
HAL Id: lirmm-00125519
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125519v1

Submitted on 19 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Generation of Low-Power Circuits for the
Evaluation of Polynomials

Arnaud Tisserand

To cite this version:
Arnaud Tisserand. Automatic Generation of Low-Power Circuits for the Evaluation of Polynomials.
40th Asilomar Conference on Signals, Systems and Computers, Oct 2006, Pacific Grove, CA (USA),
pp.2053-2057, �10.1109/ACSSC.2006.355128�. �lirmm-00125519�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125519v1
https://hal.archives-ouvertes.fr

Automatic Generation of Low-Power Circuits
for the Evaluation of Polynomials

Arnaud Tisserand
LIRMM, CNRS–Univ. Montpellier 2

161 rue Ada. F-34392 Montpellier, FRANCE
arnaud.tisserand@lirmm.fr

Abstract—This paper presents a method for the automatic gen-
eration of high-performance and low-power arithmetic operators
based on polynomial approximations. It deals with the bit-level
representation of the polynomial coefficients, the intermediate
computations width, the approximation and the rounding errors.
The generated operators are small, fast and numerically validated
at design time. Some examples have been implemented on FPGAs.

INTRODUCTION
The design of high-performance and pow-power arithmetic

operators is an important issue in application specific inte-
grated circuits (ASICs), systems on chip (SoCs) and field-
programmable gate arrays (FPGAs) implementations. Basic
operations such addition/subtraction or multiplication have
always been implemented as high-performance operators in
digital circuits [1]. Some recent applications require fast eval-
uation of more complex operations such as division, reciprocal,
square-root, trigonometric functions, logarithm or exponential.
Function approximation is often performed using polynomial
evaluation in software as well as in hardware. For instance,
elementary functions (sine, cosine, exponential, logarithm...)
are often evaluated using polynomials [2].
This paper presents a method for the automatic generation

of arithmetic operators based on polynomial approximations.
This method has been presented in French in [3]. Here we
deal its power consumption advantages. The proposed method
produces polynomial approximations “well-suited” for high-
performance hardware implementations. It faces with two
problems: the generation of the polynomial coefficients that
ensure low approximation errors and the sizing of intermediate
computations that provide low round-off errors.
Notations and polynomial approximation background are

presented in Section I. Some previous works are summarized
in Section II. The proposed method is described in Section III
and illustrated on some examples in Section IV.

I. NOTATIONS AND BACKGROUND
The target function is f with input and output in 2’s

complement fixed-point format. f is approximated using the
degree-d polynomial p (no range reduction is considered
here [2]). The argument x is in the domain [a, b] and the
result p(x) is in the range [a′, b′]. Extension to other forms
of input/output intervals is straightforward. The argument x
is a nx-bit number and the result p(x) is a m-bit number as

summarized in Figure 1. The input argument x is considered
as exact. The position of the binary point is fixed by the format
of the smallest representation that include both a and b. The
number of fractional bits will be computed by the method to fit
the target accuracy requirement. The polynomial coefficients
are denoted p0, p1, p2, . . . , pd, then p(x) =

∑d
i=0 pix

i.
The coefficients pi are represented using 2’s complement or
borrow-save [1] notations.

operator

x

p(x) ≈ f(x)

nx

m

Fig. 1. Operator notations

Several evaluation schemes may be used to compute the
value p(x) in practice. In this work we only consider the direct
and Horner evaluation schemes:

p(x) =

⎧⎨
⎩

p0 + p1x + p2x
2 + · · ·+ pdx

d direct

p0 + x

(
p1 + x

(
p2 + x(· · ·+ xpd) · · ·

))
Horner

Evaluation schemes differ on several aspects: computation
cost, internal parallelism and accuracy. The direct scheme
leads to a cost of d additions and d + �log2 d� multiplications
while the Horner scheme only requires d additions and d
multiplications. The Horner scheme is a sequential structure
while the direct scheme allows some internal parallelism. From
the accuracy point of view, the Horner scheme is known to be
slightly more accurate than the direct scheme.
The approximation to f using the polynomial p deals with

two components: the approximation error and the round-off
error. The approximation error measures the distance between
the mathematical function f and the function used for the
approximation, here p. The theoretical approximation error εapp
due to the use of the polynomial p to approximate the function
f on [a, b], is measured using:

