
HAL Id: lirmm-00130406
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00130406v2

Submitted on 27 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-parameter Tractability of the Maximum
Agreement Supertree Problem

Sylvain Guillemot, Vincent Berry

To cite this version:
Sylvain Guillemot, Vincent Berry. Fixed-parameter Tractability of the Maximum Agreement Su-
pertree Problem. CPM: Combinatorial Pattern Matching, 2007, Montpellier, France. pp.274-285.
�lirmm-00130406v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00130406v2
https://hal.archives-ouvertes.fr

Fixed-Parameter Tractability of the Maximum Agreement

Supertree Problem⋆

Research Report - LIRMM 07005

Sylvain Guillemot1 and Vincent Berry1

Equipe Méthodes et Algorithmes pour la Bioinformatique, LIRMM, C.N.R.S.-Université Montpellier II.
{sguillem,vberry}@lirmm.fr

Abstract. Given a ground set L of labels and a collection of trees whose leaves are
bijectively labelled by some elements of L, the Maximum Agreement Supertree problem
(SMAST) is the following: find a tree T on a largest label set L′ ⊆ L that homeomorphically
contains every input tree restricted to L′. The problem finds applications in phylogenetics,
databases and data mining. In this paper we focus on the parameterized complexity of this
NP-hard problem. We consider different combinations of parameters for SMAST as well
as particular cases, providing both FPT algorithms and intractability results.

1 Introduction

Motivation. Supertree construction consists in building trees on a large set of labels
from smaller trees covering parts of the label set. This task finds application in bioinfor-
matics where trees represent phylogenies, but also in other fields [1, 2]. In phylogenetics,
the labels are bijectively associated with the leaves of the trees and represent current
organisms, while internal nodes represent hypothetical ancestors. The topological infor-
mation in the input trees consists in the groupings of labels induced by internal nodes,
representing related sets of organisms such as species, orders, families, etc. The goal is
to build a supertree complying as much as possible with the topological information of
the source trees. The task is relatively easy when the input trees agree on the relative
positions of the labels. In this case, it is possible to find in polynomial time a supertree
that contains any input tree as an induced subtree, hence that incorporates all topologi-
cal information provided by the data [1]. However, in practice several input trees usually
disagree on the position of some leaves with respect to other leaves.

Related work. Some methods aim at producing supertrees incorporating as much input
information as possible under the constraint that they do not contradict any input tree:
they avoid disagreements between the input trees by collapsing some of their edges [3,
4] or by excluding some of their leaves, i.e. labels. The Maximum Agreement Supertree
(SMAST) method [5–7] is apparented to the latter kind. Given a collection T of k

⋆ This paper was supported by the Action incitative BIOSTIC-LR.

trees of maximum degree d with labels taken in a ground set L of size n, an agreement
supertree for T is a tree T on a subset L′ ⊆ L such that each tree of T restricted to
L′ is included in T . The SMAST problem consists in finding an agreement supertree
containing the maximum number of labels from L.

This problem is NP-hard in general as it generalizes the MAST problem [8]. SMAST

remains NP-hard when d is unrestricted for k ≥ 3 input trees [6] and for trees of degree
d ≥ 2 when k is unrestricted [5]. Moreover, [6, 5] have also considered the complement
problem, which is a minimization problem where the measure is the number p of labels
missing in an agreement supertree. This problem can not be approximated in polynomial
time within a constant factor, unless P = NP [5]. The corresponding decision problem
parameterized in p is W[2]-hard [5].

For the particular case of d = 2, [6] gave an O(n3k2

) algorithm for SMAST. For
k = 2 both [6, 5] shown that SMAST can be solved in polynomial time, by reduction to
MAST.

Our results. In this paper, we focus on the particular case where d = 2. Note that
in phylogenetics, the input trees of SMAST will often be binary as a result of the
optimization algorithms used to analyze raw molecular data. We improve on previous
results in several ways.

First, we show that SMAST on k rooted binary trees on a label set of size n can be
solved in O((2k)pkn2). This algorithm is only exponential in p, that roughly represents
the extent to which the input trees disagree. Thus, the algorithm will be reasonably
fast when dealing with collections of trees obtained for genes displaying a low level
of homoplasy. Then, we provide an O((8n)k) algorithm, independent of p, and signifi-
cantly improving on the O(n3k2

) algorithm of [6]. This algorithm shows that SMAST

is tractable for a small number of trees, extending in some sense the previously known
results for k = 2 trees [6, 5, 9]. We also obtain some fixed-parameter intractability results
for various combinations of parameters of SMAST.

We then consider SMAST on collections of rooted triples (binary trees on 3 leaves),
focusing on the complexity of this variant parameterized in p. Since this problem is
equivalent to SMAST in its general setting [9], it is W[2]-hard. However, we show here
that an FPT algorithm can be achieved for complete collections of rooted triples, i.e.,
when there is at least one rooted triple for each set of 3 labels in L. This results from the
fact that conflicts between the input trees can be circumvented to small sets of labels,
leading to O(4pn3) and O(3.12p + n4) algorithms.

2 Definitions

We consider rooted trees which are bijectively leaf-labelled. Let T be such a tree, we
identify its leaf set with its label set, denoted by L(T). The size of T is |T | := |L(T)|.

2

The node set of T is denoted by N(T), and r(T) stands for the root of T . We use a
parenthesized notation for trees: if x is a label, then x denotes the tree whose root is a
leaf labelled by x; if T1, ..., Tk are trees, then (T1, ..., Tk) stands for the tree whose root
is connected to the child subtrees T1, ..., Tk .

If x is a node of T , T (x) stands for the subtree of T rooted at x, and L(x) for the
label set of this subtree. If x, y are two nodes of T , then x <T y means that x is a
descendant of y in T . The upper bound of two nodes x, y of T w.r.t. <T is called the
lowest common ancestor of x, y, and is denoted by lcaT (x, y). If x, y are two nodes of T
s.t. x <T y, denote by childT (x, y) the child of y along the path joining y to x in T . If x
is an internal node of T , the set of children of x in T is denoted by childrenT (x).

Given a tree T and a label set L, the restriction of T to L, denoted by T |L, is the
tree homeomorphic to the smallest subtree of T connecting leaves of L. Let T, T ′ be two
trees. We say that T embeds in T ′, denoted by T ≤ T ′, iff T = T ′|L(T). We say that T
partially embeds in T ′, denoted by T ⋊⋉ T ′, iff T |L(T ′) = T ′|L(T). A collection is a family
T = {T1, ..., Tk} of trees, the label set of the collection is L(T) = ∪k

i=1L(Ti). Given a
label set L, the restriction of T to L is the collection T |L = {T1|L, ..., Tk|L}. See Figure
1 for an example of a collection.

r3

d c fab c ed

u
t

s
w

r1

p

q

r2

fb ca

zy
xv

Fig. 1. A collection T of 3 input trees.

