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Abstract

In the context of multidimensional data, OLAP tools are appropri-
ate for the navigation in the data, aiming at discovering pertinent and
abstract knowledge. However, due to the size of the data set, a system-
atic and exhaustive exploration is not feasible. Therefore, the problem
is to design automatic tools to ease the navigation in the data and
their visualization. In this paper, we present a novel approach allow-
ing to build automatically blocks of similar values in a given data cube
that are meant to summarize the content of the cube. Our method
is based on a levelwise algorithm (a la Apriori) whose complexity is
shown to be polynomial in the number of scans of the data cube. The
experiments reported in the paper show that our approach is scalable,
in particular in the case where the measure values present in the data
cube are discretized using crisp or fuzzy partitions.

Keywords: Multidimensional Databases, OLAP, Data Summariza-
tion, Levelwise Algorithms, Fuzzy Partitions.
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1 Introduction

As stated by Bill Inmon in 1990, “A data warehouse is a subject-oriented, in-
tegrated, time-variant and non-volatile collection of data in support of man-
agement’s decision making process” [13]. As data warehouses are devoted to
intensive decision-oriented querying, classical relational database manage-
ment systems are known to be not suitable in this framework. To cope with
this problem, the multidimensional model of databases has been proposed
by E.F. Codd more than 10 years ago in [7].

In the context of multidimensional databases, data are considered as be-
longing to multidimensional tables, the so-called data cubes or simply cubes,
defined over several dimensions and in which measure values are associated
to one value in each dimension. On-Line Analytical Processing (OLAP)
has become a major research issue, aiming at providing users with tools for
querying data cubes.

Querying a cube is known to be a tedious process because, as data are
often voluminous, an exhaustive exploration is not possible. Therefore, it is
often the case that users wish to have a rough idea of the content of a cube in
order to identify relevant data. In other words, summarizing the content of
a data cube is one of the major needs of users. The OLAP operators called
roll-up and drill-down are commonly used to this end. These operators allow
to explore the data cube according to different levels of granularity defined on
dimensions: while rolling-up according to one or several dimensions displays
the data at a lower level of details, drilling-down has the reverse effect of
displaying the data at a higher level of details. However, it should be noticed
that these operators work based on predefined hierarchies on dimensions,
and thus, do not allow to summarize a data cube based on its actual content,
i.e., the measure values.

In this paper, we propose an approach to automatically summarize a data
cube by computing sub-cubes, which we call blocks, that mainly contain
the same measure value. It is important to note that in this work, we
do not consider the option of computing blocks containing exclusively the
same measure value, which is very restrictive and thus, would prevent from
obtaining relevant summaries.

The way we characterize that a block b of a cube C mainly contains
the measure value m can be outlined as follows: assuming two user-given
thresholds σ and γ, called the support and the confidence thresholds, respec-
tively, b mainly contains m if the ratio of the number of occurrences of m
in b over the cardinality of C is greater than or equal to σ, and if the ratio
of the number of occurrences of m in b over the cardinality of b is greater

2



than or equal to γ. These two ratios are called support and confidence of b
for m, and as we shall see later, the support and the confidence thresholds
are respectively related to the minimum size and to the purity of the block.
Moreover, as measure values are numerical, it can be relevant to consider
close values as equal. We take such an option into account in the computa-
tions of support and confidence by considering two kinds of partitioning of
the set of measure values present in the data cube, namely crisp and fuzzy
partitoning.

As in either case the computation of blocks as roughly described above
is NP -hard, we propose a levelwise algorithm a la Apriori and the experi-
ments reported in this paper show that our method is scalable even for data
cubes with large cardinalities and large numbers of dimensions. However,
it is important to note that the price to pay for scalability is the non com-
pleteness of our method, i.e., a cube C may contain blocks with supports
and confidences greater than or equal to the corresponding thresholds, but
that are not output. We shall discuss this important point in details later
in the paper.

