

i, p0 is not converted). There are many
solutions for the decomposition of the d coefficients of poly-
nomial P . The question is what is the best one? In order to
answer to this question we propose to explore all the possible
decompositions. This exhaustive search is feasible in practice
because of the small size of our exploration space.

For each coefficient pi, there is no need to explore decompo-
sitions with an accuracy better than the format accuracy (n-bit

22

computations). This means that αi is bounded by the maxi-
mum number of non-zero digits in the CSD representation. By
definition, the CSD representation ensures αi ≤ (n+1)/2 for
n-bit values [10]. In our target applications, the operand size
is up to 24 bits.

For each monomial pix
i, αmax,i denotes the maximum

value of αi for pi with respect to the format accuracy.
Therefore, the total number of decompositions is

∏d
i=1 αmax,i.

In our target applications, d the limited to 5. So, in practice,
the maximal number of decompositions to test is (24/2)5 =
248 832. All those tests are independent, so they can be
performed in parallel in order to speed up the process. In the
cosine example, we have αmax,1 = αmax,2 = αmax,3 = 4.
Then the number of decompositions to test is only 43 = 64.

The polynomial corresponding to decomposition
(α1, α2, . . . , αd) is denoted P(α1,α2,...,αd). The quality
of this polynomial approximation is measured using its
accuracy (||f − P(α1,α2,...,αd)||∞ on [a, b]) and its evaluation
cost. In a first time, we will evaluate the cost using the
number of terms in the decomposition: 1 +

∑d
i=1 αi.

Figure 2 presents the accuracy and the cost of the 64 decom-
positions of the cosine example. The dashed line represents the
accuracy of the minimax polynomial (13.10 bits). This kind of
figure may help to determine what is the best tradeoff between
accuracy and cost with respect to the application constraints.
In Figure 2, six decompositions have been selected and are
detailed in Table III.

 4

 6

 8

 10

 12

 14

 5 6 7 8 9 10 11 12 13 14

co
st

accuracy (# bits)

m
in

im
ax

(1,1,1)

(1,2,1)

(2,3,1)

(3,3,2)

(4,3,2)

(4,4,4)

Fig. 2. Accuracy and Cost of the 64 Decompositions of the Cosine Example

The decomposition with the highest accuracy (first com-
parison criterion) and the smallest cost (second com-
parison criterion) is (4,3,2) (our . The coefficients of
P(4,3,2) are: p0 = (0.1111111111111000)2, p1 =
(0.0000000100110100)2, p2 = (0.1000100001000000)2 and
p3 = (0.0001000000100000)2.

The architecture for the evaluation of this polynomial is
depicted in Figure 3. The power stage generates the powers
of x required in the polynomial evaluation. In this example
x2 and x3 are generated. The FIFOs in this stage are used to
compensate for the on-line delay of the operators. The area

decomp. accur. cost polynomial

(1,1,1) 5.82 4 8191
8192

+ 1
256

x − 1
2
x2 + 1

16
x3

(1,2,1) 9.30 5 8191
8192

+ 1
256

x − 17
32

x2 + 1
16

x3

(2,3,1) 12.19 7 8191
8192

+ 5
1024

x − 545
1024

x2 + 1
16

x3

(3,3,2) 12.53 9 8191
8192

+ 19
4096

x − 545
1024

x2 + 129
2048

x3

(4,3,2) 13.00 10 8191
8192

+ 77
16384

x − 545
1024

x2 + 129
2048

x3

(4,4,4) 13.00 13 8191
8192

+ 77
16384

x − 17377
32768

x2 + 16527
262144

x3

TABLE III

SELECTED DECOMPOSITIONS FROM THE COSINE EXAMPLE

cost and on-line delay of the power stage may be estimated
using the values from Table I. In a future work, we will provide
an optimized power stage with a its cost and on-line delay
estimations.

p
0

12

8

ad
d

it
io

n

δ=5

x δ=3

δ=3

square

multiplication

x

x

x3

2

14
11

10

11

5
1

4

P

sum stagepower stage

1−digit FIFO

Fig. 3. Architecture of Decomposition (4,3,2) in the Cosine Example

The sum stage uses the decomposition charac-
teristics. The monomial p3x

3 is decomposed in
(0.0001000000100000)2x3 = 2−4x3 + 2−11x3. The other
decompositions are: p2x

2 = −2−1x2 − 2−5x2 + 2−10x2

and p1x = 2−8x + 2−11x + 2−12x + 2−14x . The constant
coefficient p0 is stored in a specific shift register. All the
terms of the decompostion are added (or subtracted) to
produce P (x).

