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Abstract

Collections of phylogenetic trees are usually summarized using consensus methods. These meth-

ods build a single tree, supposed to be representative of the collection. However, in the case of

heterogeneous collections of trees, the resulting consensus may be poorly resolved (strict consensus,

majority-rule consensus...), or may perform arbitrary choices among mutually incompatible clades,

or splits (greedy consensus).

Here, we propose an alternative method, which we call the Multi-Polar Consensus (MPC). Its

aim is to display all the splits having a support above a pre-defined threshold, in a minimum number

of consensus trees, or poles. We show that the problem is equivalent to a graph coloring problem,

and propose an implementation of the method.

Finally, we apply the MPC to real datasets. Our results indicate that, typically, all the splits

down to a weight of 10% can be displayed in no more than 4 trees. In addition, in some cases,

biologically relevant secondary signals, that would not have been present in any of the classical

consensus trees, are indeed captured by our method, indicating that the MPC provides a convenient

exploratory method for phylogenetic analysis. The method was implemented in a package freely

available at http://www.lirmm.fr/~cbonnard/MPC.html.

Keywords : consensus, phylogeny, secondary signal, conciseness, graph-coloring.
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Introduction

Two main methods have been proposed to account for uncertainty in phylogenetic reconstructions,

both of which rely on resampling procedures. The first is the non-parametric bootstrap of (Efron,

1979), first applied to phylogenetics by Felsenstein (1985). More recently, a Bayesian alternative was

proposed which samples trees directly from their posterior probability distribution (Huelsenbeck

and Ronquist, 2001; Larget and Simon, 1999). These two methods have their respective advan-

tages (Erixon et al., 2003; Huelsenbeck and Rannala, 2004), but on the other hand, they also have

many features in common. In particular, both give as a raw output a collection of trees, instead of

a single one, and the problem is then to summarize this collection into a synthetic, yet informative,

picture.

By far the most common methods to do such a summary are the consensus methods. Their aim

is simply to build a single tree displaying the most frequent splits (or clades) seen in the collection.

Several variants exist reviewed in Bryant (2003): first, the strict consensus (McMorris et al., 1983)

displays only the branches shared by all the trees. However, in most cases, this consensus is not

informative enough. As an alternative, the majority-rule consensus (Margush and McMorris, 1981)

aims at displaying the branches shared by at least 50% of the trees. This yields a much more

satisfactory result than the strict consensus, and in fact, it is currently the method proposed by

default by most phylogenetic softwares (Huelsenbeck and Ronquist, 2001; Swofford, 1998).

An issue about these consensus methods is when a split should be considered as reliable. A

traditional statistical threshold of 95% is often used. Alternatively, for trees generated by bootstrap,

a threshold of 70% has been proposed (Hillis and Bull, 1993). In both cases, assuming these

thresholds are valid, a single consensus tree is sufficient, since branches appearing in more than
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50% of the trees are always compatible. In practice, however, models used to build phylogenetic

trees are simplistic compared to the true evolutionary processes. This often results in artifacts such

as long-branch attraction, which can hide real phylogenetic signal (Brinkmann et al., 2005; Gaut and

Lewis, 1995; Sullivan and Swofford, 1997). In the worst cases, the artifacts completely dominate,

and there is no hope recovering the true corresponding relationships, except by using other models

or methods. In most cases, however, phylogenetic signal in favor of the true relationships is still

present in the data, as secondary signals. These signals are revealed to some extent in some of

the trees built from bootstrap replicates or sampled by a Bayesian process. Therefore, it might be

useful to have a method displaying these signals, and more generally, enabling one to explore the

information contained in a collection of trees, including signals of lesser intensity.

An extreme solution to this problem would be to keep, and visualize separately, each split

observed in the tree collection. However, this can be unreadable in practice, in particular for

analyses with many taxa. Another possibility is to build the greedy consensus (Felsenstein, 1993),

which consists in the majority-rule consensus tree complemented with all the branches that one can

add to it by scanning the list of the remaining branches sorted by decreasing frequency. However,

this only displays branches that happen to be compatible with those displayed by the majority-rule

consensus tree. Therefore, it does not allow one to detect all biologically interesting alternatives

to the splits having the highest weight. The same can be said from the asymetric median tree

consensus of Phillips and Warnow (1996): although it aims at maintaining as much evolutionary

information as possible contained in the input set of trees, it can only retain branches that can be

combined into a single tree. Yet another way to summarize a tree collection is to build a consensus

network (Holland et al., 2005), which displays all input splits in a single graph. Though this type
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of structure requires a little bit of training to be interpreted, it allows one to spot the splits that

conflict with one another provided there is a reasonable number.