The set of all blocks computed by our approach is considered as a sum-
mary of the cube. In our previous work, we have argued that blocks can be
associated with rules (see [4]), and that they can serve as a basis for an effi-
cient visualization of the cube (see [5]). It should be noticed that, since the
computed blocks (obtained after partitioning or not) mainly contain a given
measure value, it might be the case that two or more blocks overlap. This
important feature of our approach is taken into account in [4] by considering
fuzzy rules, and in [5] by defining a policy to display the most relevant block
among all those that overlap. In this paper, we do not address the issues
of computing rules or of visualizing the blocks. Instead, we focus on the
computation of the blocks in the following respects:

1. Based on the fact that the method presented in [4] is not complete, we
enhance our approach and we show some partial completeness results
in this new framework.

2. As in practice, the measure values contained in a cube are numerical,
we study the impact of discretizing these values, using crisp or fuzzy
partitions.

3. We report experiments conducted on randomly generated data sets
that show that our approach is still scalable for large data cubes with
a high number of dimensions.
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The following example illustrates our approach.

Example 1 Let us consider the cube C displayed in Figure 1. This cube is
defined over two dimensions, namely CITY and PRODUCT , and contains
measure values standing for the quantity of a given product sold in a given
city. For instance, it can be seen that the quantity of product P1 sold in city
C1 is 6 units.

Considering a support threshold σ = 1
12 and a confidence threshold γ = 2

3 ,
our approach generates the blocks as represented in Figure 1. These are
defined as follows in our formalism:

• b1 = [C1, C1]× [P1, P2] for value 6, because the support and the con-
fidence for 6 are respectively 1

12 and 1,

• b2 = [C1, C3]× [P3, P4] for value 8, because the support and the con-
fidence for 8 are respectively 1

6 and 2
3 ,

• b3 = [C3, C4]× [P1, P3] for value 5, because the support and the con-
fidence for 5 are respectively 1

6 and 2
3 ,

• b4 = [C4, C6]× [P3, P4] for value 2, because the support and the con-
fidence for 2 are respectively 5

24 and 5
6 .

First, we note that, for the measure value 6, the block defined by b =
[C1, C2] × [P1, P2] has a support and a condidence equal to 1

8 and 3
4 , re-

spectively. Therefore, this illustrates the non completeness of our approach
since 1

8 ≥ σ and 3
4 ≥ γ.

Now, assume that instead of integer values, the cube of Figure 1 contains
numbers that represent the quantity of sales in thousands of units for each
city and each product. In this case, it is likely that, for instance, in place
of 6 for city C1 and products P1 and P2, the cube contains values 5.996
and 6.002. In this case, computing blocks based on the exact measure value
would not give the block b1, although the corresponding measure values are
close to each other. To cope with this problem, we consider that the set
of measure values can be partitioned so as to yield relevant blocks. For
instance, in our example, this partitioning could be defined by considering
for every integer X that measure values in [(X − 1).500, X.500[ are equal
to X. Moreover, we generalize partitionings to fuzzy partitionings, so as
to consider that [(X − 1).500, X.500] and [(X − 2).500, (X + 1).500] are
respectively the support and the kernel of the bin corresponding to the fuzzy
notion about X thousands.
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Figure 1: A Data Cube and the Associated Blocks

We mention that building blocks from a data cube facilitates its visualiza-
tion, and the more the relevance of the blocks, the better the representation
quality.

The issue of data cube representation has been addressed in [6], where
the authors show that a data cube has several representations among which
some are more relevant than others, according to user-specified criteria. In
[6], the criterion is that the measure is ordered in an increasing manner over
all dimensions, and representations optimizing this criterion are studied.