εapp = ||f − p||∞ = max
a≤x≤b

|f(x)− p(x)|. (1)

In Eq. (1), p(x) is the mathematical value computed using an
infinite precision. The approximation error εapp is the smallest

20531424407850/06/$20.00

theoretical error that can be obtained using the polynomial
p for approximating f . Due to the finite precision of the
coefficients and intermediate computations, we will have to
deal with larger errors. εapp can be numerically estimated using
the Maple infnorm command.
Our polynomial approximations use the minimax polyno-

mial as a starting point. The degree-d minimax polynomial
approximation to f on [a, b] is p∗ which satisfies:

||f − p∗||∞ = min
p∈Pd

||f − p||∞, (2)

where Pd is the set of polynomials with real coefficients and
degree at most d. Minimax approximations can be computed
thanks to an algorithm due to Remes [4], see also [2]. Here
we use the Maple minimax command.
The round-off error or rounding error due to the finite

precision of the intermediate and final values adds up to
the approximation error. This error is small for one single
operation, i.e. a fraction of the weight of the least significant
bit (LSB). But during a sequence of operations, these small
errors may accumulate themselves and significantly degrade
the accuracy of the final result. In the following, errors are
expressed directly or as equivalent accuracy. The accuracy is
the number of correct or significant bits. The relation between
the error ε and the accuracy μ is μ = − log2 |ε|.
The notation ()2 denotes the binary representation. We also

use the borrow-save representation [1] denoted ()bs (i.e. radix-
2 redundant representation with digits in {−1 = 1, 0, 1}).

II. SUMMARY OF PREVIOUS WORKS

Here we summarize some previous works on arithmetic
operators dedicated to function approximation in hardware.
Detailed presentations may be found in [1] for computer
arithmetic and in [2] for elementary functions.

A. Tables Based Methods
One of the first methods proposed to approximate functions

was to tabulate the values of the target function for each
possible input. This leads to exponential size tables: 2nx words
of m bits. In practice the maximum number of address bits of
the table nx is in the range 8–12 depending on the technology.
Higher accuracies can be reached by combining tables

and arithmetic operations. Architectures based on tables and
additions/subtractions are very common for function approxi-
mation [5]. The bipartite method uses two tables and only one
final addition as illustrated on Figure 2.
The bipartite method uses a decomposition of x into 3 sub-

words x1, x2 and x3 of length n1, n2 and n3 respectively
such that nx = n1 +n2 +n3. The bipartite table method leads
to tables with a total of only 22nx/3 address bits compared
to the 2nx address bits of the single table solution. The
bipartite table method has been extended to a number of tables
larger than 2, it is called the multipartite method. It uses
several tables looked-up in parallel and final addition of the
all tables’ contributions [5]. They allow computing commonly
used functions with low accuracy (up to 24 bits) with sig-
nificantly lower hardware cost than that of a straightforward

x1 x2 x3x =

T1 T2

+

≈ f(x)

Fig. 2. Bipartite method architecture

table implementation, while being faster than digit-recurrence
algorithms or basic polynomial approximations.

B. Polynomial or Rational Approximations

The main drawback of table based methods is the fact
that the tables are dedicated to only one specific function.
Sharing tables among several functions is not possible in
practice. Using polynomial or rational approximations, the
basic operators (mainly adders and multipliers) required for the
evaluation can be shared or reused. Function approximation in
software is often performed using polynomial or rational ap-
proximations [2]. Rational approximations are not frequently
used in hardware due to the high latency of the final division.
Here we only deal with polynomial approximations.
Polynomial approximations are used in hardware since a

long time [6]. The size of the multipliers is a major concern.
Several solutions have been investigated to limit their size
such as weighted sum methods [7]. The coefficients of the
polynomial are distributed at the bit level. Thus the polynomial
is rewritten as the sum of a huge set of weighted products of
the bits of x. Some of these terms are neglected. Polynomial
approximations are also combined with tables [8].
We will see below that the determination of polynomials

with coefficients exactly representable in the target format is
one of the main problems in the implementation of polynomial
approximations. A general but quite slow method dedicated to
this problem is proposed in [9].