The numerous FIFOs used in the architecture presented in
Figure 3 do not represent a huge area in the FPGA. We use
the shift registers of the slice in Virtex FPGAs. In pratice any
FIFO up to 16 borrow-save digits can be implemented in only
one slice! So all the FIFOs of Figure 3 only use 6 slices (can
be optimized to 5 by merging the two FIFOs of the x2 line
since 10 + 3 < 16). So the cost is dominated by the power
stage. But for given values of d and n, this stage has a fixed
cost. This is why we use 1 +

∑d
i=1 αi as a cost estimation in

a first approximation. The use of more complex solutions for
the sharing of the powers of x delay lines are considered for
further work.

Based on the estimation of the operators cost from Table I,
we explore the cosine example with d ∈ {2, 3, 4} for the
FPGA cost (estimations in number of Virtex slices). The
results of this exploration are presented in Figure 4.

23

 50

 100

 150

 200

 250

 300

 350

 400

 450

 4 6 8 10 12 14 16 18

co
st

 (#
 s

lic
es

)

accuracy (# bits)

d=4
d=3
d=2

Fig. 4. Cosine Accuracy and Cost for d = 1, d = 2 and d = 3

V. PROPOSED METHOD FOR THE EVALUATION OF

MULTIPLE FUNCTIONS

The architecture depicted in Figure 3 suggests that only the
sum stage is specific to a function. The power stage can be
shared for the evaluation of multiple functions. This principle
is illustrated on Figure 5.

f1

f2

f3

x power stage

x

x

x

x

2

3

d
δ

sum stages

Fig. 5. Sharing of the Power Stage for Multiple Functions Operators

As an example, we use the functions sin and cos on x ∈
[0, π/4] with n = 16 bits and d = 3. For the cosine function,
we use the decomposition (4,3,2) from Section IV. The method
for the sine function gives the best decomposition (2,2,3), it
leads to 13.73 bits of accuracy and a cost of 210 slices. We
also implemented a merged version for both functions.

Table IV clearly shows the benefit of the method for the
evaluation of multiple functions. The cost of the “merged”
version (cos, sin) is only 14% larger than the cost a single
function operator. This property seems very interesting for
multiple input multiple output (MIMO) systems.

f cos sin (cos, sin)

cost 214 210 239

TABLE IV

EVALUATION OF cos AND sin

Some small area improvement can be obtained by sharing
common subexpressions in the multiple sum stages. Another
improvement way is to use the tool presented in [11] in
order to share coefficients or part of the coefficients in several
polynomials.

VI. CONCLUSION

This paper presents a method for the evaluation of functions
based on on-line arithmetic polynomial approximations with
sparse coefficients. This method seems to be very interesting
for multiple functions evaluation.

In a near future, we plan to develop a tool to automaticaly
generate the corresponding operators. We also plan to measure
the impact of the choice of the radix and the digit coding on
the cost and speed of the operators.

At a theoretical level, our method only deals with the
approximation error. We plan to try to integrate in our method
the evaluation error due to round off.

REFERENCES

[1] R. Hartley and P. Corbett, “Digit-serial processing techniques,” IEEE
Transactions on Circuits and Systems, vol. 37, no. 6, pp. 707–719, June
1990.

[2] A. Aggoun, M. Ibrahim, and A. Ashur, “Bit-level pipelined digit-serial
array processors,” IEEE Transactions on Circuits and Systems II, vol. 45,
no. 7, pp. 857–868, July 1998.

[3] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[4] J.-L. Beuchat and A. Tisserand, “Évaluation polynomiale en-ligne de
fonctions élémentaires sur FPGA,” Technique et Science Informatiques,
vol. 23, no. 10, pp. 1247–1267, 2004.

[5] K. S. Trivedi and M. D. Ercegovac, “On-line algorithms for division
and multiplication,” IEEE Transactions on Computers, vol. 26, no. 7,
pp. 681–687, July 1977.

[6] J.-C. Bajard, J. Duprat, S. Kla, and J.-M. Muller, “Some operators
for on-line radix-2 computations,” Journal of Parallel and Distributed
Computing, vol. 22, no. 2, pp. 336–345, Aug. 1994.

[7] A. Schneider, R. McIlhenny, and M. D. Ercegovac, “BigSky–an on-line
arithmetic design tool for FPGAs,” in Proc. of the 8th IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM), Napa
Valley, CA, USA, Apr. 2000, pp. 303–304.

[8] J.-M. Muller, Elementary Functions: Algorithms and Implementation,
2nd ed. Birkhäuser, 2006.

[9] E. Remes, “Sur un procédé convergent d’approximations successives
pour déterminer les polynômes d’approximation,” C.R. Acad. Sci. Paris,
vol. 198, pp. 2063–2065, 1934.

[10] R. I. Hartley, “Subexpression sharing in filters using canonic signed
digit multipliers,” IEEE Transactions on Circuits and Systems II, vol. 43,
no. 10, pp. 677–688, Oct. 1996.

[11] N. Brisebarre, J.-M. Muller, and A. Tisserand, “Computing machine-
efficient polynomial approximations,” ACM Transactions on Mathemat-
ical Software, 2006, to appear.

24