In the present paper, we consider as relevant the repesentations where
same measure values are grouped to form blocks as large as possible. How-
ever, in this paper, contrary to [6], our goal is not to compute relevant
representations according to this criterion; in what follows, the representa-
tion of the data cube is assumed to be fixed, and the blocks are computed in
this particular representation. In this setting, it is relevant to use the blocks
computed by our approach in order to assess the quality of the representa-
tion of the cube. More precisely, this quality can be related to the following
criteria:

• the proportion of elements in the cube that are included in the blocks
(the higher the proportion, the less elements not covered by the rules),

• the number of blocks built (the more blocks there are, the more het-
erogeneous data are),

• the number of blocks in comparison with the number of measure values
(if several blocks are built for the same measure value m, then the
different occurrences of m are displayed in non contiguous areas of the
cube),
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• the number of overlappings between blocks and their sizes (the higher
the number of overlapping blocks, the more mixed the data).

The paper is organized as follows: Section 2 introduces the basic definitions
concerning multidimensional databases and blocks, including interval based-
and fuzzy interval based-blocks. Section 3 presents the algorithms to build
blocks from multidimensional databases and the corresponding complexity
issues, as well as a thourough discussion about the completeness of our ap-
proach. Section 4 presents a method based on cell neighborhood to improve
the completeness of our approach. Section 5 reports on the experiments
performed on synthetic data and on a real data set. Section 6 presents the
related work from the literature, and in Section 7, we conclude the paper
and we outline further research directions.

2 Multidimensional Databases and Blocks

2.1 Basic Definitions

Although no consensual definition has emerged for now concerning data
representation and manipulation, a multidimensional database is generally
defined as being a set of data cubes (hereafter cubes). A cube can be seen
as a set of cells and a cell represents the association of a measure value with
one member in each dimension. Moreover, hierarchies may be defined over
dimensions, for instance to describe sales in function of states and not of
cities. Since hierarchies are not considered in the present paper, we do not
include these in our definition.

Definition 1 - Cube. A k-dimensional cube, or simply a cube, C is a
tuple 〈dom1, . . . , domk, domm, mC〉 where

• dom1, . . . , domk are k finite sets of symbols for the members associated
with dimensions 1, . . . , k respectively,

• let dommes be a finite totally ordered set of measures. Let ⊥ 6∈ dommes

be a constant (to represent null values). Then domm = dommes∪{⊥},

• mC is a mapping: dom1 × . . .× domk → domm.

A cell c of a k-dimensional cube C is a (k + 1)-tuple 〈v1, . . . , vk, m〉 such
that for every i = 1, . . . , k, vi is in domi and where m = mC(v1, . . . , vk).
m is called the content of c and c is called an m-cell. Moreover, for every
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i = 1, . . . k, domi is called the domain of dimension di and an element vi in
domi is called a member value.

We recall from [6] that a given cube can be represented in several ways,
based on the ordering of the member values in each set domi. For example,
figures 1 and 2 display two different representations of the cube C considered
in Example 1. Although we do not consider the issue of computing particular
representations, the notion of representation, as defined below, plays an
important role in the present approach.

PRODUCT

P4 8 8 8 2 2 2
P2 5 6 8 5 6 75
P1 8 6 6 5 5 2
P3 5 8 5 2 2 8

C3 C1 C2 C4 C5 C6 CITY

Figure 2: Another Representation of the Cube of Figure 1

Definition 2 - Representation. A representation of a k-dimensional
cube C is a set R = {rep1, . . . , repk} where for every i = 1, . . . , k, repi

is a one-to-one mapping from domi to {1, . . . |domi|}.

In this paper, we consider a fixed k-dimensional cube C and a fixed repre-
sentation of C, R = {rep1, . . . , repk}.

Now, given a fixed representation of C, R = {rep1, . . . , repk}, for every
dimension di, v1 and v2 in domi are said to be contiguous if repi(v1) and
repi(v2) are consecutive integers, i.e. if |repi(v1)− repi(v2)| = 1. Moreover,
if repi(v1) ≤ repi(v2), the interval [v1, v2] is the set of all contiguous values
between v1 and v2, i.e., [v1, v2] = {v ∈ domi | repi(v1) ≤ repi(v) ≤ repi(v2)}.

2.2 Blocks

In our approach, we define a block of C as follows.

