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Abstract

Multidimensional databases have
become very popular for decision
making frameworks. In this context,
huge amounts of data are stored in
data warehouses and decision mak-
ers try and navigate through this
data using OLAP tools in order to
visualize and analyze it. Although
navigating through the data is one of
the key issues, many issues are still
open, and users are still not provided
with intelligent tools for automati-
cally identifying relevant parts from
the data.

In this paper, we address this prob-
lem and we propose to mine ho-
mogeneous areas of the data, which
we call blocks. In previous work,
we have defined a level-wise method
to automatically mine such blocks.
However, these blocks are crisp in
their definition, although they are
described by fuzzy rules. We extend
our previous work by proposing ways
to mine fuzzy blocks, and we com-
pare the three approaches, showing
that fuzzifying blocks leads to more
clearly defined areas from the data.

Keywords: Multidimensional
Databases, Levelwise Algorithms,
Fuzzy Data Mining.

1 Introduction

Exploring large volumes of data is known to
be a tedious process, and therefore, it is often
the case that users wish to have a rough idea
of the content of their data in order to identify
relevant areas. This problem is particulary
crucial when considering large data cubes in
the context of multidimensional databases.

We recall in this respect that multidimen-
sional databases were introduced about 10
years ago in [7], for the analysis of huge vol-
umes of data, referred to as On-Line Analyt-
ical Processing (OLAP) in the literature. In
this context, data are presented in data cubes
that are defined over several dimensions, and
that contain information called the measure.
For instance, Figure 1 displays sales results in
a data cube defined over two dimensions.

The OLAP operators called roll-up and drill-
down are commonly used for the purpose of
exploring the content of a data cube. These
operators allow to explore the data cube ac-
cording to different levels of granularity de-
fined on dimensions: while rolling up accord-
ing to one or several dimensions displays the
data at a lower level of details, drilling down
has the reverse effect of displaying the data at
a higher level of details. However, it should
be noticed that these operators work based
on predefined hierarchies on dimensions, and
thus, do not allow to summarize a data cube
based on the measure values.

In [4], we have presented a method in order to
automatically identify blocks of homogeneous
measure values in a data cube, as shown in
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Figure 1: Data cube and associated blocks

Figure 1. This figure shows for instance a
block defined by products P1, P2 and city
C1 containing the measure value 6.

One important feature of our approach is that
the blocks are computed based on thresh-
olds that, roughly speaking, guarantee a min-
imal size and a minimal homogeneity. Conse-
quently, a block may contain several measure
values, and not only one value. For instance,
in Figure 1, one block contains mainly the
measure value 2, but also the measure value
8. Thus it turns out that blocks may overlap.

On the other hand, in most cases, the mea-
sure values in a cube are numerical and not
frequently duplicated, making it difficult to
identify areas containing the same measure
value. This is why we propose in this pa-
per to build blocks that contain almost the
same measure value, instead of exactly the
same measure value. For this purpose, we de-
fine two novel methods: the first one mines
blocks containing measure values belonging to
an interval, while the second method consid-
ers fuzzy intervals. The three methods are
compared through experiments.

Referring to related work, in [2, 9, 10] the au-
thors propose segmentation methods for data
cubes. However, these approaches do not con-
sider the measure value as the central crite-
rion, as we do in our approach. Compression
methods have been proposed in [12], but in
this work, cube representations and homoge-
neous blocks generation are not considered.
The work in [3] and [13] aims at dividing cubes
into regions, which are meant to represent the
whole cube, without loss of information. On
the contrary, our goal is to summarize the
data cube, so as to point out relevant areas,
even if the whole cube is not represented.

Figure 2: Interval-based blocks

The paper is organized as follows: Section 2
motivates our work by an example. Section
3 introduces the multidimensional database
framework considered in our approach. Sec-
tion 4 recaps the way we build blocks from
multidimensional databases. Section 5 intro-
duces the contribution of this paper by pre-
senting the way fuzzy blocks are defined. Sec-
tion 6 presents the experiments we have per-
formed, and Section 7 concludes the paper.

