
HAL Id: lirmm-00130406
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00130406v1

Submitted on 27 Feb 2007 (v1), last revised 27 Feb 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-parameter Tractability of the Maximum
Agreement Supertree Problem

Sylvain Guillemot, Vincent Berry

To cite this version:
Sylvain Guillemot, Vincent Berry. Fixed-parameter Tractability of the Maximum Agreement Su-
pertree Problem. RR-07005, 2007, pp.17. �lirmm-00130406v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00130406v1
https://hal.archives-ouvertes.fr

Fixed-Parameter Tractability of the Maximum Agreement

Supertree Problem⋆

extended abstract

Sylvain Guillemot1 and Vincent Berry1

Equipe Méthodes et Algorithmes pour la Bioinformatique, LIRMM, C.N.R.S.-Université Montpellier II.
{sguillem,vberry}@lirmm.fr

Abstract. Given a ground set L of labels and a collection of trees whose leaves are
bijectively labelled by some elements of L, the Maximum Agreement Supertree problem
(SMAST) is the following: find a tree T on a largest label set L′ ⊆ L that homeomorphically
contains every input tree restricted to L′. The problem finds applications in phylogenetics,
databases and data mining. In this paper we focus on the parameterized complexity of this
NP-hard problem. We consider different combinations of parameters for SMAST as well
as particular cases, providing both FPT algorithms and intractability results.

1 Introduction

Motivation. Supertree construction consists in building trees on a large set of labels
from smaller trees covering parts of the label set. This task finds application in bioinfor-
matics where trees represent phylogenies, but also in other fields [1, 2]. In phylogenetics,
the labels are bijectively associated with the leaves of the trees and represent current
organisms, while internal nodes represent hypothetical ancestors. The topological infor-
mation in the input trees consists in the groupings of labels induced by internal nodes,
representing related sets of organisms such as species, orders, families, etc. The goal is
to build a supertree complying as much as possible with the topological information of
the source trees. The task is relatively easy when the input trees agree on the relative
positions of the labels. In this case, it is possible to find in polynomial time a supertree
that contains any input tree as an induced subtree, hence that incorporates all topologi-
cal information provided by the data [1]. However, in practice several input trees usually
disagree on the position of some leaves with respect to other leaves.

Related work. Some methods aim at producing supertrees incorporating as much input
information as possible under the constraint that they do not contradict any input tree:
they avoid disagreements between the input trees by collapsing some of their edges [3,
4] or by excluding some of their leaves, i.e. labels. The Maximum Agreement Supertree
(SMAST) method [5–7] is apparented to the latter kind. Given a collection T of k

⋆ This paper was supported by the Action incitative BIOSTIC-LR.

trees of maximum degree d with labels taken in a ground set L of size n, an agreement
supertree for T is a tree T on a subset L′ ⊆ L such that each tree of T restricted to
L′ is included in T . The SMAST problem consists in finding an agreement supertree
containing the maximum number of labels from L.

This problem is NP-hard in general as it generalizes the MAST problem [8]. SMAST

remains NP-hard when d is unrestricted for k ≥ 3 input trees [6] and for trees of degree
d ≥ 2 when k is unrestricted [5]. Moreover, [6, 5] have also considered the complement
problem, which is a minimization problem where the measure is the number p of labels
missing in an agreement supertree. This problem can not be approximated in polynomial
time within a constant factor, unless P = NP [5]. The corresponding decision problem
parameterized in p is W[2]-hard [5].

For the particular case of d = 2, [6] gave an O(nk2

) algorithm for SMAST. For
k = 2 both [6, 5] shown that SMAST can be solved in polynomial time, by reduction to
MAST.

Our results. In this paper, we focus on the particular case where d = 2. Note that
in phylogenetics, the input trees of SMAST will often be binary as a result of the
optimization algorithms used to analyze raw molecular data. We improve on previous
results in several ways.

First, we show that SMAST on k rooted binary trees on a label set of size n can be
solved in O((2k)pkn2). This algorithm is only exponential in p, that roughly represents
the extent to which the input trees disagree. Thus, the algorithm will be reasonably
fast when dealing with collections of trees obtained for genes displaying a low level of
homoplasy. Then, we provide an O((8n)k) algorithm, independent of p, and significantly
improving on the O(nk2

) algorithm of [6]. This algorithm shows that SMAST is tractable
for a small number of trees, extending in some sense the previously known results for
k = 2 trees [6, 5, 9]. We also obtain some fixed-parameter intractability results for various
combinations of parameters of SMAST.

We then consider SMAST on collections of rooted triples (binary trees on 3 leaves),
focusing on the complexity of this variant parameterized in p. Since this problem is
equivalent to SMAST in its general setting [9], it is W[2]-hard. However, we show here
that an FPT algorithm can be achieved for complete collections of rooted triples, i.e.,
when there is at least one rooted triple for each set of 3 labels in L. This results from the
fact that conflicts between the input trees can be circumvented to small sets of labels,
leading to O(4pn3) and O(3.12p + n4) algorithms.

2 Definitions

We consider rooted trees which are bijectively leaf-labelled. Let T be such a tree, we
identify its leaf set with its label set, denoted by L(T). The size of T is |T | := |L(T)|.

