
HAL Id: lirmm-00125521
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125521

Submitted on 20 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-mode Operator for SHA-2 Hash Functions
Ryan Glabb, Laurent Imbert, Graham A. Jullien, Arnaud Tisserand, Nicolas

Veyrat-Charvillon

To cite this version:
Ryan Glabb, Laurent Imbert, Graham A. Jullien, Arnaud Tisserand, Nicolas Veyrat-Charvillon.
Multi-mode Operator for SHA-2 Hash Functions. ERSA: Engineering of Reconfigurable Systems
and Algorithms, Jun 2006, Las Vegas, NV, United States. pp.207-210. �lirmm-00125521�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00125521
https://hal.archives-ouvertes.fr

Multi-mode Operator for SHA-2 Hash Functions

Ryan Glabb∗, Laurent Imbert∗†§, Graham Jullien∗, Arnaud Tisserand§ and Nicolas Veyrat-Charvillon‡

∗ ATIPS Laboratories, Dept. of Electrical and Computer Engineering
† CISaC, Dept. of Mathematics and Statistics

University of Calgary, Calgary, Alberta Canada T2N 1N4
‡ LIP, École Normale Supérieure de Lyon

46 allée d’Italie, F-69364 Lyon, France
§ LIRMM, CNRS–Univ. Montpellier 2, UMR, 5506

161 rue Ada. F-34392 Montpellier, France

glabb@atips.ca nicolas.veyrat-charvillon@ens-lyon.fr

Abstract— We propose an improved implementation of the
SHA-2 hash family to include a multi-mode of operation with
minimal latency and hardware requirements over the entire
operator.
The multi-mode architecture presented is able to perform either
a SHA-384 or SHA-512 hash or to behave as two independent
SHA-224 or SHA-256 operators. We also demonstrate that
our architecture achieves performance comparable to separate
implementations while requiring much less hardware. This could
be useful for a server running multiple streams or in parallel
PRNG generation.

I. INTRODUCTION

Cryptographic hash functions [1] are a fundamental tool

in modern cryptography, used mainly to ensure data integrity

when transmitting information over insecure channels. Hash

functions are also used for the implementation of digital sig-

nature algorithms, keyed-hash message authentication codes

and in random number generator architectures.

In 2004, an algorithm was discovered [6] that decreased the

resistance to collisions of SHA-1 (Secure Hash Algorithm) [7],

the most popular hash function so far, reducing the number of

necessary computations from 280 to 269 and putting it below

the accepted security threshold for high-security operations.

Since then, the SHA-2 family of hash functions [8], developed

by the National Institute of Standards and Technology (NIST),

has become the new standard.

Due to their complexity and limited lifespan, cryptographic

primitives are generally implemented in software on general

purpose processors. However, many secure cryptographic al-

gorithms such as AES (Advanced Encryption Standard) and

SHA-1 were designed to be implemented in hardware, and

are drastically less efficient in terms of speed when coded

in software [1]. In terms of hardware implementations, the

two principal technologies are Application-Specific Integrated

Circuits (ASIC) and Field Programmable Gate Arrays (FP-

GAs). Due to their ease of use and lower cost, we have

targeted FPGAs from the Virtex and Spartan3 families for the

prototyping phase and for the synthesis results reported in this

paper.

The aim of this work is to show the advantages of using

reconfigurable hardware operators to include a multi-mode of

operation with the SHA-2 hash family, using shared resources

on a single chip-set.

II. SHA-2 HASH STANDARD

Throughout this paper, we will follow the definitions and

notations used in the SHA-2 specification [8]. This specifi-

cation details all steps of the hash algorithms and constants

used in the computation. We will only report on the relevant

parts useful for the understanding of implementation and

optimization issues that are considered in this paper.