C. Digit-Recurrence Algorithms

Digit-recurrence algorithms, also called shift-and-add algo-
rithms, produce one digit of the result every iteration starting
from the most significant digit (MSD) (e.g. the paper and
pencil division method) [1]. The two most well known digit-
recurrence algorithms are: the SRT algorithm for division,
square root and other algebraic functions, and the CORDIC
algorithm for elementary functions.
The SRT algorithm, [1], leads to a small number of itera-

tions using a high radix. It uses a redundant number system
for the result digits. This allows correcting some small errors
from previous iterations due to the reduced internal precision.
The combination of a redundant number system and reduced
precision leads to very fast iterations.

2054

The CORDIC algorithm (for COordinate Rotations on a
DIgital Computer) only uses additions and shift to approximate
some elementary functions, so it is very well suited for low-
area hardware implementations. A complete description of this
algorithm and its numerous variations can be found in [2].

III. PROPOSED METHOD

The proposed method has been presented in French in [3].
It provides an answer to two practical questions about imple-
mentation of polynomial approximation. The first one is “what
values should be used for the implemented coefficients?”. The
second one is “what is the minimal size for the intermediate
computations?”.
The input parameters of the method are:
• f the function to be evaluated,
• [a, b] the domain of the argument x,
• the argument format x (size nx bits),
• μ the total maximal target absolute error (the accuracy
constraint).

The results from the method are:
• d the degree of the polynomial,
• p0, p1, p2,. . . , pd the coefficients values (representable in
the target format),

• n the coefficient size,
• n′ the data-path size1.
The proposed method consists in 3 main steps and an

optional step detailed below.

A. Step 1: Determination of the Initial Polynomial

The first step defines a good starting point for the method.
We use a minimax polynomial as a starting point (see Sec-
tion I) provided by the MAPLE minimax function. We look
for the minimax polynomial p∗ with the smallest degree d and
accurate enough to approximate f on [a, b] with an error less
than μ, i.e. ε∗app < μ with ε∗app = ||f − p∗||∞. We start with
d = 1, and d is incremented until p∗ leads to an approximation
error ε∗app such that ε∗app < μ.
The first step provides: d the minimal degree of the ap-

proximation polynomial, p∗(x) =
∑d

i=0 p∗i x
i the theoretical

polynomial (real coefficients), and ε∗app the minimal theoretical
error between the output of the circuit and f (using infinite
accuracy for the coefficients and the computations).
The polynomial result p∗ will be modified in the next steps.

The next steps will degrade the accuracy (i.e. lead to errors
larger than ε∗app). Then some “margin” between ε∗app and μ is
necessary as seen in the next sections.

B. Step 2: Coefficients Optimization

In this step we look for the size n and the values pi of
the coefficients in the target format such that εapp < μ where
εapp = ||f − p||∞ and p(x) =

∑d
i=0 pix

i. Notice that n may
be smaller than the width of the target format.

1In some cases, using different values for n and n′ may reduce the size of
the circuit.

The proposed solution is based on an exploration over the
rounded coefficients. Each coefficient p∗i may be rounded up
pi = �(p∗i) or down pi = �(p∗i). There are 2 choices
per coefficients, then 2d+1 different polynomials to test as
illustrated in Figure 3. For each possible polynomial p the
value εapp. In our applications d is small (d ≤ 6) then the total
exploration time is small.

�(p0)

�(p1)

�(p2) �(p2)

�(p1)

�(p2) �(p2)

�(p0)

�(p1)

�(p2) �(p2)

�(p1)

�(p2) �(p2)

Fig. 3. Tested rounding modes for p∗ of degree d = 2

We designed a MAPLE program that tests the 2d+1 poly-
nomials corresponding to the different rounding modes of the
d+1 coefficients p∗i . The program starts with n = �− log2 |μ|�,
tests all the rounding modes of the d + 1 coefficients for the
current n size. If there are solutions, i.e. polynomials such that
εapp < μ, it returns the list of those polynomials for the next
step (those where εapp is minimal). If there is no solution then
n is incremented.