An alternative to all these methods is to modify the consensus paradigm used traditionally,

and summarize the tree collection by several trees instead of a single one. This idea has been

explored by several previous works, which we now detail. The Reduced Consensus method of

Wilkinson (1994) outputs a profile of trees representing all positive statements of relationships that

are common to a set of input trees. In the present work, in contrast, we aim at representing all

splits that appear sufficiently frequently. In this direction, several clustering methods have also

been proposed. The Phylogenetic Islands method (Maddison, 1991) first clusters the input trees

into several tree islands, i.e. trees more closely related in terms of tree rearrangements, and then

computes a distinct consensus tree for each island. More generally, alternative clustering methods

were investigated by Stockham et al. (2002) in an extensive study on several data sets. Their results

show the validity of the approach in that the information content of the trees output for each cluster

is significantly greater than a single consensus of the initial collection, while only adding a small

amount of complexity. Their results also show that the complete linkage method (well-known in

classification) outperforms the other clustering methods, including Phylogenetic Islands, according

to several measures of the information content.

The clustering methods retain more splits in their output than single-tree consensus methods.

However, by their mere principle, i.e. representing each cluster of trees by a consensus tree, it is

still possible that splits present in a large proportion of the input trees impede alternative, less

frequent, splits to be displayed.

Here, we propose an alternative method, called Multi-Polar Consensus (MPC), which explicitly
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aims at representing all splits above a pre-defined threshold in as few trees as possible. In the

following, we first formally define the MPC and show that the resulting optimization problem

reduces to one of graph coloring. Then, we describe a simple algorithm implementing the method.

Lastly, an application to several protein datasets with long branch attraction problems shows that

the method enables secondary phylogenetic signal to emerge and to be displayed together with the

primary signal by allowing very few extra trees in the output.

Materials and Methods

Formalisms

Splits and trees

Each branch of a given phylogenetic tree divides the set of taxa into two subsets: it is therefore

equivalent to a split. A tree, whether rooted or unrooted, can always be characterized by a set of

splits. Two splits are compatible if they can be displayed by the same tree. A collection of splits

is compatible if every pair of splits is compatible. To build a multipolar consensus, we start from

a collection of trees on the same set of taxa. We collect the list of the weighted splits displayed by

the internal branches of the trees, where the weight assigned to a split Si, denoted f(Si), represents

its frequency in the collection (Bryant, 2003). The split list is a synthetic representation of the

collection. We discard splits displayed in no more than a proportion α (0 < α ≤ 1) of the trees and

call Lα the reduced split list.
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Representing split interaction with a graph

A graph G is composed of a set of vertices, V , and a set of edges, E, linking pairs of vertices.

A clique is a subset of vertices all pairwise linked by an edge. A maximal clique is a clique not

included in another clique. A maximum clique is the largest maximal clique of the graph. The

complementary graph, G of G represents the same set of vertices, V , but two vertices are linked in

G if and only if they are not linked in G.

The compatibility graph G(Lα) of the split list Lα is defined as follows: each split Si with

f(Si) > α is represented by a vertex weighted by f(Si), and two vertices are linked by an edge if

and only if they are compatible. Since a tree is a set of compatible splits, any tree of the collection

is trivially represented by a clique in the graph G(L0). Reciprocally, any clique of the compatibility

graph represents a (possibly multifurcated) tree (Nelson, 1979). For instance, the greedy consensus

tree is formed by searching a maximal clique in the graph G(L0). This clique is first composed of all

splits Si such that f(Si) > 0.5 and then considering splits in decreasing order of f(Si) and adding

them to the clique only if they are linked to all the vertices already chosen (subgraph represented

in bold in figure 1-C(3)).

The aim of the MPC is to represent all the splits of G(Lα) in as few trees as possible. In

the present graph-theoretic formulation, this is equivalent to searching for a minimum-sized set of

cliques covering G(Lα). Note that, when α ≥ 0.5, the whole graph is a clique and in this case, the

MPC outputs just one tree, which is just the majority-rule consensus tree (α = 0.5) or the strict

consensus tree (α = 1). In contrast, when α < 0.5, G(Lα) is not always a clique, and then, we

need several cliques to cover all its vertices. Each corresponds to a tree, called a pole, and the poles

form the MPC.
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Kernel splits

In the graph G(Lα), the vertices that are linked to every other vertex form a particular clique,

which we call the kernel clique, and denote kernel(Lα). The splits represented by the vertices

in this clique, called kernel splits, form the kernel tree which corresponds to the loose consensus

tree (Bremer, 1990) made on Lα. Note that the kernel splits can be included in all poles. More

generally, some splits will be compatible with several poles, which raises the issue of how many

times a split should appear in the MPC.