2 Motivating Example

Since in most cases a cube contains many
measure values, it is neither efficient nor
meaningful to consider each of them as a can-
didate block value, as done in [4]. For in-
stance, in the cube of Figure 2, no relevant
block can be found. For this reason, we pro-
pose to consider intervals instead of single
measure values, so that two values in an inter-
val can be considered as equal. For instance,
in the cube of Figure 2, if we consider the
intervals [0, 2], ]2, 5], ]5, 8] and ]8, 10], then
two blocks can be mined when considering the
bottom-right part of the cube, since in this
case 2.4 and 2.2 belong to ]2, 5] and 1.8 and
1.9 belong to [0, 2].

Although considering intervals is more rele-
vant to convey the main trends from the data,
this method has some drawbacks due to the
crisp cuts between two consecutive intervals.
For instance, the two blocks displayed in Fig-
ure 2 could be merged as shown in Figure 3,
since the associated values are close to each
other. To this end, we consider fuzzy inter-



Figure 3: Fuzzy-interval-based blocks

vals in order to soften the membership of a
measure value to an interval.

3 Multidimensional Databases

A cube can be seen as a set of cells. A cell
represents the association of a measure value
with one member value in each dimension.
Moreover, hierarchies can be defined over di-
mensions so as to aggregate the data. For in-
stance, the sales can be displayed in function
of states instead of cities. In this paper, we do
not consider hierarchies, and thus, this notion
is not present in our definition of a cube:

Definition 1 - Cube. A k-dimensional
cube C, or simply a cube, is a tuple
〈dom1, . . . , domk, domm, mC〉 where

- dom1, . . . , domk are k finite sets of symbols
for the members associated with dimensions
1, . . . , k respectively,

- let dommes be a finite totally ordered set of
measures. Let ⊥ 6∈ dommes be a constant
(to represent null values). Then domm =
dommes ∪ {⊥},

- mC is a mapping from dom1 × . . . × domk

to domm assigning a measure value (possibly
null) to each k-tuple of member values.

A cell c of a k-dimensional cube C is a
(k + 1)-tuple 〈v1, . . . , vk, m〉 such that for ev-
ery i = 1, . . . , k, vi is in domi and where
m = mC(v1, . . . , vk). Moreover, m is called
the content of c and c is called an m-cell.

Operations such as selection, projection, ro-
tation or switch have been defined in the lit-
erature to manipulate data cubes. In [6], the
switch operation is used to modify the repre-
sentation of a cube without altering the data,
while presenting the cube in an “ordered”
way, so as to ease data exploration. We re-
call the main definition of [6] below.

Definition 2 - Representation. A rep-
resentation of a cube C is a set R =
{rep1, . . . , repk} where for every i = 1, . . . , k,
repi is a one-to-one mapping from domi to
{1, . . . , |domi|}.

PRODUCT
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P1 8 6 6 5 5 2
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Figure 4: Inverting dimension values.

Figures 1 and 4 display two different repre-
sentations of the same cube, and it should be
clear that these two representations do not
yield the same blocks.

In this paper, we consider a fixed k-
dimensional cube C and a fixed representa-
tion of C, R = {rep1, . . . , repk}. Given a di-
mension di in C, and v1 and v2 in domi, v1

and v2 are said to be contiguous if repi(v1)
and repi(v2) are consecutive integers, i.e., if
|repi(v1)−repi(v2)| = 1. Moreover, the inter-
val [v1, v2] is the set of all contiguous values
between v1 and v2. In our approach, a block
of C is a sub-cube of C.

Definition 3 - Block. A block b is a set of
cells defined over a cube C by b = δ1 × . . . ×
δk where δi are intervals of contiguous values
from domi, for i = 1, . . . , k.

Note that we consider a block as defined by
k intervals, meaning that it can happen that
intervals can contain the whole set of member
values for a dimension. Such an interval is
denoted by ALL.