2

The node set of T is denoted by N(T), and r(T) stands for the root of T . We use a
parenthesized notation for trees: if x is a label, then x denotes the tree whose root is a
leaf labelled by x; if T1, ..., Tk are trees, then (T1, ..., Tk) stands for the tree whose root
is connected to the child subtrees T1, ..., Tk .

If x is a node of T , T (x) stands for the subtree of T rooted at x, and L(x) for the
label set of this subtree. If x, y are two nodes of T , then x <T y means that x is a
descendant of y in T . The upper bound of two nodes x, y of T w.r.t. <T is called the
lowest common ancestor of x, y, and is denoted by lcaT (x, y). If x, y are two nodes of T
s.t. x <T y, denote by childT (x, y) the child of y along the path joining y to x in T . If x
is an internal node of T , the set of children of x in T is denoted by childrenT (x).

Given a tree T and a label set L, the restriction of T to L, denoted by T |L, is the
tree homeomorphic to the smallest subtree of T connecting leaves of L. Let T, T ′ be two
trees. We say that T embeds in T ′, denoted by T ≤ T ′, iff T = T ′|L(T). We say that T
partially embeds in T ′, denoted by T ⋊⋉ T ′, iff T |L(T ′) = T ′|L(T). A collection is a family
T = {T1, ..., Tk} of trees, the label set of the collection is L(T) = ∪k

i=1L(Ti). Given a
label set L, the restriction of T to L is the collection T |L = {T1|L, ..., Tk|L}. See Figure
1 for an example of a collection.

r3

d c fab c ed

u
t

s
w

r1

p

q

r2

fb ca

zy
xv

Fig. 1. A collection T of 3 input trees.

An agreement supertree for T is a tree S s.t. L(S) ⊆ L(T) and for each i ∈ [k], S ⋊⋉ Ti.
We say that S is a total agreement supertree for T if additionnally L(S) = L(T). The
collection T is compatible iff there exists a total agreement supertree for T . A conflict
between T is a set C ⊆ L(T) s.t. T |C is incompatible. For instance, T = (((a, b), c), (e, f))
is an agreement supertree for the collection T of Figure 1, and C = {a, b, c, d} is a conflict
between T .

Given a collection T , we define SMAST (T) as the set of agreement supertrees for
T . The Maximum Agreement Supertree problem (Smast) asks: given a collection
T , find an agreement supertree for T with the largest size. Equivalently, it amounts to
seek a largest set L ⊆ L(T) s.t. T |L is compatible. The size of such an optimal solution
is denoted by #SMAST (T). We also denote by P-Smast the parameterized version of
Smast, which asks: given a collection T and a parameter p, can T be made compatible
by removing at most p labels?

3

3 Solving Smast on binary trees

Throughout this section, we consider a fixed collection T = {T1, ..., Tk} of binary trees,
we let n denote the size of the label set and k the number of trees.

If T is a tree, we define N⊥(T) := N(T) ∪ {⊥}. We extend the notation T (u) to
u ∈ N⊥(T), s.t. if u =⊥ then T (u) is the empty tree. We extend the relation ≤T to
N⊥(T) s.t. ⊥≤T x for each x ∈ N⊥(T).

A position in T is a tuple π = (u1, ..., uk), where each ui ∈ N⊥(Ti). For i ∈ [k], the ith
component of π is denoted π[i]. We set I(π) = {i ∈ [k] : π[i] is an internal node of Ti }.
We define the initial position π⊤ = (r1, ..., rk), where each ri is the root of Ti. We define
the final position π⊥ = (⊥, ...,⊥). We let Π(T) denote the set of positions in T .

3.1 Solving Smast in O((2k)p
× kn

2) time

In this section, we describe an algorithm deciding the compatibility of a collection in
O(kn2) time, and returning a conflict of size ≤ 2k in case of incompatibility. This yields
an FPT algorithm for P-Smast with O((2k)p × kn2) running time.

The well-known Build algorithm [1, 10] decides the compatibility of a collection but
doesn’t give a conflict in case of incompatibility. Like Build, the algorithm presented
here builds the supertree using a recursive top-down approach. Each step constructs a
graph where the connected components correspond to the subtrees hanging from the
root of the supertree. However, we replace the graph used in Build with a graph that
when connected yields a conflict of size ≤ 2k, identified thanks to a spanning tree.

We begin with some additional definitions. A position is reduced iff each component
is either ⊥ or an internal node; to any position π, we associate a reduced position π ↓ by
replacing by ⊥ any component of π that is a leaf. In the following, we will assume that
π is a reduced position in T . We set T (π) := {T1(u1), ..., Tk(uk)}.

We define the graph G(T , π) as follows: (i) its vertex set is V = ∪i∈I(π)childrenTi
(π[i]);

(ii) two vertices x, y ∈ V are adjacent iff L(x)∩L(y) 6= ∅. In other terms, G(T , π) is the
intersection graph of the set system {L(x) : x ∈ V }. See Figure 2 for an example of such
graphs.
If V ′ ⊆ V , we define the position SuccV ′(π) as the position π′ s.t.