C. Step 3: Data-path Optimization

In this step we look for the data-path size n′. Only two
polynomial evaluation schemes are supported in the method:
the direct and the Horner schemes. The idea is very simple.
We start with n′ = n and we check that the data-path of
size n′ fulfills the accuracy constraint μ using GAPPA. If the
total error bound computed by GAPPA is less than μ then this
step is finished. If not, the size n′ is incremented and the new
data-path should be tested using GAPPA.
The GAPPA software, presented in [10], allows to evaluate

and to produce a proof of mathematical properties on numer-
ical codes. The main useful characteristic of GAPPA used in
this work is its capability to tightly bound round-off errors
and prove these bounds are below some threshold. GAPPA can
generate a file for the Coq proof assistant [11].
The difference between n′ and n is called the number of

guard bits. Using a coefficient size n smaller than n′ allows a
reduction in the memory size required to store the coefficients
without degradation on the final accuracy.

D. Step 4 (optional): Post-Optimizations

One kind of frequent post-optimization is to simplify the
hardware when some coefficients are very close to power of
2. As an example, if one coefficient from step 2 is the value
0.5002441406 = (0.100000000001)2 and the target accuracy
μ is about 12 fractional bits, this coefficient may be rounded
to 0.5. In that case, the multiplication by 0.5002441406 is
replaced by a simple right shift, see Section IV-B for a concrete
example of this kind of post-optimization.

2055

E. Loops
From a given step, it may be necessary to move back to

a previous step. For instance, there may be no result from a
given step or its result may not be considered “good enough”.
As an example, the second step may not produce repre-

sentable coefficients that ensure εapp < μ. This case is due to
insufficient margin between ε∗app and μ in the first step. In that
case, one should move back to step 1 and try with a higher
degree polynomial (i.e. d ← d + 1).
Another loop occurs after step 3 when n′ is considered too

huge in front of n. Then it may be more efficient to move
back to step 2 and try a larger n. By doing this, εapp will be
smaller which leads to more margin for round-off errors.

IV. EXAMPLES
The examples below have been implemented on Xilinx FP-

GAs XCV200-5 using ISE8.1i tools. Synthesis and place/route
have been optimized for an area target with high effort.
The reported results include all the resources required for
the implementation (logic cells and registers). The power
consumption is estimated using the XPower software and
solutions are compared on the same set of random input
patterns.

A. Radix-2 Exponential over [0, 1]

Here f(x) = 2x and x ∈ [0, 1]. The target accuracy is 12
bits, i.e. μ = 2−12. We report the result from the step 1 for
the minimax polynomial for 1 ≤ d ≤ 5. The corresponding
accuracy is reported below in number of correct bits.

d 1 2 3 4 5
ε∗app 4.53 8.65 13.18 18.04 23.15

Degree-1 and -2 theoretical minimax polynomials are not
accurate enough with respect to the 12-bit target accuracy.
Without the presented generation method a degree-4 polyno-
mial would be required assuming worst case round-off error.
Indeed for degree 3 one have 13.18−d = 10.18 < 12 while for
degree 4 one have 18.04−d = 14.04 > 12. The values below
represent all the rounding modes for the degree-4 solution
and their accuracy. One can notice the large variation of the
approximation errors for the rounding modes of the theoretical
coefficients from 11.41 to 17.12 bits of accuracy.

(�,�,�,�,�) 12.00 (�,�,�,�,�) 13.00
(�,�,�,�,�) 13.00 (�,�,�,�,�) 14.03
(�,�,�,�,�) 13.00 (�,�,�,�,�) 14.55
(�,�,�,�,�) 14.99 (�,�,�,�,�) 13.00
(�,�,�,�,�) 13.00 (�,�,�,�,�) 16.13
(�,�,�,�,�) 17.12 (�,�,�,�,�) 13.00
(�,�,�,�,�) 15.71 (�,�,�,�,�) 13.00
(�,�,�,�,�) 13.00 (�,�,�,�,�) 12.00
(�,�,�,�,�) 13.00 (�,�,�,�,�) 13.00
(�,�,�,�,�) 13.00 (�,�,�,�,�) 13.00
(�,�,�,�,�) 13.00 (�,�,�,�,�) 13.00
(�,�,�,�,�) 12.99 (�,�,�,�,�) 12.00
(�,�,�,�,�) 12.99 (�,�,�,�,�) 12.98
(�,�,�,�,�) 12.91 (�,�,�,�,�) 12.00
(�,�,�,�,�) 12.79 (�,�,�,�,�) 12.00
(�,�,�,�,�) 12.00 (�,�,�,�,�) 11.41