A rooted triple (or triple for short) is a binary tree T s.t. |L(T)| = 3; such a tree
has the form T = ((x, y), z), and will be denoted by xy|z. A collection of triples is a
collection R = {t1, ..., tk} where each ti is a triple. R is complete iff each set of three
labels in L(R) is present in at least one ti. To a binary tree T , we associate a complete
collection of triples rt(T) formed by the triples ti ≤ T ; to a collection T , we associate a
collection of triples rt(T) = ∪T∈T rt(T). For a complete collection of triples R, we say
that R is treelike iff there exists a tree T s.t. R = rt(T); then we say that R displays T .

An agreement supertree for T is a tree S s.t. L(S) ⊆ L(T) and for each i ∈ [k], S ⋊⋉ Ti.
We say that S is a total agreement supertree for T if additionnally L(S) = L(T). The
collection T is compatible iff there exists a total agreement supertree for T . A conflict
between T is a set C ⊆ L(T) s.t. T |C is incompatible. For instance, T = (((a, b), c), (e, f))
is an agreement supertree for the collection T of Figure 1, and C = {a, b, c, d} is a conflict
between T .

Given a collection T , we define SMAST (T) as the set of agreement supertrees for
T . The Maximum Agreement Supertree problem (Smast) asks: given a collection

3

T , find an agreement supertree for T with the largest size. Equivalently, it amounts to
seek a largest set L ⊆ L(T) s.t. T |L is compatible. The size of such an optimal solution
is denoted by #SMAST (T). We also denote by P-Smast the parameterized version of
Smast, which asks: given a collection T and a parameter p, can T be made compatible
by removing at most p labels?

3 Solving Smast on binary trees

Throughout this section, we consider a fixed collection T = {T1, ..., Tk} of binary trees,
we let n denote the size of the label set and k the number of trees.

If T is a tree, we define N⊥(T) := N(T) ∪ {⊥}. We extend the notation T (u) to
u ∈ N⊥(T), s.t. if u =⊥ then T (u) is the empty tree. We extend the relation ≤T to
N⊥(T) s.t. ⊥≤T x for each x ∈ N⊥(T).

A position in T is a tuple π = (u1, ..., uk), where each ui ∈ N⊥(Ti). For i ∈ [k], the ith
component of π is denoted π[i]. We set I(π) = {i ∈ [k] : π[i] is an internal node of Ti }.
We define the initial position π⊤ = (r1, ..., rk), where each ri is the root of Ti. We define
the final position π⊥ = (⊥, ...,⊥). We let Π(T) denote the set of positions in T .

3.1 Solving Smast in O((2k)p
× kn

2) time

In this section, we describe an algorithm deciding the compatibility of a collection in
O(kn2) time, and returning a conflict of size ≤ 2k in case of incompatibility. This yields
an FPT algorithm for P-Smast with O((2k)p × kn2) running time.

The well-known Build algorithm [1, 10] decides the compatibility of a collection but
doesn’t give a conflict in case of incompatibility. Like Build, the algorithm presented
here builds the supertree using a recursive top-down approach. Each step constructs a
graph where the connected components correspond to the subtrees hanging from the
root of the supertree. However, we replace the graph used in Build with a graph that
when connected yields a conflict of size ≤ 2k, identified thanks to a spanning tree.

We begin with some additional definitions. A position is reduced iff each component
is either ⊥ or an internal node; to any position π, we associate a reduced position π ↓ by
replacing by ⊥ any component of π that is a leaf. We set T (π) := {T1(u1), ..., Tk(uk)}.
Given a position π in T , we say that π is compatible iff T (π) is compatible.

Observe that:

Lemma 1. Suppose that T = {T1, ..., Tk} is compatible. Then:

1. for each L ⊆ L(T), T |L is compatible.
2. for each position π in T , T (π) is compatible.

Proof. To prove Point 1, consider L ⊆ L(T). Let S be a total agreement supertree for
T . Then for each i ∈ [k] we have Ti ≤ S ⇒ Ti|L ≤ S|L. Hence S|L is a total agreement
supertree for T |L.

4

To prove Point 2, consider a position π in T . Remark that T |L(π) is compatible
by Point 1. Let S be a total agreement supertree for T |L(π), we claim that S is a total
agreement supertree for T (π). Indeed, we have L(S) = L(π) = L(T (π)), and given i ∈ [k]
we have Ti(ui) ≤ Ti|L(π) ≤ S. ⊓⊔

In the following, we describe a recursive algorithm to decide the compatibility of
π position in T . The base case (π = π⊥) is obvious, since π⊥ is compatible. Moreover,
observe that: π is compatible iff π ↓ is compatible. Thus, it is enough to consider reduced
positions.

From now on, we assume that π is a reduced position in T different from π⊥. We
define the graph G(T , π) as follows: (i) its vertex set is V = ∪i∈I(π)childrenTi

(π[i]); (ii)
two vertices x, y ∈ V are adjacent iff L(x) ∩ L(y) 6= ∅. In other terms, G(T , π) is the
intersection graph of the set system {L(x) : x ∈ V }. See Figure 2 for an example of such
graphs.

If V ′ ⊆ V , we define the position SuccV ′(π) as the position π′ s.t.

– if π[i] =⊥, then π′[i] =⊥;
– if π[i] is an internal node of Ti, with children vi, v

′
i, then one of the following holds:

(i) π′[i] = vi if vi ∈ V ′, v′i /∈ V ′, (ii) π′[i] = v′i if vi /∈ V ′, v′i ∈ V ′, (iii) π′[i] = ui if vi ∈
V ′, v′i ∈ V ′, (iv) π′[i] =⊥ if vi /∈ V ′, v′i /∈ V ′.

We set succV ′(π) = SuccV ′(π) ↓: this is the successor position of π induced by V ′ ⊆ V .
Given V ′ ⊆ V , set L(V ′) = ∪x∈V ′L(x). Set L(π) = L(T (π)). Given V1, V2 ⊆ V , we
say that V1, V2 are connected iff G(T , π) contains an edge {x, y} with x ∈ V1, y ∈ V2;
otherwise, we say that V1, V2 are disconnected.

BA
a

u v

z

w

q

p

u v

y

x
b

c c d

t

s

Fig. 2. A. The graph G(T , π⊤) of the position π⊤ = (r1, r2, r3) for the collection of trees of Figure 1. This
graph is disconnected, the two connected components indicate the two successor positions π1 = (p, r2, w)
and π2 = (q,⊥, z) of π⊤. B. The graph G(T , π1) is connected. Choosing a spanning tree (bold edges)
of the graph and an arbitrary label shared by the two subtrees corresponding to the extremities of each
edge of this tree identifies a conflict C = {a, b, c, d}.

We will repeatedly use the following simple observations:

Lemma 2. Let V ′ ⊆ V . Then: L(SuccV ′(π)) ⊆ L(V ′).