– if π[i] =⊥, then π′[i] =⊥;
– if π[i] is an internal node of Ti, with children vi, v

′
i, then one of the following holds:

(i) π′[i] = vi if vi ∈ V ′, v′i /∈ V ′, (ii) π′[i] = v′i if vi /∈ V ′, v′i ∈ V ′, (iii) π′[i] = ui if vi ∈
V ′, v′i ∈ V ′, (iv) π′[i] =⊥ if vi /∈ V ′, v′i /∈ V ′.

We set succV ′(π) = SuccV ′(π) ↓. Given V ′ ⊆ V , set L(V ′) = ∪x∈V ′L(x). Set L(π) =
L(T (π)). We will repeatedly use the following simple observations:

Lemma 1. Let V ′ ⊆ V . Then: L(SuccV ′(π)) ⊆ L(V ′).

Lemma 2. Two sets V1, V2 ⊆ V are connected in G(T , π) iff L(V1) ∩ L(V2) 6= ∅.

4

BA
a

u v

z

w

q

p

u v

y

x
b

c c d

t

s

Fig. 2. A. The graph G(T , π⊤) of the position π⊤ = (r1, r2, r3) for the collection of trees of Figure 1. This
graph is disconnected, the two connected components indicate the two successor positions π1 = (p, r2, w)
and π2 = (q,⊥, z) of π⊤. B. The graph G(T , π1) is connected. Choosing a spanning tree (bold edges)
of the graph and an arbitrary label shared by the two subtrees corresponding to the extremities of each
edge of this tree identifies a conflict C = {a, b, c, d}.

Given a position π in T , we say that π is compatible iff T (π) is compatible. Note that
π⊥ is compatible. Observe also that: π is compatible iff π ↓ is compatible. Let us now
consider a reduced position π 6= π⊥. Then |L(π)| ≥ 2. We have the following recursive
characterization of compatibility for this case:

Lemma 3. Suppose that |L(π)| ≥ 2. The following are equivalent:

– π is compatible;
– there exists a partition V1, V2 of V s.t. (i) V1, V2 are disconnected in G(T , π), (ii)

succV1
(π), succV2

(π) are compatible.

Moreover, if the graph G(T , π) turns out to be connected, a spanning tree of this
graph yields a small conflict between T :

Lemma 4. Suppose that G(T , π) is connected, and let T = (V, F) be a spanning tree of
G(T , π). For each edge e = {u, v} ∈ F , choose le ∈ L(u) ∩ L(v). Then C = {le : e ∈ F}
is a conflict between T .

Lemmas 3 and 4 give rise to an algorithm for deciding the compatibility of a collection,
and obtaining a conflict of small size in case of incompatibility:

Theorem 1. There is an algorithm which, in O(kn2) time, decides if T is compatible,
or returns a conflict of size ≤ 2k.

Proof. We define a procedure IsCompatible(π) which takes as input a reduced position,
decides if π is compatible, or returns a conflict of size ≤ 2k in case of incompatibility.
The procedure is as follows: (i) answer (”yes”) if π = π⊥; (ii) if π 6= π⊥, test whether
G(T , π) is connected.

– If the graph is connected, then let T = (V, F) be a spanning tree of G(T , π), choose
le ∈ L(u)∩L(v) for each edge e = {u, v} ∈ F , construct C = {le : e ∈ F}, and return
(”no”, C).

5

– If the graph is not connected, then let V1, V2 be a partition of V in two disconnected
sets, and construct the positions π1, π2 where πi = succVi

(π). Call IsCompatible(π1),
let R1 be its result; if R1 = (”yes”) then call IsCompatible(π2) and return its result
R2, else return R1.

To decide if T is compatible, we simply call IsCompatible(π⊤ ↓).

We now justify the correctness and the running time of the algorithm. The correctness
of the procedure IsCompatible follows from lemmas 3 and 4. For the running time, we
rely on the fact that using appropriate data structures, we can ensure that a call to
IsCompatible takes O(kn) time (see Appendix for details). By lemmas 1 and 2, the
total number of calls to IsCompatible is O(n), therefore the total running time of the
algorithm is O(kn2). ⊓⊔

The algorithm of Theorem 1 yields a simple FPT algorithm for P-Smast using the
bounded search tree technique:

Theorem 2. The P-Smast problem can be solved in O((2k)p × kn2) time.

3.2 Solving Smast in O((8n)k) time

In this section, we describe an algorithm which solves Smast in O((8n)k) time. The
algorithm uses dynamic programming, and is somewhat similar in spirit to the algorithm
described in [8] for solving Mast on two trees.

We first give an alternative definition of the ⋊⋉ relation in terms of partial embeddings.
Let T, T ′ be two trees, say that a partial embedding of T into T ′ is a function φ : N(T) →
N(T ′) ∪ {⊥} such that:

– for any x leaf of T , we have φ(x) =⊥ if x /∈ L(T ′), or φ(x) = x otherwise,

– for any x internal node of T with children u1, ..., up, let V = {j : φ(uj) 6=⊥}, then
(i) either V = ∅, and φ(x) =⊥, (ii) either V = {i} and φ(x) = φ(ui), (ii) or |V | ≥ 2
and φ(x) >T φ(ui) for each i ∈ V , and the nodes {childT (φ(ui), φ(x)) : i ∈ V } are
pairwise distinct.