In the present paper, we use the following “all-or-none” rule: (1) any split in the graph G(Lα),

except the kernel splits, belongs to only one pole, and (2) all kernel splits are included into all poles

as a common backbone. The poles of the MPC are thus obtained by first removing kernel splits

from G(Lα), then computing a set of cliques partitioning the vertices of G(Lα) not in kernel(Lα)

and last, adding kernel(Lα) to each clique. In this way, the previous problem, covering a graph

with cliques, reduces to one of partitioning the graph with a minimum number of cliques. The

MPC shares some similarities with the Nelson consensus as described in Page (1990), which seeks

a clique of maximal weight in the compatibility graph (the weight of the clique is here defined as

the sum of the f(Si) values on all vertices Si of the clique). The main difference with the MPC is

that all splits are not included in the output.

Partitioning a graph with cliques is a classical problem in graph theory, but traditionally, this

problem is translated into the complementary graph G(Lα), which we call incompatibility graph.

It then becomes a minimum coloration problem in the graph G(Lα), i.e. an assignment of colors

to the vertices of the graph such that two vertices linked by an edge do not have the same color

and a minimum number of color is used. Each pole of the MPC is composed by all vertices of the
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same color.

As an example, in figure 1.C, the graph (4) displays the incompatibility graph G(L0) for the

collection T of figure 1.A, where S1 and S2 are the kernel splits. We can assign two colors to

the rest of the vertices (one to S3, S6 and one to S4, S5, S7), leading to two poles in the MPC,

respectively containing splits {S1, S2, S3, S6} and {S1, S2, S4, S5, S7}.

Algorithm

The graph colouring problem of a general graph is NP-complete. Note that there is a well-known

linear-time algorithm to know whether a graph can be two-coloured. However two colours are often

not enough for reasonable values of α, and unfortunately, this algorithm does not generalize to

more than two colours. Additionally, the practical graphs we obtained from real data sets had no

obvious property affiliating them to specific classes of graphs for which the coloration problem is

polynomial. Therefore, to find a MPC we rely on a heuristic coloration scheme called the Greedy

Coloring Algorithm.

Algorithm Greedy coloring

1. Create an order on the vertices.

2. Consider vertices one by one in this order, assigning to a vertex

the first color not assigned to an already colored vertex linked to it.

The efficiency of the greedy algorithm in proposing a small number of colors critically depends on

the order defined on the set of vertices. A possible order on the vertices is that of decreasing weight.

In fact, the greedy consensus tree is composed by the set of vertices to which the Greedy coloring

scheme assigns the first color when the splits are sorted by decreasing frequency. Alternatively, the
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vertices can be sorted by decreasing degree (Welsh-Powell algorithm, Welsh and Powell (1967)).

We implemented both versions of the algorithm and compared the MPC to other consensus

methods, as described in the next paragraph.

Software

An implementation of the MPC was written in C++ using the STL. The source code and static

libraries can be freely downloaded from http://www.lirmm.fr/~cbonnard/MPC.html. The pro-

gram allows the user to control both the threshold α and the number of poles. It also includes

other options not introduced in this paper.

Data and experimental validation

We used several datasets, some consisting of primary data from which we obtained collections of

input trees, and others consisting of lists of trees obtained from other studies. The primary data

is composed of 133 genes spanning 44 species and including, on average, around 200 amino acid

positions per gene (Brinkmann et al., 2005). The datasets covers the eukaryotic phylogeny and

contains 6 archaea (used as the outgroup) and 38 eukaryotes. Because of long branch attraction

between fast evolving eukaryotes and archaea, the consensus trees may show some problematic

groups of taxa. Based on an sequence selection procedure, Brinkmann et al. (2005) propose a

eukaryotic phylogeny devoid of most of these artifacts, which we used as our reference tree.

For each gene, we performed 100 replicates of non-parametric bootstrap, which we analyzed

by the Maximum Parsimony (MP) criterion, using the PAUP software (Swofford, 1998), and by

the Maximum Likelihood criterion, using PHYML (Guindon and Gascuel, 2003). In this way, we
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obtained 2 sets of 133 tree collections, to which we individually applied various consensus methods:

the strict, majority-rule and greedy consensus methods, as well as the MPC.