Moreover, two blocks are said to overlap if
they share at least one cell. It is easy to see



that two blocks b = δ1 × . . . × δk and b′ =
δ′1 × . . . × δ′k overlap if and only if for each
dimension di, δi ∩ δ′i 6= ∅.

In our formalism, a slice is defined as a par-
ticular block.

Definition 4 - Slice. Let vi be a value from
domi. A slice of C associated with vi, denoted
T (vi), is the block δ1× . . .× δk such that δi =
{vi}, and for all j 6= i, δj = ALL.

A slice is a hyperplane, reduced to a single row
in the particular case of a two-dimensional
cube. Two slices defined on the same dimen-
sion di are said to be contiguous if they are as-
sociated with two contiguous values from di.
For instance, in Fig. 1, the slices T (P3) and
T (P4) are contiguous since P3 and P4 are
contiguous in the considered representation.

In the following definitions of support and
confidence for blocks, as well as in the rest
of the paper, we use the following notation.
Given a cube C, a block b and a measure value
m, |C| and |b| denote the number of cells in
C and in b, respectively, and count(b, m) de-
notes the number of m-cells in b.

Definition 5 - Support. The support of a
block b from C for a measure value m is de-
fined as: sup(b, m) = count(b,m)

|C| .

Considering a user-given minimum support
threshold σ and a measure value m, a block
b such that sup(b, m) ≥ σ is called σ-frequent
for m. Note that the support is monotonic
with respect tro set inclusion, meaning that
for all blocks b, b′ and for each measure value
m, we have:

b ⊆ b′ ⇒ sup(b, m) ≤ sup(b′, m).

This property is used in our Apriori-like algo-
rithm, given in the forthcoming section.

Definition 6 - Confidence. The confidence
of a block b for a measure value m is defined
as: conf(b, m) = count(b,m)

|b| .

As mentioned previously, the support thresh-
old determines the minimal size of blocks
while the confidence threshold determines the
homogeneity of the cell values within a block.

Indeed, for a given value of support σ, denot-
ing by N the number of cells of the cube, a
block can be frequent only if it contains at
least σ ∗N cells. Moreover, for a given value
of confidence γ, a block of cardinality M is
kept only if it contains at least γ ∗ M cells
having the measure value m.

4 Block Generation

In this section, we briefly recall the algorithm
defined in [4] which aims at mining blocks
from a given cube, based on user-defined sup-
port and confidence thresholds. Blocks are
mined using a levelwise method for scalabil-
ity reasons. Given a support threshold σ

and confidence thereshold γ, the correspond-
ing Apriori-like algorithm works as follows:

For each measure value m present in the cube,
do the following:

• Step 1. For every dimension i, all con-
tiguous slices T (vi) such that vi ∈ domi

and sup(T (vi), m) ≥ σ are computed.
This set of contiguous frequent slices de-
fines a set, denoted by L1(m), of intervals
of contiguous measure values. Moreover,
the set of all corresponding blocks is de-
noted by B1(m). We note that this step
requires one pass over the whole cube for
each dimension.

• Step 2. The intervals in L1(m) are then
combined in much the same way as item-
sets are combined in Apriori ([1]) in or-
der to generate block candidates defined
by 2, 3, . . . , k intervals over different di-
mensions, in a levelwise manner. Note
that in this step a pruning phase is con-
sidered in order to rule out blocks whose
support for m in known to be less than σ.
The supports of the remaining block can-
didates are then computed and the set of
all blocks having a support for m greater
than σ is treated as the input for the next
level. The iteration stops when no new
frequent blocks are found, or when the k

levels have been explored. We note that
for a given level, this step requires one
pass over the whole cube.



• Step 3. Among all frequent blocks com-
puted at the previous step, only the min-
imal ones are kept, and their confidence
for m is computed so as to select those
whose confidence is greater than or equal
to γ. We note that this step does not re-
quire to access the cube, since for a given
block b, sup(b, m) is known from the pre-
vious step and |b| can be easily obtained
from the size of each interval defining b.