The SHA-2 hash standard specifies four secure hash algo-

rithms, SHA-224, SHA-256, SHA-384, and SHA-512. All four

of the algorithms are iterative, one-way hash functions that can

process a message to produce a hashed representation called a

message digest. Each algorithm can be described in two stages:

preprocessing and hash computation. Preprocessing involves

preparing the message through padding, parsing the padded

message into m-bit blocks, and setting any initialization values

to be used in the hash generation. The hash computation

generates a message schedule from the padded message and

uses that schedule, along with functions, constants, and word

operations, to iteratively generate a series of hash values. The

final hash value generated by the hash computation is used to

determine the message digest.

A message M of length l to be hashed is processed by

blocks of m bits. Each block is divided in 16 w-bit words for

computation, the word-size w depending on the algorithm.

The most important difference between the four algorithms

is the size of the message digest. Additionally, the algorithms

differ in terms of the size of the blocks and words of data that

are used during hashing (table I).

Algorithm Word Message size Block Digest Security

SHA-224 32 < 2
64 512 224 112

SHA-256 32 < 2
64 512 256 128

SHA-384 64 < 2
128 1024 384 192

SHA-512 64 < 2
128 1024 512 256

TABLE I

SECURE HASH ALGORITHM PROPERTIES

A. Preprocessing

This process consists of three steps: 1) padding the message

M ; 2) cutting the padded message into blocks; and 3) setting

the initial hash value, H(0). The purpose of padding is to

ensure that the padded message is a multiple of 512 or 1024

bits.

B. Hash computation

1) Hash Computation of SHA-256 and SHA-512: We will

describe SHA-256 and SHA-512 together, in order to stress

their numerous similarities.

For SHA-256, w = 32 and tmax = 63, and for SHA-512,

w = 64 and tmax = 79.

Both algorithms use:

• a message schedule of tmax + 1 w-bit words

• eight working variables of w bits each

• a hash value of eight w-bit words.

After preprocessing is completed, each message block,

M (1),M (2), · · · ,M (N), is processed in order:

(Additions (+) are all performed modulo 2w)

For i = 1 to N {

• Prepare the message schedule, {Wt}:

Wt =











M
(i)
t 0 ≤ t ≤ 15

σ
{Alg}
1 (Wt−2) + Wt−7

+σ
{Alg}
0 (Wt−15) + Wt−16 16 ≤ t ≤ tmax

• Initialize the eight working variables, a, b, c, d, e, f, g, and

h, with the (i − 1)st hash value:

a||b||c||d||e||f ||g||h = H(i−1)

• For t = 0 to tmax rounds, perform {

T1 = h + Σ
{256}
1 (e) + Ch(e, f, g) + K

{256}
t + Wt

T2 = Σ
{256}
0 (a) + Maj(a, b, c)

a||b|| · · · ||h = (T1 + T2)||a||b||c||(d + T1)||e||f ||g

}
• Compute the ith intermediate hash value H(i):

H(i) = (a + H
(i−1)
0)||(b + H

(i−1)
1)|| · · · ||(h + H

(i−1)
7)

}
After repeating those steps a total of N times (after pro-

cessing M (N)), the resulting message digest of M is

H
(N)
0 ||H

(N)
1 ||H

(N)
2 ||H

(N)
3 ||H

(N)
4 ||H

(N)
5 ||H

(N)
6 ||H

(N)
7

2) SHA-224 and SHA-384: The SHA-224 algorithm is

identical to SHA-256, with the exception of using a different

initial hash value and truncating the final hash value to the left-

most 224 bits. Similarly, the SHA-384 algorithm is identical

to SHA-512, except for the different initial hash value and

truncating of the final hash value to the left-most 384 bits.

III. MERGING OF THE SHA-2 FAMILY

Merging the SHA-2 family of functions into a single ar-

chitecture is much more efficient than implementing sepa-

rate operators for each hash algorithm. For example, in [9],

SHA-256, SHA-384 and SHA-512 were each implemented

using a separate computational unit. During the computation

of SHA-256, the left half of the 64-bit datapath is unused and

held to zero in that implementation.