Additionally, we used the four collections of trees that served as a basis for the experimental

study of Stockham et al. (2002). The Caesal dataset is a collection of 450 trees on 51 taxa of

Caesalpinia. The Camp dataset contains 216 trees on 13 taxa of Campanulaceae. The Pevcca1

and Pevcca2 datasets span 129 taxa and respectively contain 216 and 654 trees. Pevcca stands

for Porifera (sea sponges), Echinodermata (sea urchins, sea cucumbers), Vertebrata (fish, reptiles,

mammals), Cnidaria (jellyfish), Crustacea (crabs, lobsters, shrimp), and Annelida (annelid worms).

Results

The MPC aims at representing, in a minimum number of trees, all splits whose frequency in the

tree collection is higher than a given threshold α. In a first experiment, we measured the number

of trees contained in the MPC, as a function of α.

Figure 2 displays the result obtained on the data sets of Brinkmann et al. (2005). As expected,

the number of poles in the MPC is a decreasing function of the threshold. More interestingly, for

small values of α, the decrease is very steep, so that for a threshold of 10%, the MPC already

contains less than 5 poles in average. This means that if we relax the constraint of having a unique

tree to form the consensus, we can represent a substantial amount of additional information (namely,

all the splits with frequencies between 10% and 50% not represented in the greedy consensus tree).

These splits represent an average fraction of 25% of the total number of splits of the graph G(Lα).

The latter result was obtained using the Welsh-Powell greedy coloring algorithm. We also tried the

greedy coloring method on the split list sorted by decreasing weight: this almost always resulted
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in a higher number of poles in the MPC (one additional pole on the average, not shown).

In some cases, these extra splits displayed by the MPC may represent biologically relevant

signals. For example, the MP analysis of the bootstrap replicates generated for one of the proteins

of the dataset (proteasome α-subunit on 35 taxa) yields the following picture (figure 3): the fungi

are not correctly resolved neither by the strict consensus nor by the majority-rule consensus. The

greedy consensus displays a phylogeny where ascomycetes are polyphyletic, which is incongruent

with current knowledge. In contrast, a pole of the MPC (which contains only 2 poles in this

case) displays a more satisfactory configuration, including monophyly of the ascomycetes, with a

bootstrap support equivalent to splits included by the greedy consensus.

To quantify the latter phenomenon, we measured how many among all the correct splits, accord-

ing to the tree of Brinkmann et al. (2005), are displayed by each consensus tree (figure 4). We first

note that increasing the threshold α, i.e. lowering the number of splits considered by the methods,

leads the loose consensus (KE) to contain more and more correct splits. This paradoxal observation

is explained by the fact that, in this study, numerous correct splits are present in a large proportion

of input trees. Progressively discarding incorrect alternative splits of lower support decreases the

degree of the vertices corresponding to correct splits Si in the incompatibility graph G(Lα). For

a high enough α (and provided α < f(Si)) such a vertex ultimately reaches degree zero and Si

is then included in the loose consensus tree. Otherwise, for thresholds α ≤ 50 (and by the mere

principle of the method), the MPC allows a higher proportion of correct splits to be displayed than

the majority-rule and the greedy consenses. Specifically, the majority-rule consensus tree contains

on average only 28% of the correct splits. Considering splits appearing with a frequency between

10% and 50% in tree collections enables to discover an additional 20% of correct splits. Among
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those, slightly more than a third are displayed by the greedy consensus, the remaining two thirds

appearing in the MPC only. Thus, compared to the MPC, the greedy consensus misses a significant

amount of relevant information. Yet, it is the method including the most information among those

proposing a single tree to summarize a tree collection. We also note that, interestingly, the majority

of the correct splits with a low support and ignored by the greedy consensus have however a higher

support than the split with lowest support displayed in the greedy consensus tree.

We also applied the MPC to lists of trees analyzed previously Stockham et al. (2002). Once

again, setting a threshold α = 10% is sufficient on average for four poles to represent all retained

input splits (the Camp dataset needing up to α = 10%). Three poles were obtained on average

when setting α = 15%, and two poles (i.e. cases when G(Lα) can be bicolored) were achieved for

values of α between 30% and 35%. These results confirm the findings of figure 2. As expected, the

computing time required to obtain the four poles differs from one dataset to the other depending

on their size: the Camp dataset is processed in 1.2 seconds (on average over 10 runs), while Pevca2,

the largest dataset, is processed in 43 seconds on average.