Algorithm 1 presents the computations of the
last two steps above and we refer to [4] for
more details about Step 1, as well as about the
way fuzzy rules are generated to characterize
these blocks.

5 Fuzzy Blocks

As argued in Section 2, considering separately
all measure values present in the cube can lead
to very poor results, while requiring a lot of
computations. For instance, in a cube con-
taining billions of cells and where the mea-
sure values range from 1 to 1, 000 with very
few repetitions, almost 1, 000 values have to
be considered separately in Algorithm 1. On
the other hand, in this case, the measure val-
ues 5 and 5.2 are likely to be considered as
similar.

In order to take this important point into ac-
count, we propose two ways to build fuzzy
blocks, which rely on the fact that measure
values are numerical and are rarely duplicated
in the cube. The two methods we propose are
based on the one hand, on intervals of mea-
sure values, and on the other hand, on fuzzy
intervals. It is important to note that these
methods do not require to change Algorithm
1, but only the way the support and the con-
fidence are computed.

Definition 7 - Interval Support and

Confidence. The interval support of a block
b in C for a measure value interval [m1, m2]
is defined as:

i sup(b, [m1, m2]) = iCount(b,[m1,m2])
|C|

where iCount(b, [m1, m2]) is the number of
m-cells in b such that m ∈ [m1, m2].

Similarly, the interval confidence of b for
[m1, m2] is defined as:

i conf(b, [m1, m2]) = iCount(b,[m1,m2])
|b| .

When computing the fuzzy support of a block
b with respect to a fuzzy interval ϕ, several
methods are possible ([8]): (i) The Σ-count

sums up the membership degrees of all cells
of b; (ii) the threshold-count counts those cells
of b whose membership degree is greater than
a user-defined threshold; (iii) the threshold-Σ-
count sums up those cell membership degrees
that are greater than a user-defined threshold.

Definition 8 - Fuzzy Support and Con-

fidence. The fuzzy support of a block b in C

for a fuzzy interval ϕ is defined as:

f sup(b, ϕ) = fCount(b,ϕ)
|C|

where fCount(b, ϕ) is one of the three fuzzy
counting methods mentioned above. Similarly,
the fuzzy confidence of b for ϕ is defined as:

f conf(b, ϕ) = fCount(b,ϕ)
|b| .

When considering intervals and fuzzy inter-
vals, a pre-processing must be applied on the
data in order to discretize the measure val-
ues into (fuzzy) intervals. This discretiza-
tion can be automatically performed, pro-
vided the user defines the number of intervals
(s)he wants to consider.
Denoting by n this number, and assuming
that mb (respectively mt) is the bottom value
(respectively the top value) of the measure
values, [mb, mt] can be divided into n inter-
vals either in an equi-width manner (i.e., the
widths of all intervals are equal), or in an
equi-depth manner (i.e., all intervals cover the
same number of cells). These intervals are de-
noted by [boti, topi] for i = 1, . . . , n, and we
note that for every i = 2, . . . , n, boti = topi−1.

Then, if fuzzy intervals are considered, a fuzzi-
fication is performed as illustrated in Figure 5.
In this case, we consider n trapezoidal mem-
bership functions µ1, . . . , µn such that:

• [bot1, top1] and [bot1, top2] are respec-
tively the kernel and the support of µ1,

• [botn, topn] and [botn−1, topn]) are respec-



Algorithm 1: Computation of blocks
Data : data cube C, σ: support threshold, γ: confidence threshold