5

Lemma 3. Two sets V1, V2 ⊆ V are connected in G(T , π) iff L(V1) ∩ L(V2) 6= ∅.

The following lemma describes a recursive characterization of compatibility, relying
on connectedness properties of the graph G(T , π):

Lemma 4. Suppose that π is a reduced position 6= π⊥. The following are equivalent:

– π is compatible;
– there exists a partition V1, V2 of V s.t. (i) V1, V2 are disconnected in G(T , π), (ii)

succV1
(π), succV2

(π) are compatible.

Proof. (⇒). Suppose that π is compatible. Let S be a total agreement supertree for
T (π). Since |L(π))| ≥ 2, we have S = (S1, S2). Since S is a total agreement supertree
for T (π), we have Ti(π[i]) ≤ S for each i ∈ [k]. Define a partition V1, V2 of V as follows.
Let ui = π[i], and suppose that ui is an internal node of Ti, with children vi, v

′
i. Then

Ti(ui) = (Ti(vi), Ti(v
′
i)). Together with Ti(ui) ≤ S, this yields Ti(vi) ≤ S1 or Ti(vi) ≤ S2:

add vi to V1 in the first case, to V2 in the second case. Proceed similarly for v′i.
We first prove Point (i). To see that V1, V2 are disconnected in G(T , π), observe that

L(V1) ⊆ L(S1) and L(V2) ⊆ L(S2). Indeed, if x ∈ Vj with x ∈ {vi, v
′
i} then Ti(x) ≤ Sj ,

hence L(x) ⊆ L(Sj). It follows that V1, V2 are disconnected by Lemma 3. We now prove
Point (ii). Let πj = succVj

(π), then πj is a position in T (π), and since T (π) is compatible
by assumption, it follows that πj is compatible by Point 2 of Lemma 1.

(⇐). Suppose that there exists a partition V1, V2 of V satisfying Points (i), (ii). Let
πj = SuccVj

(π). Since succVj
(π) is compatible, it follows that πj is compatible. Hence,

there exists a total agreement supertree Sj for T (πj), which thus satisfies: Ti(πj [i]) ≤
Sj for each i. By Lemma 2, we then have L(Sj) = L(πj) ⊆ L(Vj). Since V1, V2 are
disconnected in G(T , π), it follows that L(V1) ∩ L(V2) = ∅ by Lemma 3. Therefore we
have L(S1) ∩ L(S2) = ∅, and we can define the tree S = (S1, S2). We show that S is a
total agreement supertree for T (π): to this end, we need to show that Ti(π[i]) ≤ S for
each i ∈ [k].

Fix such an i, let ui = π[i]. If ui =⊥, then the relation holds obviously. Suppose now
that ui is an internal node of Ti, and let vi, v

′
i be its two children. We consider three

cases. If vi, v
′
i ∈ V1: then π1[i] = ui, therefore we have Ti(ui) ≤ S1, and we conclude that

Ti(ui) ≤ S. If vi, v
′
i ∈ V2: then π2[i] = ui, therefore we have Ti(ui) ≤ S2, and we conclude

that Ti(ui) ≤ S. If vi ∈ V1, v
′
i ∈ V2: then π1[i] = vi, which implies that Ti(vi) ≤ S1,

and π2[i] = v′i, which implies that Ti(v
′
i) ≤ S2. It is easy to see that Ti(vi) ≤ S1 and

Ti(v
′
i) ≤ S2 imply that Ti(ui) = (Ti(vi), Ti(v

′
i)) ≤ (S1, S2) = S. ⊓⊔

Moreover, if the graph G(T , π) turns out to be connected, a spanning tree of this
graph yields a small conflict between T :

Lemma 5. Suppose that G(T , π) is connected, and let T = (V, F) be a spanning tree of
G(T , π). For each edge e = {u, v} ∈ F , choose le ∈ L(u) ∩ L(v). Then C = {le : e ∈ F}
is a conflict between T .

6

Proof. We show that T ′ = T |C is incompatible. For each i ∈ I(π), let ui = π[i], and
let vi, v

′
i be its two children in Ti. By definition of C, the sets L(vi) ∩ C,L(v′i) ∩ C are

not empty, hence to the nodes vi, v
′
i, ui there corresponds nodes ṽi, ṽ

′
i, ũi in Ti|C. Define

the position π′ by setting π′[i] =⊥ if i /∈ I(π), π′[i] = ũi if i ∈ I(π). Consider the graph
G(T ′, π′), then by definition of C for each edge {x, y} of T , the edge {x̃, ỹ} is present
in G(T ′, π′), therefore the tree T ′ formed of these edges is a spanning tree of G(T ′, π′),
hence the graph is connected. By Lemma 4, we conclude that π′ is an incompatible
position of T ′, therefore T ′ is incompatible (by Point 2 of Lemma 1). ⊓⊔

Lemmas 4 and 5 give rise to an algorithm for deciding the compatibility of a collection,
and obtaining a conflict of small size in case of incompatibility:

Theorem 1. There is an algorithm which, in O(kn2) time, decides if T is compatible,
or returns a conflict of size ≤ 2k.

Proof. We define a procedure IsCompatible(π) which takes as input a reduced position,
decides if π is compatible, or returns a conflict of size ≤ 2k in case of incompatibility.
The procedure is as follows: (i) answer (”yes”) if π = π⊥; (ii) if π 6= π⊥, test whether
G(T , π) is connected.

– If the graph is connected, then let T = (V, F) be a spanning tree of G(T , π), choose
le ∈ L(u)∩L(v) for each edge e = {u, v} ∈ F , construct C = {le : e ∈ F}, and return
(”no”, C).

– If the graph is not connected, then let V1, V2 be a partition of V in two disconnected
sets, and construct the positions π1, π2 where πi = succVi

(π). Call IsCompatible(π1),
let R1 be its result; if R1 = (”yes”) then call IsCompatible(π2) and return its result
R2, else return R1.

To decide if T is compatible, we simply call IsCompatible(π⊤ ↓).
We now justify the correctness and the running time of the algorithm. The correctness

of the procedure IsCompatible follows from lemmas 4 and 5. For the running time, we
rely on the fact that using appropriate data structures, we can ensure that a call to
IsCompatible takes O(kn) time (see Appendix A for details). By lemmas 2 and 3, the
total number of calls to IsCompatible is O(n), therefore the total running time of the
algorithm is O(kn2). ⊓⊔

The algorithm of Theorem 1 yields a simple FPT algorithm for P-Smast using the
bounded search tree technique:

Theorem 2. The P-Smast problem can be solved in O((2k)p × kn2) time.