Then: T ⋊⋉ T ′ iff there exists a partial embedding of T into T ′ (or equivalently, a partial
embedding of T ′ into T).

Given a collection T , the algorithm computes values #SMAST (π) for each position
π. Let SMAST (π) denote the set of trees T s.t. (i) T is an agreement supertree for T ,
(ii) for each i, the partial embedding φi : T → Ti is such that φi(r(T)) ≤Ti

π[i]. We
denote by #SMAST (π) the size of a largest tree of SMAST (π).

We now define two values #SMAST1(π) and #SMAST2(π), from which #SMAST (π)
is computed. We first define #SMAST1(π). Say that a position π′ is a successor of π

6

iff there exists i ∈ [k] s.t. π′[i] is a child of π[i] and π′[j] = π[j] for each j 6= i. Let S(π)
denote the set of successors of π. Then:

#SMAST1(π) = max
π′∈S(π)

#SMAST (π′). (1)

We now define #SMAST2(π). Say that a pair of positions (π1, π2) is a decomposition
of π iff (i) π1 6= π, π2 6= π, (ii) for each i ∈ [k], the following holds:

– either π[i] =⊥, in which case π1[i] = π2[i] =⊥;
– either π[i] is a leaf x, in which case we have {π1[i], π2[i]} = {⊥, x};
– either π[i] is an internal node u with two children v, v′, in which case we have either

{π1[i], π2[i]} = {⊥, x} or {π1[i], π2[i]} = {v, v′}.

Let D(π) denote the set of decompositions of π. Then:

#SMAST2(π) = max
(π1,π2)∈D(π)

(#SMAST (π1) + #SMAST (π2)). (2)

We define the relation ≤T on Π(T) by: π ≤T π′ iff for each i ∈ [k], π[i] ≤Ti
π′[i]. We

observe that:

Lemma 5. (i) If π′ ∈ S(π), then π′ <T π, (ii) if (π1, π2) ∈ D(π) then πi <T π for
i ∈ {1, 2}.

Lemma 6. If π′ ≤T π, then SMAST (π′) ⊆ SMAST (π).

We now give a recurrence relation for computing #SMAST (π). Say that a position
π is terminal if for each i ∈ [k], π[i] is a leaf or ⊥.

We first consider terminal positions. Given x ∈ L(T), let Ind(x) = {i ∈ [k] : x ∈
L(Ti)}. Given a terminal position π, and given x ∈ L(π), define Ind(x, π) = {i ∈ [k] :
π[i] = x}; observe that Ind(x, π) ⊆ Ind(x). Say that an element x ∈ L(π) is nice iff
Ind(x, π) = Ind(x), and let Nice(π) denote the set of nice elements of L(π). Then:

Lemma 7. Suppose that π is terminal. Then: #SMAST (π) = |Nice(π)|.

Lemma 8. Suppose that π is not terminal. Then:
#SMAST (π) = max(#SMAST1(π),#SMAST2(π)).

Proof. We first prove that #SMAST1(π) ≤ #SMAST (π). Let S ∈ SMAST (π′) for
some π′ ∈ S(π), s.t. |S| is maximal. Since π′ <T π by Lemma 5, we have S ∈ SMAST (π)
by Lemma 6, and the result follows.

We now prove that #SMAST2(π) ≤ #SMAST (π). Let (π1, π2) ∈ D(π), and let
S1, S2 s.t. Sj ∈ SMAST (πi), |Sj | maximal. If one of the Sj’s is empty, say S1, then
#SMAST (π1) = 0, and we obtain #SMAST2(π) = |S2| = #SMAST (π2) ≤ #SMAST (π)

7

by lemmas 5 and 6. Suppose now that S1, S2 are not empty. For j ∈ {1, 2}, since Sj ∈
SMAST (πj), there exists partial embeddings φj,i : Sj → Ti s.t. φj,i(r(Si)) ≤Ti

πj[i] for
each i ∈ [k]. Let S = (S1, S2), we claim that S ∈ SMAST (π). Indeed, define φi : S → Ti

as follows. Set φi(x) = φj,i(x) if x is a node of Sj , and φi(x) = lcaTi
(φ1,i(r(S1)), φ2,i(r(S2))

if x is the root of S. It is clear that: (i) L(S1) ∩ L(S2) = ∅, hence S is well-defined, (ii)
φi is a partial embedding of S into Ti, (iii) φi(r(S)) ≤Ti

π[i] (proof in Appendix). We
conclude that #SMAST2(π) = |S1| + |S2| = |S| ≤ #SMAST (π).

Finally, we show that #SMAST (π) ≤ max(#SMAST1(π),#SMAST2(π)). Let S ∈
SMAST (π) s.t. |S| is maximal. Then there exists partial embeddings φi : S → Ti s.t.
φi(r(S)) ≤Ti

π[i] for each i ∈ [k]. Let ui = φi(r(S)) for each i. We consider two cases.
First case: there exists i ∈ [k] s.t. ui <Ti

π[i]. This case holds in particular if |S| ≤
1. Define π′ from π by setting the ith component to childTi

(ui, π[i]), then π′ ∈ S(π).
We verify that S ∈ SMAST (π′): indeed, φi is a partial embedding of S into Ti s.t.
φi(r(S)) ≤Tj

π′[j] for each j. We conclude that |S| = #SMAST (π) ≤ #SMAST (π′) ≤
#SMAST1(π).