Our multi-mode SHA-2 operator has been designed to

optimize the hardware efficiency. It is able to run either a

hash function working on w = 64-bit words (SHA-384 or

512), or two w = 32-bit functions (SHA-224 or 256) run-

ning concurrently. When running in split mode, the operator

can be considered as two separate operators each running a

w = 32-bit hash.

A. Sharing the datapath

1) Comparison between the hash functions: The hash func-

tions of the SHA-2 family share many similarities. We can

classify them into two categories: the w = 32 bit functions,

SHA-224 and SHA-256, and the w = 64 bit functions, SHA-

384 and SHA-512. Given their respective word sizes, a large

part of the datapaths is identical, and other parts can be shared

efficiently:

• The padding is identical with regard to the respective

word sizes. A message of length l is processed by blocks

of 16 words, and a ”1” is appended at the end, followed

by as many zeros (k) as necessary in order to have

l + 1 + k ≡ (14 · w) mod (16 · w). A 2-word binary rep-

resentation of l is then appended.

• The message scheduler is identical for all hash functions,

except for the σ functions which are different depending

on the word size.

• The definition of the initial hash value H(0) allows its

implementation to be shared between the algorithms. That

is, the left halves of the SHA-512 words of H(0) are the

words of H(0) for SHA-256. Similarly for SHA-384, the

right halves of the words of H(0) are the words for H(0)

for SHA-224. For example for H
(0)
0 :

SHA-224 H
(0)
0 = c1059ed8

SHA-256 H
(0)
0 = 6a09e667

SHA-384 H
(0)
0 = cbbb9d5dc1059ed8

SHA-512 H
(0)
0 = 6a09e667f3bbc908

• In the functions defined by the SHA-2 standard, only

Ch and Maj are identical for all algorithms. The σ and

Σ operations are different, although they are based on

the same idea, that is a bitwise XOR of three different

rotations/shifts of the input value, but the rotate/shift

values differ and thus cannot be shared. Since there are

only two different sets of functions (one for w = 32
and another for w = 64), they are both hard-wired with

selection between the two using a MUX, which is a lower

hardware cost solution than the use of a generic structure

(barrel rotate/shifter).

• The round constants are the same for equal word sizes,

and the value of Kt for w = 32 is identical to the left

half of the corresponding w = 64 constant. For example:

SHA-224/256 K0 = 428a2f98

SHA-384/512 K0 = 428a2f98d728ae22

• The round computation and the intermediate value defi-

nitions are the same for all SHA-2 algorithms, although

the number of rounds differs depending on the word size.

Only 64 rounds are performed for w = 32-bit hashes, and

80 for w = 64-bit hashes.

B. Physical sharing of the hardware

Our multi-mode architecture fits a hash function of two 32-

bit words into the same datapath as that used for a single

64-bit hash. We note that α and β are the two 32-bit word

hash functions using the left and right parts of the datapath,

respectively, used to compute the 64-bit hash γ.

The physical sharing is accomplished by considering all op-

erations on words for γ as two separate 32-bit operations on

α and β, where the dependancies between the two halves are

inhibited depending on the running mode. For example, each

register of the message scheduler can be seen either as a 64-bit

register or as 2 independant 32-bit registers running in parallel

(Figure 1). This involves no hardware overhead since the left

and right halves are independant regardless of the operator

mode.

When an addition modulo 2w is performed, there is a carry

propagation between the right and left parts for γ that must be

inhibited when computing two adjacent modulo 232 additions

α and β. Beside the small logic overhead, control parts are

duplicated in order to allow α and β to run concurrently as

well as in parallel.

Figure 1 shows the modifications required to the standard

carry propagate adder, available on the FPGA, that allow

either one modulo 264 addition or two concurrent modulo 232

additions to be performed.