Proof. The algorithm constructs a search tree of height ≤ p, where a node of the search
tree at depth i is labelled by a set of labels X ⊆ L s.t. |X| = i. At a given node u labelled

7

by a set X, the algorithm determines in O(kn2) time if T |(L\X) is compatible, using
the procedure of Theorem 1. If the answer is positive, the node is labelled by ”success”.
Otherwise, the algorithm proceeds as follows: if the node is at depth p, then it is labelled
by ”failure”; if it is at depth < p, then the procedure of Theorem 1 has returned a conflict
C of size ≤ 2k, and for each x ∈ C a child node of u is added, with label X ∪ {x}. The
running time follows easily, since the search tree has height ≤ p, degree ≤ 2k, and since
each node is processed in O(kn2) time. ⊓⊔

3.2 Solving Smast in O((8n)k) time

In this section, we describe an algorithm which solves Smast in O((8n)k) time. The
algorithm uses dynamic programming, and is somewhat similar in spirit to the algorithm
described in [8] for solving Mast on two trees.

We first give an alternative definition of the ⋊⋉ relation in terms of partial embeddings.
Let T, T ′ be two trees, say that a partial embedding of T into T ′ is a function φ : N(T) →
N(T ′) ∪ {⊥} such that:

– for any x leaf of T , we have φ(x) =⊥ if x /∈ L(T ′), or φ(x) = x otherwise,

– for any x internal node of T with children u1, ..., up, let V = {j : φ(uj) 6=⊥}, then
(i) either V = ∅, and φ(x) =⊥, (ii) either V = {i} and φ(x) = φ(ui), (ii) or |V | ≥ 2
and φ(x) >T φ(ui) for each i ∈ V , and the nodes {childT (φ(ui), φ(x)) : i ∈ V } are
pairwise distinct.

Then: T ⋊⋉ T ′ iff there exists a partial embedding of T into T ′ (or equivalently, a partial
embedding of T ′ into T).

Given a collection T , the algorithm computes values #SMAST (π) for each position
π. Let SMAST (π) denote the set of trees T s.t. (i) T is an agreement supertree for T ,
(ii) for each i, the partial embedding φi : T → Ti is such that φi(r(T)) ≤Ti

π[i]. We
denote by #SMAST (π) the size of a largest tree of SMAST (π).

We now define two values #SMAST1(π) and #SMAST2(π), from which #SMAST (π)
is computed. We first define #SMAST1(π). Say that a position π′ is a successor of π
iff there exists i ∈ [k] s.t. π′[i] is a child of π[i] and π′[j] = π[j] for each j 6= i. Let S(π)
denote the set of successors of π. Then:

#SMAST1(π) = max
π′∈S(π)

#SMAST (π′). (1)

We now define #SMAST2(π). Say that a pair of positions (π1, π2) is a decomposition
of π iff (i) π1 6= π, π2 6= π, (ii) for each i ∈ [k], the following holds:

– either π[i] =⊥, in which case π1[i] = π2[i] =⊥;

– either π[i] is a leaf x, in which case we have {π1[i], π2[i]} = {⊥, x};

8

– either π[i] is an internal node u with two children v, v′, in which case we have either
{π1[i], π2[i]} = {⊥, x} or {π1[i], π2[i]} = {v, v′}.

Let D(π) denote the set of decompositions of π. Then:

#SMAST2(π) = max
(π1,π2)∈D(π)

(#SMAST (π1) + #SMAST (π2)). (2)

We define the relation ≤T on Π(T) by: π ≤T π′ iff for each i ∈ [k], π[i] ≤Ti
π′[i]. We

observe that:

Lemma 6. (i) If π′ ∈ S(π), then π′ <T π, (ii) if (π1, π2) ∈ D(π) then πi <T π for
i ∈ {1, 2}.

Lemma 7. If π′ ≤T π, then SMAST (π′) ⊆ SMAST (π).

We now give a recurrence relation for computing #SMAST (π). Say that a position
π is terminal if for each i ∈ [k], π[i] is a leaf or ⊥.

We first consider terminal positions. Given x ∈ L(T), let Ind(x) = {i ∈ [k] : x ∈
L(Ti)}. Given a terminal position π, and given x ∈ L(π), define Ind(x, π) = {i ∈ [k] :
π[i] = x}; observe that Ind(x, π) ⊆ Ind(x). Say that an element x ∈ L(π) is nice iff
Ind(x, π) = Ind(x), and let Nice(π) denote the set of nice elements of L(π). Then:

Lemma 8. Suppose that π is terminal. Then: #SMAST (π) = |Nice(π)|.

Lemma 9. Suppose that π is not terminal. Then:
#SMAST (π) = max(#SMAST1(π),#SMAST2(π)).

Proof. We first prove that #SMAST1(π) ≤ #SMAST (π). Let S ∈ SMAST (π′) for
some π′ ∈ S(π), s.t. |S| is maximal. Since π′ <T π by Lemma 6, we have S ∈ SMAST (π)
by Lemma 7, and the result follows.

We now prove that #SMAST2(π) ≤ #SMAST (π). Let (π1, π2) ∈ D(π), and let
S1, S2 s.t. Sj ∈ SMAST (πi), |Sj | maximal. If one of the Sj’s is empty, say S1, then
#SMAST (π1) = 0, and we obtain #SMAST2(π) = |S2| = #SMAST (π2) ≤ #SMAST (π)
by lemmas 6 and 7. Suppose now that S1, S2 are not empty. For j ∈ {1, 2}, since Sj ∈
SMAST (πj), there exists partial embeddings φj,i : Sj → Ti s.t. φj,i(r(Si)) ≤Ti

πj[i] for
each i ∈ [k]. Let S = (S1, S2), we claim that S ∈ SMAST (π). Indeed, define φi : S → Ti

as follows. Set φi(x) = φj,i(x) if x is a node of Sj , and φi(x) = lcaTi
(φ1,i(r(S1)), φ2,i(r(S2))

if x is the root of S. Then: (i) L(S1)∩L(S2) = ∅, hence S is well-defined, (ii) φi is a par-
tial embedding of S into Ti, (iii) φi(r(S)) ≤Ti

π[i] (proof in Appendix B.1). We conclude
that #SMAST2(π) = |S1| + |S2| = |S| ≤ #SMAST (π).

Finally, we show that #SMAST (π) ≤ max(#SMAST1(π),#SMAST2(π)). Let S ∈
SMAST (π) s.t. |S| is maximal. Then there exists partial embeddings φi : S → Ti s.t.
φi(r(S)) ≤Ti

π[i] for each i ∈ [k]. Let ui = φi(r(S)) for each i. We consider two cases.

9

First case: there exists i ∈ [k] s.t. ui <Ti
π[i]. This case holds in particular if |S| ≤

1. Define π′ from π by setting the ith component to childTi
(ui, π[i]), then π′ ∈ S(π).

We verify that S ∈ SMAST (π′): indeed, φi is a partial embedding of S into Ti s.t.
φi(r(S)) ≤Tj

π′[j] for each j. We conclude that |S| = #SMAST (π) ≤ #SMAST (π′) ≤
#SMAST1(π).