Second case: ui = π[i] for each i ∈ [k]. In this case, we have |S| ≥ 2, hence S =
(S1, S2). Let u be the root of S, let vi be the root of Si in S, then π = (φ1(u), ..., φk(u)).
For j ∈ {1, 2}, define πj as follows: given i ∈ [k], (i) if φi(vj) = φi(u), set πj[i] = φi(u), (ii)
if φi(vj) =⊥, set πj [i] =⊥, (iii) if φi(vj) <Ti

φi(u), set πj[i] = childTi
(φi(vj), φi(u)). It is

clear that (π1, π2) ∈ D(π) (proof in Appendix). We now show that Sj ∈ SMAST (πj): in-
deed, φi is a partial embedding of Sj into Ti, and by definition of πj we have φi(r(Sj)) ≤Ti

πj[i] for each i ∈ [k]. We conclude that |S| = #SMAST (π) = |S1|+|S2| ≤ #SMAST (π1)+
#SMAST (π2) ≤ #SMAST2(π). ⊓⊔

Lemmas 7 and 8 yield an algorithm for computing #SMAST (T):

Theorem 3. #SMAST (T) can be computed in O((8n)k) time.

Proof. Using dynamic programming, the algorithm computes the values #SMAST (π)
for each position π, using the recurrence relations stated in lemmas 7 and 8. The cor-
rectness of the algorithm follows from the lemmas, and the termination of the algorithm
is ensured by Lemma 5 and the fact that <T is an order relation on Π(T).

We now consider the space and time requirements for the algorithm. First observe
that the number of positions π in T is ≤ (2n)k: indeed, a component π[i] has ≤ 2n
possible values (one of the ≤ 2n−1 nodes of Ti, or the value ⊥). It follows that the space
complexity is O((2n)k). We claim that the time complexity is O((8n)k). Indeed, consider
the time required to compute #SMAST (π), assuming that the values #SMAST (π′)
for π′ <T π are available. Testing if π is terminal requires O(k) time. If π is terminal,
computing |Nice(π)| takes O(k) time. If π is nonterminal, then we need to compute
#SMAST1(π) and #SMAST2(π), which respectively require O(k) and O(4k) time.
Thus, #SMAST (π) is computed in O(4k) time, hence the total running time of the
algorithm is O((8n)k). ⊓⊔

8

3.3 Hardness results

The parameterized complexity of the Smast problem on binary trees is considered w.r.t.
the following parameters: k denotes the number of input trees, l denotes an upper bound
on the maximum size of the input trees, p (resp. q) denotes an upper (resp. lower) bound
on the number of labels to remove (resp. conserve) in order to obtain compatibility of
the collection. Our complexity results for several combinations of the parameters are
summarized in Theorem 4:

Theorem 4. We have the following hardness results for Smast:

Parameters Complexity of Smast

q W[1]-complete (even for l = 3)

q, k W[1]-complete (even for l = 3)

p W[2]-hard (even for l = 3)

k, p FPT by a O((2k)p × kn2) time algorithm

k XNL-hard, solvable in O((8n)k) time

4 Solving Smast on complete collection of triples

A rooted triple (or triple for short) is a binary tree T s.t. |L(T)| = 3. A collection of
triples is a collection R = {t1, ..., tk} where each ti is a triple. R is complete iff each set
of three labels in L(R) is present in at least one ti. To a binary tree T , we associate a
complete collection of triples rt(T) formed by the triples ti ≤ T . For a complete collection
R, we say that R is treelike iff there exists a tree T s.t. R = rt(T); then we say that R
displays T .

Let P-Smast-CR denote the restriction of P-Smast to complete collections of
triples. We can show that non-treelike collections have conflicts of size ≤ 4, a result similar
to that known on quartets [11]. This allows to solve P-Smast-CR in O(n4 +3.12p) time
by reduction to 4-Hitting Set [12]. and also in O(4pn4) time by bounded search (see,
e.g. [13]). In the following, we describe a faster algorithm with O(4pn3) running time.
We first present an algorithm to decide treelikeness in linear O(n3) time (Proposition 1
and Theorem 5).

Proposition 1. There is an algorithm Insert-Label-Or-Find-Conflict(R,X, x, T)
which takes a complete collection of triples R, a set X ⊆ L(R), an element x ∈ L(R)\X
and a tree T s.t. R|X displays T , and in O(n2) time decides if R′ = R|(X ∪ {x}) is
treelike. Additionally, the algorithm returns the tree T ′ displayed by R′ in case of positive
answer, or returns a conflict C between R′ with |C| ≤ 4 in case of negative answer.