Using our method we test the degree-3 solution.
In that case the theoretical minimax polynomial is
p∗(x) = 0.9998929656+0.6964573949x+0.2243383647x2+
0.0792042402x3. The approximation error is εapp = ||f −
p∗||∞ = 0.0001070344, this corresponds to 13.18 bits of
accuracy (assuming infinite precision for the pi and all com-
putations). We consider a fixed-point format with one integer
bit and n−1 fractional bits. We report below the results from
step 2 for several values of n− 1:

n− 1 12 13 14 15 16
εapp 12.38 12.45 13.00 13.00 13.02

step 2 results 0 0 2 2 7

For the solution n − 1 = 14 bits, all the rounding modes
possible in step 2 are reported below:

(�,�,�,�) 11.41 (�,�,�,�) 12.00
(�,�,�,�) 12.00 (�,�,�,�) 12.84
(�,�,�,�) 12.00 (�,�,�,�) 13.00
(�,�,�,�) 13.00 (�,�,�,�) 12.36
(�,�,�,�) 12.00 (�,�,�,�) 12.25
(�,�,�,�) 12.23 (�,�,�,�) 12.23
(�,�,�,�) 12.13 (�,�,�,�) 12.12
(�,�,�,�) 12.05 (�,�,�,�) 11.64

There are two solutions: 8191
8192 + 2853

4096x+ 1837
8192x2+ 649

8192x3 and
8191
8192 + 2853

4096x + 919
4096x2 + 649

8192x3. Those polynomials lead to
an approximation error of 0.0001220703 (13.00 correct bits).
In step 3, we look for the data-path size of the operator. We

report below the final accuracy evaluated using GAPPA for the
first possible polynomial and for several sizes n′:

n′ 14 15 16 17 18 19
Horner 11.32 11.93 12.36 12.65 12.81 12.90
direct 11.24 11.86 12.32 12.62 12.79 12.89

The values obtained for the other polynomial (p2 = 919
4096)

are similar. Two solutions have been implemented. The first
one corresponds to the standard solution (degree-4 polynomial,
n = n′ = 18). The second one is the result from the generation
method (d = 3, n − 1 = 14, Horner evaluation scheme and
n′ = 16). The implementation results are reported in Table I.
The generation method leads to 17% smaller circuit and the
degree-3 approximation saves 38% of the computation time.

area period delay relative
solution [slices] [ns] #cycles [ns] power

d = 3, n′ = 16 193 21.9 3 65.7 1.00
d = 4, n′ = 18 233 26.9 4 107.6 0.68

TABLE I
IMPLEMENTATION RESULTS 2x OVER [0, 1]

B. Square Root

Here f(x) =
√

x, x ∈ [1, 2] and a target accuracy of 8
correct bits is fixed (μ = 2−8). The first step leads to d = 2
and ε∗app = 0.0007638369 which corresponds to 10.35 correct
bits (for d = 1 the accuracy is only 6.81 correct bits).

2056

The minimax polynomial is p∗ = 0.4456804579 +
0.6262821240x−0.7119874509x2. The fixed-point evaluation
of this polynomial requires some scaling in the fixed-point
format. With x in [1, 2], 2 integer bits are required for x2 while
the other operations only require 1 integer bit. In order to avoid
this scaling problem, we now consider f(x) =

√
1 + x with

x ∈ [0, 1] (this is the exactly the same function). Then the
minimax polynomial is: 1.0007638368 + 0.4838846338x −
0.7119874509x2. The theoretical approximation error also
leads to 10.35 correct bits (the variable change x = 1 + x
does not modify the minimax polynomial quality).
The coefficients p0 and p1 are close to power of 2 and

we will try to use the post-optimizations proposed in step 4
(see Section III-D). The first optimization consists in using
p0 = 1. The approximation polynomial 1 + 0.4838846338x−
0.7119874509x2 leads to a theoretical accuracy of 9.35 correct
bits. The coefficient p1 is close to 0.5. The approximation
1+0.5x−0.7119874509x2 only leads to 6.09 correct bits. So
p1 can not be replaced by 0.5. But we can try to recode p1 with
only a few non-zero digits (i.e. 1 or −1 = 1). The coefficient
p1 is close to (0.100001)2. The approximation polynomial 1+
(0.100001)2x−0.7119874509x2 leads to an accuracy of 9.45
correct bits and the product p1x is replaced by the subtraction
1
2x− 1