Definition 3 - Block. A block b is a set of cells defined over a k-dimensional
cube C by b = δ1 × . . .× δk where δi are intervals of contiguous values from
domi, for i = 1, . . . , k.

Note that in the previous definition a block is specified by exactly one inter-
val per dimension. In the case where an interval would not be specified on a
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dimension di, the corresponding interval δi is set to [rep−1
i (1), rep−1

i (|domi|)],
which is denoted by ALLi.

For example, if we consider the cube of Figure 1, the interval [C1, C3] is
associated with the block [C1, C3]×ALLPRODUCT where ALLPRODUCT is
the interval [P4, P1].

Definition 4 - Block Overlapping. Two blocks b and b′ are said to over-
lap if they share at least one cell, i.e., if b ∩ b′ 6= ∅.

It is easy to see that two blocks b = δ1× . . .×δk and b′ = δ′1× . . .×δ′k overlap
if and only if for every dimension di, δi ∩ δ′i 6= ∅. As stated in the following
definition, in our formalism, a slice is defined as a particular block.

Definition 5 - Slice. Let vi be a member value in domi. The slice of
C associated with vi, denoted by T (vi), is the block δ1 × . . . × δk such that
δi = {vi}, and for all j 6= i, δj = ALLj.

Given two member values v1 and v2 in the same domain domi, the slices
T (v1) and T (v2), are said to be contiguous if v1 and v2 are contiguous, i.e.,
if |repi(v1)− repi(v2)| = 1.

Referring to Figure 1, the slices T (P3) and T (P4) are contiguous since P3
and P4 are contiguous in the considered representation.

It is important to note that the notion of contiguous cells (or slices) de-
pends on the representation of the cube that is being considered. Indeed,
two member values (or slices) can be contiguous in a given representation of
C but not contiguous in another representation of C. For instance, consider-
ing the cube C of Example 1, the member values C2 and C3 are contiguous
in the representation of C displayed in Figure 1, but are not contiguous in
the representation of C displayed in Figure 2.

We now define the following specificity relation between blocks of a given
cube C.

Definition 6 - Specificity Relation. Let b = δ1 × . . . × δk and b′ =
δ′1 × . . .× δ′k be two blocks. b′ is said to be more specific than b, denoted by
b v b′, if for every i = 1, . . . , k, δi 6= δ′i ⇒ δi = ALLi.

For instance, in the cube of Figure 1, for b = [C1, C3]×ALLPRODUCT and
b′ = [C1, C3]× [P3, P4], we have b v b′ since the intervals defining b and b′

satisfy the above definition.

It can be seen that the relation v as defined above is a partial ordering
over the set of all blocks of the cube C. Given a set of blocks B, the
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maximal (respectively minimal) elements of B are said to be most specific
(respectively most general) in B. Most specific blocks and most general
blocks are called MS-blocks and MG-blocks, respectively.

Moreover, it can be easily shown that if b and b′ are two blocks such that
b v b′, then b′ ⊆ b.

2.3 Support and Confidence of a Block

The support and the confidence of a given block b are defined according to
the content of the cells in b. In order to comply with our discussion in the
introductory section (see Example 1), we consider three different criteria in
this respect: (i) single measure values, (ii) partition based measure values,
and (iii) fuzzy partition based measure values.

In order to define the support and the confidence of a block for a given
measure value, we introduce the following notation: let b be a block and m
a measure value, Count(b, m) denotes the number of m-cells in b, and |b|
denotes the total number of cells in b. In particular, |C| denotes the total
number of cells in the whole cube C.

Definition 7 - Support. The support of a block b from C for a measure
value m is defined as:

supp(b, m) =
Count(b, m)

|C|
.

Considering a user-given minimum support threshold σ and a measure value
m, a block b such that supp(b, m) ≥ σ is called σ-frequent for m.

Definition 8 - Confidence. The confidence of a block b for a measure
value m is defined as:

conf(b, m) =
Count(b, m)

|b|
.