Result : set of blocks B associated with C
foreach measure value m from C do

Compute L1(m) and B1(m) ;
for l = 2 to k do

Bl(m)← ∅ ;
Generate from Li

l−1
candidates δi1 × . . .× δil

such that ∀p, p′ ∈ [1, l], ip 6= ip′ ;
Let Ll(m) be this set ;
Pruning: Delete from Ll(m) all candidates δi1 × . . .× δil

such that there exists p ∈ {1, . . . , l}
such that δi1 × . . .× δip−1

× δip+1
× . . .× δil

is not frequent ;
foreach remaining candidate δi1 × . . .× δil

do

Let b be the block δ1 × . . .× δk where δp = δpj
if dimension dp has been treated and

δp = ALL otherwise.
if sup(b,m) < σ then remove δi1 × . . .× δil

from Ll(m) else Bl(m)← Bl(m) ∪ {b}

Let B(m) be the set of all minimal blocks b in
l=k⋃

l=1

Bl(m) such that conf(b,m) ≥ γ

B ←
⋃

m

B(m)

Figure 5: Measure value management

tively the kernel and the support of µn,

• [boti−1, topi+1] and [boti, topi] are respec-
tively the support and kernel of µi, for
i = 2, . . . , n− 1.

Note that the support (respectively confi-
dence) of blocks based on intervals and fuzzy
intervals are greater than the support (re-
spectively confidence) blocks based on crisp
values, as stated in the following proposition
whose easy proof is omitted.

Proposition. For every block b and every
measure value m, let m1 and m2 be measure
values such that m ∈ [m1, m2], and let ϕ be a
fuzzy interval such that kernel(ϕ) = [m1, m2].
Then, for any of the three fuzzy counting

methods fCount, we have: count(b, m) ≤
iCount(b, [m1, m2]) ≤ fCount(b, ϕ).

As a consequence:
sup(b,m) ≤ i sup(b, [m1,m2]) ≤ f sup(b, ϕ) and
conf(b,m) ≤ i conf(b, [m1,m2]) ≤ f conf(b, ϕ)

It turns out that blocks based on intervals and
fuzzy intervals are larger than blocks based on
crisp values, as shown in Figures 2 and 3.

6 Experiments

In this section, we report on experiments in
terms of (i) runtime, (ii) number of blocks
and (iii) rate of overlapping blocks.

Experiments have been performed on syn-
thetic data randomly generated. When con-
sidering intervals and fuzzy intervals, we chose
to have 5 values defined in a equi-width man-
ner and to use the Σ-count counting method.

Figure 6 shows how the runtime behaves vs.
the number of cells in the cube, highlithing
that fuzziness does not affect scalability.

Figure 7 shows the behavior of the ratio of
blocks overlapping another one over the total
number of blocks. It can be seen that building
fuzzy blocks leads to less overlappings. Note
that the less the rate of overlapping blocks,
the better the quality of blocks.
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Figure 8 shows how the number of blocks be-
haves vs. the number of dimensions in the
cube. It can be seen that the increase in the
number of blocks highly depends on the way
measure values are partitioned: considering
individual measure values or crisp intervals
leads to similar exponential growths, whereas,
in the case of fuzzy partitions, the increase is
less fast.

7 Conclusion

Analyzing multidimensional databases is a
challenging topic, as data warehouses are be-
coming larger in volume. Although decision
making requires to navigate through the data,
users are still not provided with automatic
tools to identify relevant parts of these data.
In our work, we propose to assist users to
navigate through the data by automatically
building blocks of homogeneous values.

In this paper, we have recalled the levelwise
method first presented in [4], which aims at
building blocks containing the same measure
value and at describing these blocks using
fuzzy rules. Then, we have extented this work
by proposing to build blocks containing al-
most the same value. Two novel methods have
been proposed: an interval-based method and
a fuzzy-interval-based method. The three
methods have been compared through experi-
ments that show that considering fuzzy meth-
ods is relevant, since the blocks being discov-
ered are more accurate.

As a future work, we aim at assessing our
methods on real data and at comparing the re-
sults with different fuzzy partition and fuzzy
counting methods. Moreover, we intend to
study the impact of organizing the cubes
based on the quality of the blocks. Finally, we
plan to address the visualization issue based
on our proposition, first proposed in [5].
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