γ

β

α

R

32 3232 32

32 32

a(63:32) b(63:32) a(31:0)split

cin
cout

b(31:0)

c(63:32) c(63:32)

CPA CPA

Fig. 1. The registers can either be considered as one 64-bit or as two
concurrent 32-bit registers (left). We also introduce a 64-bit / 2×32-bit
selectable modular adder (right)

1) Padder: In the multi-mode version of the padder, the

word counter has been modified in order for it to be used

as either two separate 64-bit counters, or as a single 128-bit

counter. This implies a rather complicated management of the

carry since the last 4-bits (resp. 5-bits) of each message length

for a w = 32-bit (resp. w = 64 − bit) hash are given by the

input to our system Bit valid. If the operator works in split

mode, one carry used in the word counter must be discarded

and Bit valid used for the lower bits in the message length of

α.

2) Message Scheduler: The message scheduling for SHA-

256 and SHA-512 is the same except for: the word size which

is doubled; the σ0 and σ1 functions which consist of wiring;

and the number of rounds that does not affect the logical

structure of the scheduler. The figure below illustrates the

multi-mode computation of Wt. MUXes select data paths for

each mode, and the previously introduced split adders are used

to perform the modulo 2w additions.

t
W

t−2
W

t−7
W

t−15
W t−16

W

σ
1

{512}

σ
1

{256}

σ
1

{256}

σ
0

{256}

σ
0

{256}

σ
0

{512}

α b

βα

α β

βα
γ

γ γ

γ

Adder 64 / 2 32

Fig. 2. Multi-mode implementation of the Wt computation

3) Round constants unit: Since a dual-port 32-bit RAM

block is used to compute the SHA-384/512 64-bit round

constants, it can also be used, at the cost of some overhead

logic in the address input, to provide two different 32-bit round

constants as well as two concurrent SHA-244/256 hashes.

In order to ensure the same latency properties as in the separate

architectures, some logic has to be added to ensure the correct

initialization of the computation when the mode is changed,

since the constant unit must output either K0γ or K0α||K0β

depending on the new mode.

4) Round computation unit and a, b, · · · , h variables: The

equations for computing the new values of variables a, b, · · · , h
are the same for all hash functions of the SHA-2 family, with

appropriate changes relating to the relative word sizes and with

the exception of the Σ functions. The only modification of the

round computation unit for the multi-mode version therefore

consists in using the split adders and implementing both Σ512

and Σ256 operators for each Σ function, as was done for the

message scheduler.

5) Intermediate hash: The initial hash value, H(0), is

selected through additional logic that takes advantage of the

similarities between the values of all algorithms, providing for

every modes. The computation of a new intermediate hash is

performed using the split adders.

6) Analysis: The multi-mode architecture shares the same

properties as separate architectures for the operators in terms

of latency and speed. As discussed earlier, it is possible to

improve the overall throughput by segmenting the critical path.

Reference Architecture Slices Freq (MHz) Cycles per block Throughput (Mb/s) Throughput/Area (Mb/s/slice)

[9] SHA-256 *2120 83 81 262 0.123

[9] SHA-384 *3932 74 97 293 0.075

[9] SHA-512 *4474 75 97 396 0.089

[10] SHA-384/512 *5828 38 pipelined 479 0.082

[9] SHA-256/384/512 *4768 74 81/97 233.9/390.6 0.049/0.082

Proposed Architectures

SHA-224 1297 77 64(+2) 269.5 0.208

SHA-256 1306 77 64(+2) 308 0.236

SHA-224/256 1260 69 64(+2) 276 0.219

SHA-384 2581 69 80(+2) 331 0.128

SHA-512 2545 69 80(+2) 442 0.174

SHA-384/512 2573 66 80(+2) 422 0.164

**Multi-mode SHA-2 2951 50 64/80(+2) 2×200/320 0.136/0.108

TABLE II

*1 CLB=2 SLICES FOR VIRTEX, TARGET:VIRTEX 200/400XCV, **MAX MULTI-MODE THROUGHPUT IS 400/640MBPS=2×200/320MBPS

IV. IMPLEMENTATION RESULTS

This section summarizes our implementation results using

Synplify Pro as a synthesis tool. The criteria considered are

FPGA resources (slices), maximum throughput (Mb/s) and

their ratio in Mb/s/slice.