Second case: ui = π[i] for each i ∈ [k]. In this case, we have |S| ≥ 2, hence S =
(S1, S2). Let u be the root of S, let vi be the root of Si in S, then π = (φ1(u), ..., φk(u)).
For j ∈ {1, 2}, define πj as follows: given i ∈ [k], (i) if φi(vj) = φi(u), set πj[i] = φi(u), (ii)
if φi(vj) =⊥, set πj[i] =⊥, (iii) if φi(vj) <Ti

φi(u), set πj [i] = childTi
(φi(vj), φi(u)). Then

(π1, π2) ∈ D(π) (proof in Appendix B.2). We now show that Sj ∈ SMAST (πj): indeed,
φi is a partial embedding of Sj into Ti, and by definition of πj we have φi(r(Sj)) ≤Ti

πj[i]
for each i ∈ [k]. We conclude that |S| = #SMAST (π) = |S1| + |S2| ≤ #SMAST (π1) +
#SMAST (π2) ≤ #SMAST2(π). ⊓⊔

Lemmas 8 and 9 yield an algorithm for computing #SMAST (T):

Theorem 3. #SMAST (T) can be computed in O((8n)k) time.

Proof. Using dynamic programming, the algorithm computes the values #SMAST (π)
for each position π, using the recurrence relations stated in lemmas 8 and 9. The cor-
rectness of the algorithm follows from the lemmas, and the termination of the algorithm
is ensured by Lemma 6 and the fact that <T is an order relation on Π(T).

We now consider the space and time requirements for the algorithm. First observe
that the number of positions π in T is ≤ (2n)k: indeed, a component π[i] has ≤ 2n
possible values (one of the ≤ 2n−1 nodes of Ti, or the value ⊥). It follows that the space
complexity is O((2n)k). We claim that the time complexity is O((8n)k). Indeed, consider
the time required to compute #SMAST (π), assuming that the values #SMAST (π′)
for π′ <T π are available. Testing if π is terminal requires O(k) time. If π is terminal,
computing |Nice(π)| takes O(k) time. If π is nonterminal, then we need to compute
#SMAST1(π) and #SMAST2(π), which respectively require O(k) and O(4k) time.
Thus, #SMAST (π) is computed in O(4k) time, hence the total running time of the
algorithm is O((8n)k). ⊓⊔

3.3 Hardness results

The parameterized complexity of the Smast problem on binary trees is considered w.r.t.
the following parameters: k denotes the number of input trees, l denotes an upper bound
on the maximum size of the input trees, p (resp. q) denotes an upper (resp. lower) bound
on the number of labels to remove (resp. conserve) in order to obtain compatibility of
the collection. Our complexity results for several combinations of the parameters are
summarized in Theorem 4:

10

Theorem 4. We have the following hardness results for Smast:

Parameters Complexity of Smast

q W[1]-complete (even for l = 3)

q, k W[1]-complete (even for l = 3)

p W[2]-hard (even for l = 3)

k, p FPT by a O((2k)p × kn2) time algorithm

k XNL-hard, solvable in O((8n)k) time

We remind the reader that W[1], W[2] and XNL are parameterized complexity classes
which are conjectured to properly contain FPT. They have the respective complete prob-
lems:

– Clique: given a graph G and a parameter q, decide if G has a clique of size ≥ q;
– Dominating Set: given a graph G and a parameter q, decide if G has a dominating

set of size ≤ q;
– Bounded Space Turing Machine Computation: given a nondeterministic Tur-

ing machine M with a binary tape alphabet, an integer n in unary, and a parameter
q, does M accept the empty string using space ≤ q log2 n?

The class XNL is a parameterized analogue of the class NL; it has been introduced in
[11, 12], note that the class we call XNL is indeed the class [Uniform-Xnl]FPT of [11].

We now give some elements of proof for Theorem 4. The third hardness result was
proven in [9]. The first, second and fifth result follow from similar results for the Slcs

problem [13], which is defined as follows.
A sequence s is a word without repetition on an alphabet L. We denote by L(s) ⊆ L

the label set of s, i.e. the set of letters appearing in s. We define the relation <s on L(s)
by: u <s v iff u precedes v in s. A collection (of sequences) is a family C = {s1, ..., sk},
where the sis are sequences. The label set of C is L(C) := ∪i∈[k]L(si).

Given a sequence s and a label set L′, we denote s|L′ the restriction of s to L′. Given
two sequences s, s′, we say that s embeds in s′, denoted s ≤ s′, if s = s′|L(s); we say that
s partially embeds in s′, denoted s ⋊⋉ s′, if s|L(s′) = s′|L(s). A compatible sequence for a
collection C = {s1, ..., sk} is a sequence s s.t. L(s) ⊆ L(C) and for each i ∈ [k], s ⋊⋉ si.

The Slcs problem consists in finding a largest compatible sequence of a collection
C (the size of such a sequence is denoted by #SLCS(C). While the Slcs and Smast

problems are optimization problems, for the need of the proofs we consider their decision
version Slcs-D and Smast-D, which are defined as follows. Slcs-D takes a collection C
of k sequences and an integer q, and asks if #SLCS(C) ≥ q. Smast-D takes a collection
T of k trees and an integer q, and asks if #SMAST (T) ≥ q. We denote by Slcs-D[k, q]
(resp. Smast-D[k, q]) the problem Slcs-D (resp. Smast-D) parameterized by k, q.

We rely on a parameter-preserving reduction from Slcs-D to Smast-D (see Ap-
pendix C for a proof):

11

Proposition 1. There is a polynomial-time reduction from Slcs-D[k, q] to Smast-D[k, q]
which maps an instance (C, k, q) of Slcs-D[k, q] to an instance (T , 2k + 2, 2q + 1) of
Smast-D[k, q].

We obtain:

Proposition 2. The following results hold for Smast:

– W[1]-completeness for q and q, k;
– XNL-hardness for k.

Proof. The hardness results follow from similar results for Slcs, and from the parameter-
preserving reduction given by Proposition 1.

In addition, we can prove that Smast parameterized in q is in W[1], see Appendix
D for details. ⊓⊔

4 Solving Smast on complete collection of triples

Let P-Smast-CR denote the restriction of P-Smast to complete collections of triples.
We can show that non-treelike collections have conflicts of size ≤ 4, a result similar to
that known on quartets [14]. This allows to solve P-Smast-CR in O(n4 + 3.12p) time
by reduction to 4-Hitting Set [15]. and also in O(4pn4) time by bounded search (see,
e.g. [16]). In the following, we describe a faster algorithm with O(4pn3) running time.
We first present an algorithm to decide treelikeness in linear O(n3) time (Proposition 3
and Theorem 5).

Proposition 3. There is an algorithm Insert-Label-Or-Find-Conflict(R,X, x, T)
which takes a complete collection of triples R, a set X ⊆ L(R), an element x ∈ L(R)\X
and a tree T s.t. R|X displays T , and in O(n2) time decides if R′ = R|(X ∪ {x}) is
treelike. Additionally, the algorithm returns the tree T ′ displayed by R′ in case of positive
answer, or returns a conflict C between R′ with |C| ≤ 4 in case of negative answer.