Proof. In a first step, the algorithm checks whether R contains two different triples on
the same set of three labels x, ℓ, ℓ′. In such a case, they form a conflict of size 3 which is

9

then returned by the algorithm. Suppose now that no such conflict is found. Let u be an
internal node of T , and let v, v′ be the two children of u. An u-fork is a pair {l, l′} where
l ∈ L(v), l′ ∈ L(v′). Each u-fork {l, l′} will propose a status sl,l′ for the positioning of x
w.r.t. u in T , where sl,l′ is computed from R as follows: sl,l′ = L if lx|l′ ∈ R, sl,l′ = R if
l′x|l ∈ R, sl,l′ = U if ll′|x ∈ R (L,R,U respectively stand for left, right and up).

The second step of the algorithm consists in successively considering each internal
node u. For a given node u, it checks that the different u-forks propose the same status.
This verification is performed as follows: (i) for each u-fork {l, l′}, determine the status
sl,l′; (ii) if there exists l, l′1, l

′
2 s.t. sl,l′

1
6= sl,l′

2
, then C = {x, l, l′1, l

′
2} is a conflict; (iii)

if there exists l1, l2, l
′ s.t. sl1,l′ 6= sl2,l′ , then C = {x, l1, l2, l

′} is a conflict; (iv) else, all
values sl,l′ are identical, let su denote this value.

In a third step, the algorithm checks that the different statuses are compatible. They
are compatible iff for each edge u, v of T with u above v, we have: (i) if v is the left child
of u, then su = R ⇒ sv = U , (ii) if v is the right child of u, then su = L ⇒ sv = U ,
(iii) if v is a child of u, then su = U ⇒ sv = U . If one pair of nodes u, v does not meet
the above requirements, then by considering {l, l′} v-fork and {l, l′′} u-fork, we obtain
a conflict C = {x, l, l′, l′′}. Otherwise, consider the sets of nodes u s.t. su 6= U , they
form a (possibly empty) path in T starting at the root and ending at a node v. Then
R|(X ∪ {x}) is treelike, and displays the tree obtained from T by inserting x above v,
which is returned by the algorithm.

We now justify the running time of the algorithm. The first step trivially takes O(n2)
time. Consider the second step. Given a node u, let Fu be the set of u-forks, then an
internal node u is processed in time O(|Fu|). Therefore, the time required by the second
step is

∑
u O(|Fu|) = O(n2). Now consider the third step. The algorithm checks that for

each edge u, v of T , Conditions (i)-(ii)-(iii) hold: for a given edge, checking the conditions
or finding a conflict is done in constant time, hence the time required by this step is O(n).
It follows that the total time required by the algorithm is O(n2). ⊓⊔

Theorem 5. There is an algorithm Find-Tree-Or-Conflict(R) which takes a com-
plete collection of triples R, and in O(n3) time decides if R is treelike, returns a tree T
displayed by R in case of positive answer, or a conflict C between R with |C| ≤ 4 in case
of negative answer.

Proof. We use the procedure Insert-Label-Or-Find-Conflict to decide treelikeness
as follows. We iteratively insert each label, starting from an empty tree, until: (i) either
every label has been inserted, in which case the collection is treelike and the displayed
tree is returned, (ii) or a conflict is found and returned. ⊓⊔

Using bounded search, we obtain:

Theorem 6. The P-Smast-CR problem can be solved in O(4pn3) time.

10

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors
with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3)
(1981) 405–421

2. Xia, Y., Yang, Y.: Mining closed and maximal frequent subtrees from databases of labeled rooted
trees. IEEE Transactions on Knowledge and Data Engineering 17(2) (2005) 190–202

3. Gordon, A.G.: Consensus supertrees: the synthesis of rooted trees containing overlapping sets of
labelled leaves. Journal of Classification 3 (1986) 335–348

4. Ranwez, V., Berry, V., Criscuolo, A., Guillemot, S., Douzery, E.: Vote or veto: desirable properties
for supertree methods. submitted to syst. biol., LIRMM (2007)

5. Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. In Sahinalp, S.C., Muthukr-
ishnan, S., Dogrusoz, U., eds.: Proceedings of CPM. Volume 3109 of LNCS. (2004) 205–219

6. Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted maximum agreement supertrees. In:
Proceedings of the 6th Latin American Symposium on Theoretical Informatics (LATIN). (2004) (in
press).

7. Kao, M.Y.: Encyclopedia of algorithms. http://refworks.springer.com/algorithms/ (2007)
8. Steel, M., Warnow, T.: Kaikoura tree theorems: computing the maximum agreement subtree. Infor-

mation Processing Letters 48(2) (1993) 77–82
9. Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. Journal of Discrete Algo-

rithms (in press) (2007)
10. Henzinger, M., King, V., Warnow, T.: Constructing a Tree from Homeomorphic Subtrees, with

Applications to Computational Evolutionary Biology. Algorithmica 24(1) (1999) 1–13
11. Bandelt, H., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Advances

in Applied Mathematics 7 (1986) 309–343
12. Fernau, H.: Parameterized algorithmics: A graph-theoretic approach. Habilitationsschrift, Univer-

sität Tübingen, Germany (2005)
13. Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum quartet inconsistency. Jour-

nal of Computer and System Sciences 67(4) (2003) 723–741
14. Guillemot, S., Berry, V.: Fixed-parameter tractability of the maximum agreement supertree problem.