26 x. We try to recode p2 using a few non-zero bits and
we get p2 = (0.0001001)2. The product p2x

2 is replaced by
the addition 1

24 x2 + 1
27 x2.

The approximation polynomial 1 + (0.100001)2x +
(0.0001001)2x2 leads to a accuracy of 9.49 bits (without
round-off errors). GAPPA returns a total of 8.07 correct bits
for n′ = 13 with only one multiplication x2 as illustrated in
Figure 4 (gray circles denotes right shifts).

×

x

1 6 4 7
1

+

+ + − − −

p

Fig. 4. Post-optimized operator for
√

1 + x over [0, 1]

The operator presented in Figure 4 and the standard solution
(degree 2, Horner scheme with n = n′ = 11 bits) have been

implemented on FPGAs. The results are reported in Table II.
A 40% area reduction and a 51% speedup are obtained.

area period delay relative
solution [slices] [ns] #cycles [ns] power

d = 2 Horner 103 19.9 2 39.8 1.00
d = 2 optimized 61 19.4 1 19.4 0.45

TABLE II
IMPLEMENTATION RESULTS

√
1 + x OVER [0, 1]

CONCLUSION
A method based on polynomial approximation was de-

scribed. This method leads to small, fast and low-power
hardware operators. The generated operators are numerically
validated to design time. The method deals with both the
approximation and the round-off errors which is a something
new. This method does not explore all the parameter space
corresponding to these two questions, the result may not be
optimal. At the theoretical point of view, the optimal result is
not known! Some have been implemented, validated and com-
pared to standard solutions. Some significant improvements
are reported: up to 40% for circuit area reduction, up to 50%
speed improvement and up to 55% power reduction.

REFERENCES
[1] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann,

2003.
[2] J.-M. Muller. Elementary Functions: Algorithms and Implementation.

Birkhäuser, 2nd edition, 2006.
[3] R. Michard, A. Tisserand, and N. Veyrat-Charvillon. Optimisation

d’opérateurs arithmétiques matériels à base d’approximations polyno-
miales. In 11ième SYMPosium en Architectures nouvelles de machines
(SYMPA), pages 130–141, Perpignan, France, October 2006.

[4] E. Remes. Sur un procédé convergent d’approximations successives
pour déterminer les polynômes d’approximation. C.R. Acad. Sci. Paris,
198:2063–2065, 1934.

[5] F. de Dinechin and A. Tisserand. Multipartite table methods. IEEE
Transactions on Computers, 54(3):319–330, March 2005.

[6] W. P. Burleson. Polynomial evaluation in VLSI using distributed
arithmetic. IEEE Transactions on Circuits and Systems, 37(10), 1990.

[7] K. Johansson, O. Gustafsson, and L. Wanhammar. Approximation of
elementary functions using a weighted sum of bit-products. In IEEE
International Symposium on Circuits and Systems (ISCAS), pages 795–
798. IEEE, May 2006.

[8] J. Detrey and F. de Dinechin. Table-based polynomials for fast hardware
function evaluation. In Proc. 16th IEEE International Conference
on Application-Specific Systems, Architectures, and Processors (ASAP),
pages 328–333, Samos, Greece, July 2005. IEEE Computer Society.

[9] N. Brisebarre, J.-M. Muller, and A. Tisserand. Computing machine-
efficient polynomial approximations. ACM Transactions on Mathemat-
ical Software, 32(2):236–256, June 2006.

[10] G. Melquiond. GAPPA: génération automatique de preuves de propriétés
arithmétiques. http://lipforge.ens-lyon.fr/www/gappa/, 2006. LIP, ENS-
Lyon.

[11] The Coq Development Team. The Coq proof assistant.
http://coq.inria.fr/, 2004. INRIA.

2057