Proof. In a first step, the algorithm checks whether R contains two different triples on
the same set of three labels x, ℓ, ℓ′. In such a case, they form a conflict of size 3 which is
then returned by the algorithm. Suppose now that no such conflict is found.

Let u be an internal node of T , and let v, v′ be the two children of u. An u-fork is
a pair {l, l′} where l ∈ L(v), l′ ∈ L(v′). Each u-fork {l, l′} will propose a status sl,l′ for
the positioning of x w.r.t. u in T , where sl,l′ is computed from R as follows: sl,l′ = L if
lx|l′ ∈ R, sl,l′ = R if l′x|l ∈ R, sl,l′ = U if ll′|x ∈ R (L,R,U respectively stand for left,
right and up).

The second step of the algorithm consists in successively considering each internal
node u. For a given node u, it checks that the different u-forks propose the same status.
This verification is performed as follows: (i) for each u-fork {l, l′}, determine the status

12

sl,l′; (ii) if there exists l, l′1, l
′
2 s.t. sl,l′

1
6= sl,l′

2
, then C = {x, l, l′1, l

′
2} is a conflict; (iii)

if there exists l1, l2, l
′ s.t. sl1,l′ 6= sl2,l′ , then C = {x, l1, l2, l

′} is a conflict; (iv) else, all
values sl,l′ are identical, let su denote this value.

In a third step, the algorithm checks that the different statuses are compatible. They
are compatible iff for each edge u, v of T with u above v, we have: (i) if v is the left child
of u, then su = R ⇒ sv = U , (ii) if v is the right child of u, then su = L ⇒ sv = U ,
(iii) if v is a child of u, then su = U ⇒ sv = U . If one pair of nodes u, v does not meet
the above requirements, then by considering {l, l′} v-fork and {l, l′′} u-fork, we obtain
a conflict C = {x, l, l′, l′′}. Otherwise, consider the sets of nodes u s.t. su 6= U , they
form a (possibly empty) path in T starting at the root and ending at a node v. Then
R|(X ∪ {x}) is treelike, and displays the tree obtained from T by inserting x above v,
which is returned by the algorithm.

We now justify the running time of the algorithm. The first step trivially takes O(n2)
time. Consider the second step. Given a node u, let Fu be the set of u-forks, then an
internal node u is processed in time O(|Fu|). Therefore, the time required by the second
step is

∑

u O(|Fu|) = O(n2). Now consider the third step. The algorithm checks that for
each edge u, v of T , Conditions (i)-(ii)-(iii) hold: for a given edge, checking the conditions
or finding a conflict is done in constant time, hence the time required by this step is O(n).
It follows that the total time required by the algorithm is O(n2). ⊓⊔

Theorem 5. There is an algorithm Find-Tree-Or-Conflict(R) which takes a com-
plete collection of triples R, and in O(n3) time decides if R is treelike, returns a tree T
displayed by R in case of positive answer, or a conflict C between R with |C| ≤ 4 in case
of negative answer.

Proof. We use the procedure Insert-Label-Or-Find-Conflict to decide treelikeness
as follows. We iteratively insert each label, starting from an empty tree, until: (i) either
every label has been inserted, in which case the collection is treelike and the displayed
tree is returned, (ii) or a conflict is found and returned. ⊓⊔

Using bounded search, we obtain:

Theorem 6. The P-Smast-CR problem can be solved in O(4pn3) time.

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors
with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3)
(1981) 405–421

2. Xia, Y., Yang, Y.: Mining closed and maximal frequent subtrees from databases of labeled rooted
trees. IEEE Transactions on Knowledge and Data Engineering 17(2) (2005) 190–202

3. Gordon, A.G.: Consensus supertrees: the synthesis of rooted trees containing overlapping sets of
labelled leaves. Journal of Classification 3 (1986) 335–348

13

4. Ranwez, V., Berry, V., Criscuolo, A., Guillemot, S., Douzery, E.: Vote or veto: desirable properties
for supertree methods. submitted to Syst. Biol., LIRMM (2007)

5. Berry, V., Nicolas, F.: Maximum Agreement and Compatible Supertrees. In Sahinalp, S.C., Muthukr-
ishnan, S., Dogrusoz, U., eds.: Proceedings of CPM. Volume 3109 of LNCS. (2004) 205–219

6. Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted Maximum Agreement Supertrees. Al-
gorithmica 4(43) (2005) 293–307

7. Kao, M.Y.: Encyclopedia of algorithms. http://refworks.springer.com/algorithms/ (2007)
8. Steel, M., Warnow, T.: Kaikoura tree theorems: computing the maximum agreement subtree. Infor-

mation Processing Letters 48(2) (1993) 77–82
9. Berry, V., Nicolas, F.: Maximum Agreement and Compatible Supertrees. Journal of Discrete Algo-

rithms (in press) (2007)
10. Henzinger, M., King, V., Warnow, T.: Constructing a Tree from Homeomorphic Subtrees, with

Applications to Computational Evolutionary Biology. Algorithmica 24(1) (1999) 1–13
11. Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in parameterized complex-

ity theory. In: Proceedings of 18th IEEE Annual Conference on Computational Complexity. (2003)
(13–29)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag (2006)
13. Guillemot, S.: Parameterized complexity and approximability of the SLCS problem. Technical

report, LIRMM (2007) In preparation.
14. Bandelt, H., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Advances

in Applied Mathematics 7 (1986) 309–343
15. Fernau, H.: Parameterized algorithmics: A graph-theoretic approach. Habilitationsschrift, Univer-

sität Tübingen, Germany (2005)
16. Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum quartet inconsistency. Jour-

nal of Computer and System Sciences 67(4) (2003) 723–741

5 Appendix

5.1 Appendix A. Complements of proof of Theorem 1.

We show that the procedure IsCompatible can be implemented as a O(kn) time algo-
rithm. Obviously, (i) testing if π = π⊥ is done in O(k) time, (ii) given T spanning tree
of G(T , π), constructing C is done in |T | = O(k) time, provided we have stored a label
le for each edge of T , (iii) given V1, V2 partition of V , constructing the positions π1, π2 is
done in O(k) time. We now justify that in O(kn) time we can perform a connexity test
on G(T , π).

The crucial point is that the algorithm tests the connexity of the graph, by working
on the intersection model of G := G(T , π) provided by the sets {L(x) : x ∈ V }. In this
way, we avoid constructing the adjacency matrix of G, which would require O(k2n) time.
We thus need to describe a connexity test for a graph G = (V,E) given by an intersection
model {Sv : v ∈ V }, where the Sv are subsets of a base set S. We will justify that the
algorithm has running time O(kn), where k = |V | and n = |S|.