Technical report, LIRMM (2007)

5 Appendix

We give below proofs for some results stated in the paper. Proofs for other results can
be found in [14]. We first establish a preliminary lemma.

Lemma 9. Suppose that T = {T1, ..., Tk} is compatible. Then:

1. for each L ⊆ L(T), T |L is compatible.
2. for each position π in T , T (π) is compatible.

Proof. Let S be a total agreement supertree for T .
To prove Point 1, consider L ⊆ L(T). Then for each i ∈ [k] we have Ti ≤ S ⇒ Ti|L ≤

S|L. Hence S|L is a total agreement supertree for T |L.
To prove Point 2, consider a position π in T . Remark that T |L(π) is compatible

by Point 1. Let S be a total agreement supertree for T |L(π), we claim that S is a total
agreement supertree for T (π). Indeed, we have L(S) = L(π) = L(T (π)), and given i ∈ [k]
we have Ti(ui) ≤ Ti|L(π) ≤ S. ⊓⊔

11

Proof of Lemma 3 (⇒). Suppose that π is compatible. Let S be a total agreement
supertree for T (π). Since |L(π))| ≥ 2, we have S = (S1, S2). Since S is a total agreement
supertree for T (π), we have Ti(π[i]) ≤ S for each i ∈ [k]. Define a partition V1, V2 of V
as follows. Let ui = π[i], and suppose that ui is an internal node of Ti, with children
vi, v

′
i. Then Ti(ui) = (Ti(vi), Ti(v

′
i)). Together with Ti(ui) ≤ S, this yields Ti(vi) ≤ S1 or

Ti(vi) ≤ S2: add vi to V1 in the first case, to V2 in the second case. Proceed similarly for
v′i.

We first prove Point (i). To see that V1, V2 are disconnected in G(T , π), observe that
L(V1) ⊆ L(S1) and L(V2) ⊆ L(S2). Indeed, if x ∈ Vj with x ∈ {vi, v

′
i} then Ti(x) ≤ Sj ,

hence L(x) ⊆ L(Sj). It follows that V1, V2 are disconnected by Lemma 2. We now prove
Point (ii). Let πj = succVj

(π), then πj is a position in T (π), and since T (π) is compatible
by assumption, it follows that πj is compatible by Point 2 of Lemma 9.

(⇐). Suppose that there exists a partition V1, V2 of V satisfying Points (i), (ii). Let
πj = SuccVj

(π). Since succVj
(π) is compatible, it follows that πj is compatible. Hence,

there exists a total agreement supertree Sj for T (πj), which thus satisfies: Ti(πj [i]) ≤
Sj for each i. By Lemma 1, we then have L(Sj) = L(πj) ⊆ L(Vj). Since V1, V2 are
disconnected in G(T , π), it follows that L(V1) ∩ L(V2) = ∅ by Lemma 2. Therefore we
have L(S1) ∩ L(S2) = ∅, and we can define the tree S = (S1, S2). We show that S is a
total agreement supertree for T (π): to this end, we need to show that Ti(π[i]) ≤ S for
each i ∈ [k].

Fix such an i, let ui = π[i]. If ui =⊥, then the relation holds obviously. Suppose now
that ui is an internal node of Ti, and let vi, v

′
i be its two children. We consider three

cases. If vi, v
′
i ∈ V1: then π1[i] = ui, therefore we have Ti(ui) ≤ S1, and we conclude that

Ti(ui) ≤ S. If vi, v
′
i ∈ V2: then π2[i] = ui, therefore we have Ti(ui) ≤ S2, and we conclude

that Ti(ui) ≤ S. If vi ∈ V1, v
′
i ∈ V2: then π1[i] = vi, which implies that Ti(vi) ≤ S1,

and π2[i] = v′i, which implies that Ti(v
′
i) ≤ S2. It is easy to see that Ti(vi) ≤ S1 and

Ti(v
′
i) ≤ S2 imply that Ti(ui) = (Ti(vi), Ti(v

′
i)) ≤ (S1, S2) = S. ⊓⊔

Proof of Lemma 4: We show that T ′ = T |C is incompatible. For each i ∈ I(π), let ui =
π[i], and let vi, v

′
i be its two children in Ti. By definition of C, the sets L(vi)∩C,L(v′i)∩C

are not empty, hence to the nodes vi, v
′
i, ui there corresponds nodes ṽi, ṽ

′
i, ũi in Ti|C.

Define the position π′ by setting π′[i] =⊥ if i /∈ I(π), π′[i] = ũi if i ∈ I(π). Consider
the graph G(T ′, π′), then by definition of C for each edge {x, y} of T , the edge {x̃, ỹ}
is present in G(T ′, π′), therefore the tree T ′ formed of these edges is a spanning tree
of G(T ′, π′), hence the graph is connected. By Lemma 3, we conclude that π′ is an
incompatible position of T ′, therefore T ′ is incompatible (by Point 2 of Lemma 9). ⊓⊔

12

End of the proof of Theorem 1. We show that the procedure IsCompatible can be
implemented as a O(kn) time algorithm. Obviously, (i) testing if π = π⊥ is done in O(k)
time, (ii) given T spanning tree of G(T , π), constructing C is done in |T | = O(k) time,
provided we have stored a label le for each edge of T , (iii) given V1, V2 partition of V ,
constructing the positions π1, π2 is done in O(k) time. We now justify that in O(kn) time
we can perform a connexity test on G(T , π).