As argued in the introductory section, considering separately all measure
values present in the cube can lead to consider non relevant blocks, which
will be very small. For instance, in a cube containing billions of cells and
where the measure values range from 1 to 1, 000 with very few repetitions,
almost 1, 000 values have to be considered separately. Alternatively, in this
case, 5 and 5.2 are likely to be considered as similar measure values and
thus, should be processed as such.
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In order to take this important point into account, we propose two ways
to build blocks, based on intervals of measure values, on the one hand, and
on fuzzy intervals, on the other hand. In these cases, the support and the
confidence of a block are defined as follows.

Definition 9 - Interval Support and Confidence. The interval support
of a block b in C for a measure value interval [m1, m2] is defined as:

i supp(b, [m1, m2]) =
iCount(b, [m1, m2])

|C|

where iCount(b, [m1, m2]) is the number of m-cells in b such that m ∈
[m1, m2]. Similarly, the interval confidence of b for [m1, m2] is defined as:

i conf(b, [m1, m2]) =
iCount(b, [m1, m2])

|b|
.

When considering fuzzy intervals instead of intervals, counting cells in a
block b with respect to a fuzzy interval ϕ can be computed according to the
following methods ([9]):

1. The Σ-count sums up the membership degrees of all cells of b.

2. The threshold-count counts those cells of b whose membership degree
is greater than a user-defined threshold.

3. The threshold-Σ-count sums up those cell membership degrees that are
greater than a user-defined threshold.

In what follows, given a fuzzy interval ϕ and a cell c with content m, we
denote by µ(c, ϕ) the membership value of m in ϕ. Moreover, given a block b,

Σf
c∈bµ(c, ϕ) denotes the count of cells in b whose content is in ϕ, according

to one of the three counting methods mentioned above. In this case, the
support and confidence of a block b are defined as follows.

Definition 10 - Fuzzy Support and Confidence. The fuzzy support of
a block b in C for a fuzzy interval ϕ is defined as:

f supp(b, ϕ) =
fCount(b, ϕ)

|C|

where fCount(b, ϕ) = Σf
c∈bµ(c, ϕ). Similarly, the fuzzy confidence of b for

ϕ is defined as:

f conf(b, ϕ) =
fCount(b, ϕ)

|b|
.
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2.4 Properties

We first show that the support is anti-monotonic with respect to v, in either
of the three cases defined above.

Proposition 1 For all blocks b and b′ such that b v b′, we have:

1. For every measure value m, supp(b′, m) ≤ supp(b, m).

2. For every interval of measure values [m1, m2], i supp(b′, [m1, m2]) ≤
i supp(b, [m1, m2]).

3. For every fuzzy interval of measure values ϕ, i supp(b′, ϕ) ≤ i supp(b, ϕ).

Proof: If b and b′ are two blocks such that b v b′ then we have that
b′ ⊆ b. Moreover, in this case, we have Count(b, m) ≤ Count(b′, m),
iCount(b, [m1, m2]) ≤ iCount(b′, [m1, m2]) and for every fuzzy counting
method given above, fCount(b, ϕ) ≤ fCount(b′, ϕ). Therefore, the proposi-
tion follows from the definitions of the support, which completes the proof.
2

In our levelwise algorithm for computing blocks given in the next section,
Proposition 1 is used in the following way in the case of single measure values
(the other two cases being similar): given a block b, a measure value m and
a support threshold σ, b is not σ-frequent for m if there exists a block b′

such that b′ < b and b′ is not σ-frequent for m.

The following proposition, of which the easy proof is omitted, shows that
the support (respectively confidence) of blocks based on intervals and fuzzy
intervals are greater than the support (respectively confidence) blocks based
on single values.

Proposition 2 For every block b and every measure value m, let m1 and
m2 be measure values such that m ∈ [m1, m2], and let ϕ be a fuzzy interval
such that kernel(ϕ) = [m1, m2]. Then, for any of the three fuzzy counting
methods Σf , we have:

Count(b, m) ≤ iCount(b, [m1, m2]) ≤ fCount(b, ϕ).