The algorithm proceeds as follows. It performs a traversal of the graph, by starting at
an arbitrary vertex u ∈ V , and maintains the following information during the traversal:
(i) the set U of nodes already visited, (ii) a set F of edges forming a spanning tree of

14

G[U]. At each step, the algorithm seeks a transverse edge, which is an edge e = {u, v} ∈ E
with u ∈ U, v ∈ Ū . If such an edge is found, then y is added to U , and e is added to F .
If no such edge exists, the algorithm stops, and the graph is connected iff U = V .

We show that using appropriate data structures, a step of the algorithm can be done
in O(n) time. For each x ∈ S, let Vx = {v ∈ V : x ∈ Sv}. We maintain for each x ∈ S,
two lists representing the sets Ux = Vx ∩ U and Ūx = Vx ∩ Ū . Initializing these lists
at the beginning of the algorithm is done in O(kn) time. Moreover, at a given step of
the algorithm: (i) we can find a tranversal edge in O(n) time, (ii) we can update the
structures in O(n) time. To justify Point (i), observe that finding a transversal edge
amounts to find an element x ∈ S s.t. Ux, Ūx are non empty; if such an x is found then
by choosing u ∈ Ux, v ∈ Ūx we obtain a transverse edge {u, v}; clearly, these operations
can be performed in O(n) time. To justify Point (ii), observe that when visiting a new
vertex v, we need, for each x ∈ Sv, to add v to Ux and to remove v from Ūx, which can
be performed in O(n) time by using appropriate linkage. ⊓⊔

5.2 Appendix B. Complements of proof of Lemma 9.

Appendix B.1. (i) L(S1) ∩ L(S2) = ∅: indeed, if there was x ∈ L(S1) ∩ L(S2) then we
would have x ∈ L(Ti) for some i ∈ [k]; then x = φj,i(x) ≤Ti

πj[i]. Since x ∈ L(Ti), we
must have π1[i], π2[i] 6=⊥; then they are equal to distinct children of π[i], impossible.

(ii) φi is a partial embedding of S into Ti:

– if x ∈ L(S), then x ∈ L(Sj). We conclude using the fact that φj,i is a partial embed-
ding and that φi(x) = φj,i(x).

– if x is an internal node of S with children x′, x′′, then:

• if x ∈ N(Sj), we conclude using the fact that φj,i is a partial embedding and that
φi(x) = φj,i(x).

• if x = r(S), with children x′ = r(S1), x
′′ = r(S2): then

∗ either φ1,i(x
′) = φ2,i(x

′′) =⊥, in which case φi(x) =⊥;
∗ either φ1,i(x

′) 6=⊥, φ2,i(x
′′) =⊥, in which case φi(x) = φ1,i(x

′);
∗ either φ1,i(x

′) =⊥, φ2,i(x
′′) 6=⊥, in which case φi(x) = φ2,i(x

′′);
∗ either φ1,i(x

′) 6=⊥, φ2,i(x
′′) 6=⊥, in which case these are nodes y′, y′′ s.t. y′ ≤Ti

π1[i], y′′ ≤Ti
π2[i]. Since (π1, π2) ∈ D(π), it follows that π1[i], π2[i] are 6=⊥ and

are distinct children of π[i], hence φi(x) = π[i], which implies that φ1,i(x
′) <Ti

φi(x), φ2,i(x
′′) <Ti

φi(x).

(iii) φi(r(S)) ≤Ti
π[i]: follows from the definition of φi(r(S)) and from the fact that

φi(r(Sj)) ≤Ti
πj [i].

15

Appendix B.2. We show that (π1, π2) ∈ D(π). Indeed, (i) we have πj 6= π since if we
had π1[i] = π[i] for each i, this would imply π2[i] =⊥ for each i, but given x ∈ L(S2)
there exists i s.t. x ∈ L(Ti), impossible; (ii) fix i ∈ [k]:

– if π[i] =⊥, then φi(u) =⊥, and we then have φi(v1) = φi(v2) =⊥ by definition of a
partial embedding, hence π1[i] = π2[i] =⊥;

– if π[i] 6=⊥, then φi(u) is a node of Ti, and we have:
• either φi(v1), φi(v2) 6=⊥, in which case the nodes childTi

(φi(v1), φi(u)),
childTi

(φi(v2), φi(u)) are distinct, which implies that π1[i], π2[i] are distinct chil-
dren of π[i];

• or one of φi(v1), φi(v2) is equal to ⊥, in which case the other must be equal to
φi(u), which implies that π1[i] = π[i], π2[i] =⊥ or the symmetric case.

⊓⊔

5.3 Appendix C. Proof of Proposition 1

For the sake of clarity, we choose to perform the reduction in two steps.

First step: we give a parameter-preserving reduction from Slcs-D to a variant called
Colored-Slcs. This problem is defined as follows. Given a label set L partitioned in
q sets L1, ..., Lq , and a collection C on L, a colored sequence is a sequence a1...aq with
ai ∈ Li. The problem Colored-Slcs asks: does C have a colored compatible sequence?

We show:

Lemma 10. There is a polynomial-time reduction from Slcs-D[k, q] to Colored-Slcs[k, q]
which maps an instance (C, k, q) of Slcs-D[k, q] to an instance (C′, 2k, q) of Colored-Slcs[k, q].

Proof. Given an instance I = (C, k, q) of Slcs-D[k, q], we construct an instance I ′ =
(C′, 2k, q) of Colored-Slcs[k, q] as follows. Suppose that C = {s1, ..., sk} has label set
L. For each x ∈ L we create new labels x1, ..., xq , we set L′i = {xi : x ∈ L} and
L′ = L′1 ∪ ...∪L′q. Consider the morphisms of free monoids φ, φ′, from L∗ to L′∗, defined
as follows: for each x ∈ L,

{

φ(x) = x1...xq

φ′(x) = xq...x1

For each sequence si ∈ C, define s′i = φ(si) and s′′i = φ′(si). Then C′ = {s′1, s
′′
1 , ..., s

′
k, s′′k}.

Note that C′ contains 2k sequences. The correctness of the reduction follows by
proving that: I is a positive instance of Slcs-D[k, q] iff I ′ is a positive instance of
Colored-Slcs[2k, q].

(⇒): suppose that s is a compatible sequence for C with |s| = q. Then s = a1...aq.
Let s′ = a1

1...a
q
q, we show that s′ is a colored compatible sequence for C′. Clearly s′ is a

colored sequence. To prove that s′ is a compatible sequence for C′, we need to show that:

16

– s′ ⋊⋉ s′p: consider x, y ∈ L(s′) ∩L(s′p) s.t. x <s′ y, then x = ai
i, y = aj

j with i < j, and

since ai <s aj and s ⋊⋉ sp it follows that ai <sp
aj, thus ai

i <s′p
aj

j, and we obtain
that x <s′p

y.
– s′ ⋊⋉ s′′p: the reasoning is similar.