The crucial point is that the algorithm tests the connexity of the graph, by working
on the intersection model of G := G(T , π) provided by the sets {L(x) : x ∈ V }. In this
way, we avoid constructing the adjacency matrix of G, which would require O(k2n) time.
We thus need to describe a connexity test for a graph G = (V,E) given by an intersection
model {Sv : v ∈ V }, where the Sv are subsets of a base set S. We will justify that the
algorithm has running time O(kn), where k = |V | and n = |S|.

The algorithm proceeds as follows. It performs a traversal of the graph, by starting at
an arbitrary vertex u ∈ V , and maintains the following information during the traversal:
(i) the set U of nodes already visited, (ii) a set F of edges forming a spanning tree of
G[U]. At each step, the algorithm seeks a transverse edge, which is an edge e = {u, v} ∈ E
with u ∈ U, v ∈ Ū . If such an edge is found, then y is added to U , and e is added to F .
If no such edge exists, the algorithm stops, and the graph is connected iff U = V .

We show that using appropriate data structures, a step of the algorithm can be done
in O(n) time. For each x ∈ S, let Vx = {v ∈ V : x ∈ Sv}. We maintain for each x ∈ S,
two lists representing the sets Ux = Vx ∩ U and Ūx = Vx ∩ Ū . Initializing these lists
at the beginning of the algorithm is done in O(kn) time. Moreover, at a given step of
the algorithm: (i) we can find a tranversal edge in O(n) time, (ii) we can update the
structures in O(n) time. To justify Point (i), observe that finding a transversal edge
amounts to find an element x ∈ S s.t. Ux, Ūx are non empty; if such an x is found then
by choosing u ∈ Ux, v ∈ Ūx we obtain a transverse edge {u, v}; clearly, these operations
can be performed in O(n) time. To justify Point (ii), observe that when visiting a new
vertex v, we need, for each x ∈ Sv, to add v to Ux and to remove v from Ūx, which can
be performed in O(n) time by using appropriate linkage. ⊓⊔

End of the proof of Lemma 8.

(i) L(S1) ∩ L(S2) = ∅: indeed, if there was x ∈ L(S1) ∩ L(S2) then we would have
x ∈ L(Ti) for some i ∈ [k]; then x = φj,i(x) ≤Ti

πj [i]. Since x ∈ L(Ti), we must have
π1[i], π2[i] 6=⊥; then they are equal to distinct children of π[i], impossible.

(ii) φi is a partial embedding of S into Ti:

13

– if x ∈ L(S), then x ∈ L(Sj). We conclude using the fact that φj,i is a partial embed-
ding and that φi(x) = φj,i(x).

– if x is an internal node of S with children x′, x′′, then:
• if x ∈ N(Sj), we conclude using the fact that φj,i is a partial embedding and that

φi(x) = φj,i(x).
• if x = r(S), with children x′ = r(S1), x

′′ = r(S2): then
∗ either φ1,i(x

′) = φ2,i(x
′′) =⊥, in which case φi(x) =⊥;

∗ either φ1,i(x
′) 6=⊥, φ2,i(x

′′) =⊥, in which case φi(x) = φ1,i(x
′);

∗ either φ1,i(x
′) =⊥, φ2,i(x

′′) 6=⊥, in which case φi(x) = φ2,i(x
′′);

∗ either φ1,i(x
′) 6=⊥, φ2,i(x

′′) 6=⊥, in which case these are nodes y′, y′′ s.t. y′ ≤Ti

π1[i], y′′ ≤Ti
π2[i]. Since (π1, π2) ∈ D(π), it follows that π1[i], π2[i] are 6=⊥ and

are distinct children of π[i], hence φi(x) = π[i], which implies that φ1,i(x
′) <Ti

φi(x), φ2,i(x
′′) <Ti

φi(x).

(iii) φi(r(S)) ≤Ti
π[i]: follows from the definition of φi(r(S)) and from the fact that

φi(r(Sj)) ≤Ti
πj [i].

We show that (π1, π2) ∈ D(π). Indeed, (i) we have πj 6= π since if we had π1[i] = π[i]
for each i, this would imply π2[i] =⊥ for each i, but given x ∈ L(S2) there exists i s.t.
x ∈ L(Ti), impossible; (ii) fix i ∈ [k]:

– if π[i] =⊥, then φi(u) =⊥, and we then have φi(v1) = φi(v2) =⊥ by definition of a
partial embedding, hence π1[i] = π2[i] =⊥;

– if π[i] 6=⊥, then φi(u) is a node of Ti, and we have:
• either φi(v1), φi(v2) 6=⊥, in which case the nodes childTi

(φi(v1), φi(u)),
childTi

(φi(v2), φi(u)) are distinct, which implies that π1[i], π2[i] are distinct chil-
dren of π[i];

• or one of φi(v1), φi(v2) is equal to ⊥, in which case the other must be equal to
φi(u), which implies that π1[i] = π[i], π2[i] =⊥ or the symmetric case.

⊓⊔

14