Every hash function of the SHA-2 family was synthesized

as a stand-alone operator (224,256,384 and 512), or merged

by word operating size (224/256 or 384/512), and we also give

our results for the multi-mode architecture which is capable

of all modes or running two independent 32-bit(SHA-224/256)

operators simultaneously.

A. Comparison with published implementations

We now compare our architectures with previously pub-

lished stand-alone and multi-mode SHA-2 implementations

[9], [10]. (See Table II)

The focus of [9] was to implement SHA-256, 384 and 512

in a single operator using the Virtex XCV200 as a target.

Reference [10] discusses a pipelined approach to a single chip

SHA-384/512 architecture. In both of these designs, 16 to 32

clock cycles are required for the padder to process an input

message block before computation begins. This is avoided

in our system thanks to an ’on-the-fly’ padder that allows a

throughput increase of up to 25 percent compared to [10].

Additionally, due to some pre-computation techniques, we

are able to achieve clock frequencies significantly higher

than [10] and slightly less than [9] while at the same time

significantly reducing the hardware costs.

Our multi-mode operator, in particular, uses considerably

fewer resources compared to the multi-mode 256/384/512

implementation [9] with 2951 slices compared to 4768 slices

and has a much better throughput to area ratio.

V. CONCLUSION

In this paper, we have introduced a concurrent SHA-2

operator which optimizes the datapath when a 64-bit SHA-2

hash mode is supported and removes all unnecessary latencies.

The proposed multi-mode architecture is able to perform a

single SHA-384 or SHA-512 hash function or to behave as

two independant computations of SHA-224 or SHA-256 hash

functions with minimal hardware overhead. We demonstrated

the benefit of integrating a concurrent 32-bit mode when a

64-bit hash is to be supported.

Additionally, the new architecture achieves a performance

comparable to previously published separate implementations

of these functions while requiring much less hardware. Most

importantly, all of the new implementations presented in this

paper are more efficient than previously published implemen-

tations when considering the throughput-to-area ratio.

VI. ACKNOWLEDGEMENTS

This work was financially supported through

iCORE(Informatics Circle of Research Excellence), NSERC

(Natural Sciences and Engineering Research Council of

Canada),CMC and an ACI grant from the French ministry of

Research and Education.

REFERENCES

[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1997.
[2] R. L. Rivest, “The MD5 message-digest algorithm,” Internet informa-

tional RFC 1321, Apr. 1992.
[3] Dobbertin, Bosselaers, and Preneel, “RIPEMD-160: A strengthened ver-

sion of RIPEMD,” in IWFSE: International Workshop on Fast Software

Encryption, LNCS, 1996.
[4] V. Rijmen and P. S. L. M. Barreto, “The WHIRLPOOL hash function,”

World-Wide Web document, 2001.
[5] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions

MD4, MD5, HAVAL-128 and RIPEMD,” Cryptology ePrint Archive,
Report 2004/199, p. 4, 2004.

[6] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1,”
Shandong University, Shandong, China, Technical report, June 2005.

[7] National Institute of Standards and Technology, FIPS PUB 180-1:

Secure Hash Standard. Gaithersburg, MD, USA: NIST, Apr. 1995.
[Online]. Available: http://www.itl.nist.gov/fipspubs/fip180-1.htm

[8] ——, FIPS PUB 180-2: Secure Hash Standard. Gaithers-
burg, MD, USA: NIST, Aug. 2002. [Online]. Available:
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[9] N. Sklavos and O. Koufopavlou, “Implementation of the SHA-2 hash
family standard using FPGAs,” The Journal of Supercomputing, vol. 31,
no. 3, pp. 227–248, Mar. 2005.

[10] M. McLoone and J. McCanny, “Efficient single-chip implementation
of sha-384 & sha-512,” IEEE Proc., International Conerence on Field-

Programmable Technology (FTP), pp. 311–314, 2002.