(⇐): suppose that s′ is a colored compatible sequence for C′. Then s′ = x1...xq with
xi ∈ L′i for each i. Since xi ∈ L′i, there exists ai ∈ L s.t. xi = ai

i.
Note that the labels a1, ..., aq are pairwise distinct: if aj , aj′ were equal (to a label x)

with j < j′, then by considering a sequence si s.t. x ∈ L(si), we would obtain aj
j <s′

i
aj′

j′

but aj′

j′ <s′′
i

aj
j , impossible.

Let us now define s = a1...aq, we show that s is a compatible sequence for C. We
need to show that s ⋊⋉ sp. Consider x, y ∈ L(s) ∩ L(sp) s.t. x <s y, then x = ai, y = aj

with i < j. Since ai
i <s′ aj

j and since s′ ⋊⋉ s′p, we obtain ai
i <s′p

aj
j, and since ai, aj are

distinct this implies ai <sp
aj , and thus x <sp

y. ⊓⊔

Second step: we give a parameter-preserving reduction from Colored-Slcs to
Smast-D. If T1, ..., Tm are trees, the notation rake(T1, ..., Tm) is defined by:

{

rake(T1) = T1

rake(T1, ..., Tm+1) = (rake(T1, ..., Tm), Tm+1)

We show:

Lemma 11. There is a polynomial-time reduction from Colored-Slcs[k, q] to Smast-D[k, q]
which maps an instance (C, k, q) of Colored-Slcs[k, q] to an instance (T , k +2, 2q +1)
of Smast-D[k, q].

Proof. Let I = (C, q, k) be an instance of Colored-Slcs[q, k], where C = {s1, ..., sk} is
a collection on a label set L, partitionned in q sets L1, ..., Lq . We construct an instance
I ′ = (T , q′, k′) of Smast[q, k] as follows.

– we first define the label set L′: we create new labels l0, l1, ..., lq . For each i ∈ [q], we
set L′

i = Li ∪ {li}, and we define L′ = {l0} ∪ L′
1 ∪ ... ∪ L′

q.
– we define T = {S, S′} ∪ {T1, ..., Tk} as follows. For each i ∈ [q], we define Ri, R

′
i as

follows: consider an enumeration of L′
i = {x1, ..., xm}, then Ri = rake(x1, ..., xm) and

R′
i = rake(xm, ..., x1). We then set S = rake(l0, R1, ..., Rq) and S′ = rake(l0, R

′
1, ..., R

′
q).

For each sequence si = a1...am in C, we create a tree Ti = rake(l0, a1, ..., am).
– we set q′ = 2q + 1 and k′ = k + 2.

Note that T contains k + 2 trees. The correctness of the reduction follows by prov-
ing that: I is a positive instance of Colored-Slcs[k, q] iff I ′ is a positive instance of
Smast-D[k′, q′].

17

(⇒): suppose that s is a colored compatible sequence s for C, with |s| = q. Then
s = a1...aq, with ai ∈ Li. Let T = rake(l0, (l1, a1), ..., (lq , aq)), then T is an agree-
ment supertree for T , with |T | = q′. Clearly, we have T ⋊⋉ S and T ⋊⋉ S′, since
Ri|{li, ai} = R′

i|{li, ai} = (li, ai) for each i ∈ [q]. Moreover, we have T ⋊⋉ Ti for each
i ∈ [k]: indeed, if s|L(si) = si|L(s) = ai1 ...aim with i1 < ... < im, then T |L(Ti) =
Ti|L(T) = rake(l0, ai1 , ..., aim).

(⇐): suppose that T is an agreement supertree for T , with |T | = q′. First observe
that |L(T) ∩ L′

i| ≤ 2 for each i ∈ [q], since otherwise one of T ⋊⋉ Ri, T ⋊⋉ R′
i would

fail. Since |T | = q′, it follows that we have |L(T) ∩ L′
i| = 2 for each i ∈ [q], and thus

l0 ∈ L(T). Now, for each i ∈ [q] choose ai ∈ L(T)∩L′
i distinct from li, and let s = a1...aq.

Then s is a colored compatible sequence for C. Indeed, consider i ∈ [k], since T ⋊⋉ Ti

we have T |L(Ti) = Ti|L(T) = rake(l0, ai1 , ..., aim) with i1 < ... < im, it follows that
s|L(si) = si|L(s) = ai1 ...aim , hence s ⋊⋉ si. ⊓⊔

The proof of Proposition 1 follows from Lemmas 10 and 11.

5.4 Appendix D. Complements of proof of Proposition 2

To complete the proof of Proposition 2, we now show membership in W[1] for Smast

parameterized by q (Lemma 14). We rely on the following lemmas.

Lemma 12. Let T be a tree. The following are equivalent:

– T is an agreement supertree for T ;
– rt(T)|L(T) ⊆ rt(T).

Let R be a complete collection of triples. A direct contradiction in R is a set a, b, c ∈
L(R) s.t. ab|c ∈ R, ac|b ∈ R.

Lemma 13. The following are equivalent:

– R is treelike;
– R does not contain direct contradictions, and the following property holds: (P) for

each a, b, c, d ∈ L(R), ab|c ∈ R ∧ bc|d ∈ R ⇒ ab|d ∈ R ∧ ac|d ∈ R.

We are now ready to show:

Lemma 14. Smast parameterized in q is in W[1].

Proof. We use a parameterized reduction to Short Turing Machine Computation.
Let I = (T , q) be an instance of Smast, where T is a collection and q an integer. We
define a nondeterministic Turing machine M which accepts the empty string in q′ steps
iff T has an agreement supertree of size ≥ q.

The tape alphabet of M consists of the following symbols:

18

– a symbol px for each x ∈ L;
– a symbol rxy|z for each x, y, z ∈ L, x < y and xz|y, yz|x /∈ rt(T).

In a first step, M guesses q symbols px, and
(

q
3

)

symbols rxy|z. The idea is that for a
consistent solution, the symbols px will correspond to a label set L, and the symbols rxy|z

will form a complete collection of triples R, such that: (i) L(R) = L, (ii) R is treelike.
Then R = rt(T) for some tree T , and since rt(T)|L ⊆ rt(T) by definition of the symbols
rxy|z, it will follow that T is an agreement supertree for T by Lemma 12.

In a second step, M checks that the labels px and rxy|z are consistent. First, it
checks that the symbols px1

, ..., pxq
are s.t. x1 < ... < xq, which requires O(q) steps.

Let L = {x1, ..., xq}, then M verifies that for each x, y, z ∈ L distinct with x < y < z,
one of rxy|z, rxz|y, ryz|x is present. The machine needs to examine O(q3) triples, and each
triple is checked in O(q3) time by scanning the tape. Now, R = {xy|z : rxy|z guessed }
is a complete collection of triples without direct contradiction. Finally, M verifies that
R satisfies property (P): there are O(q4) quadruples to examine, and each check takes
time O(q3). Overall, the machine performs q′ = O(q7) steps. ⊓⊔

19