Discussion

As an alternative to the classical consensus methods such as the majority-rule or greedy consensus,

we propose to build a multipolar consensus (MPC), which consists in a small set of trees displaying

all the splits with a support greater than a pre-defined threshold. Given the splits to display,

the number of trees in the MPC is to be minimized. Our main motivation is to allow for more

secondary evolutionary signal to be displayed than what is proposed by the majority-rule consensus,

without making the kind of somewhat arbitrary choices underlying the greedy consensus. Our last
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experiment illustrates that such arbitrary decisions, where some splits are discarded to the profit

of less supported splits because of incompatibility with a split of higher support, are very common.

The MPC is meant as an exploratory device to analyze the output of a given phylogenetic study:

often, analyses of real data may lead to artifacts and/or contradictory signals, due for instance to

model-misspecification problems. Sometimes the artifacts can have a greater support than some

real splits, and therefore, examining a larger part of the collection of splits, including those with

lower support, reveals additional correct splits, omitted by classical consensus methods. Including

splits with lower support also adds incorrect splits to the proposed picture. However, they are

in relatively small number (on average, 3 or 4 poles are enough to represent all conserved splits,

including correct and incorrect ones), so that the MPC really fulfills its role in giving a concise

exploratory picture.

Two other approaches intending to display more input splits than can fit into a single tree are the

the consensus network (Holland et al., 2005) and clustering methods (Maddison, 1991; Stockham

et al., 2002). Compared to the MPC, the consensus network has the advantage of yielding only one

structure as output. On the other hand, the complexity of such a structure can make it difficult to

be interpreted by people not acquainted with the method. Besides these differences, the conciseness

of the results of both MPC and consensus networks are dependent on the size of the maximal clique

in the incompatibility graph. A first consequence is that the worst case situations will be the same

for both methods. In the most extreme cases, and for large values of α, the MPC outputs as many

poles as input trees and the consensus networks contain a large number of vertices compared to

the number of initial splits. In typical cases however, it is likely that the MPC and the consensus

network give outputs of comparable size. For example, discarding splits present in less than 10%
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of the input trees typically leads to a network containing 3-cubes as more complex parts (Barbara

Holland, personnal communication). This echoes our findings that the MPC usually outputs less

than 5 poles for α = 10%.

The MPC is also quite close in spirit to the clustering approach (Maddison, 1991; Stockham

et al., 2002): namely, both methods propose several consensus trees, instead of a single one. The

MPC differs from the clustering methods in at least two respects: first, it is more parsimonious,

in that any non-kernel split present in an input tree, is represented only once. Second, it does

not require any preliminary clustering of the input trees. As a consequence, the computing time

of MPC is polynomial in the number of input splits but only linear in the number of input trees.

This might be an advantage as practical collections of trees tend to be dense (e.g., the data sets of

Stockham et al. (2002) contained on average three times less splits than trees).

Yet, at least in its present state, the MPC has a drawback compared to the clustering approach:

the way in which splits are grouped in poles does not exactly reflect their cooccurence in trees of

the input collection. However, it is possible to reduce this effect by giving a weight to the edges

of the compatibility graph, corresponding to the number of cooccurrence of the splits (vertices) in

the collection. This weight can then be taken into account when agglomerating splits into poles so

that the splits composing a pole do not come from sources that are too heterogeneous.

We then face a multi-criterion optimization problem, where the best compromise between a

small number of poles and a minimum intra pole heterogeneity is sought. As a first solution to this

problem, the software we implemented enables the user to specify a minimum percentage of input

trees in which splits should jointly appear in order to be output in a same pole. Researches on this

topic are currently on progress to obtain a bicriterion algorithm for simultaneously optimizing the
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number of poles and the co-occurrence of the splits in the poles.
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Figure 1. Compatibility graph of a split list

(a) A collection of trees T ; (b) the corresponding split list L ; (c) and its compatibility graphs:

G(L t−1

t

) (1), G(L0.5) (2), G(L0) (3), with in bold the clique corresponding to the greedy consensus;

and the incompatibility graph G(L0) (4).

Figure 2. Number of trees in the MPC as a function of the threshold.

The MPC was built using the greedy algorithm on the Welsh-Powell order.

Figure 3. A case study using the α subunit of the proteasome on 35 taxa.

Phylogenetic relationships for a subset of 7 fungi as proposed by (a) the MPC, (b) the strict,

majority-rule, and greedy consenses, and (c) the reference tree (Brinkmann et al., 2005).

Figure 4

Average proportion of the correct splits retrieved by the different methods (under ML criterion) for

various thresholds α (splits appearing in less than α of the input trees are ignored by the consensus

methods): majority-rule consensus (MRC), greedy consensus (GC), loose consensus (KE) and the

MPC.
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