As a consequence:
• supp(b, m) ≤ i supp(b, [m1, m2]) ≤ f supp(b, ϕ) and
• conf(b, m) ≤ i conf(b, [m1, m2]) ≤ f conf(b, ϕ).

11



3 Algorithms

In this paper, our goal is to discover blocks whose support and confidence are
greater than or equal to user specified thresholds. To this end, our method
is based on a levelwise Apriori-like algorithm [2], for scalability reasons. In
this section, we first present the algorithms for the discovery of blocks in
the case of single values, and then we show how the cases of (fuzzy) interval
based measure values can be processed.

Roughly speaking, in the case of single measure values, our method works
as follows: for every single measure value m in C do the following

1. For every i = 1, . . . , k, compute all maximal intervals I of values in
domi such that, for every v in I, the slice T (v) is σ-frequent for m.

2. Combine the intervals in a levelwise manner as follows: at level l
(2 ≤ l ≤ k), compute all σ-frequent blocks b = δ1 × . . . × δk such
that exactly l intervals defining b are different than ALL. Assuming
that all blocks σ-frequent for m have been computed at the previous
levels, this step can be achieved in much the same way as frequent
itemsets are computed in the algorithm Apriori.

3. Considering the set of all blocks computed in the previous step, sort
out those that are not MS-blocks and those having a confidence for m
less than γ.

It should be clear from Definition 7 that a block can be frequent only if it
contains at least σ . |C| cells. Similarly, it follows from Definition 8 that,
for a given confidence threshold γ, a block b is output only if it contains
at least γ . |b| cells containing the measure value m. Therefore, when fixing
the support and the confidence thresholds, the user actually determines
thresholds concerning the size and the purity of the blocks (s)he wishes to
obtain.

3.1 Block Generation for Single Measure Values

In the following algorithms, MS- or MG-blocks are computed according to
the user’s specification. Algorithm 1 performs step 1 above, while Algorithm
2 performs steps 2 and 3 above.

Referring to the cube of Example 1, the supports for measure value 8
of all slices of the cube is displayed in Figure 3, while Figure 1 depicts all
blocks output by Algorithm 2.
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Algorithm 1: Computation of L1(m)

Data: A k-dimensional data cube C, a measure value m, a support
threshold σ

Result: The set of intervals L1(m), the set of corresponding blocks B1(m)
L1(m)← ∅
foreach dimension di, i = 1, . . . , k do

int(m, i)← ∅
currentInterval← [NIL,NIL]
foreach j = 1, . . . , |domi| do

s← supp(T (rep−1

i (j)),m)
if s < σ then

if currentInterval = [α,NIL] where α 6= NIL then
/* close the current interval at position j − 1, and set the
current interval to the empty interval */
int(m, i)← int(m, i) ∪ {[α, rep−1

i (j − 1)]}
currentInterval← [NIL,NIL]

else

if currentInterval = [NIL,NIL] then
/* start a new current interval at position j */
currentInterval← [rep−1

i (j), NIL]

if j = |domi| and currentInterval = [α,NIL] where α 6= NIL
then

int(m, i)← int(m, i) ∪ {[α, rep−1

i (j)]}

L1(m)← L1(m) ∪ int(m, i)

B1(m)← {b = δ1 × . . .× δk | (∃i)(δi ∈ int(m, i)) and (∀j 6= i)(δj =
ALLj) and conf(b,m) ≥ γ}

13



# 8
2

1

0

# 8
12 03

P1

P2

P3

P4

C1 C2 C3 C4 C5 C6 CITY

PRODUCT

6 6 5 5 2

7565586

8

8 8

5 5

8 2

2 2

2 2

8

8

Figure 3: Occurences of measure value 8

b1 = [P1, P2]× [C1, C1] for value 6, b2 = [P3, P4]× [C1, C3] for value 8
b3 = [P1, P3]× [C3, C4] for value 5, b4 = [P3, P4]× [C4, C6] for value 2

Note that there are two overlappings: one between b2 and b3, and one be-
tween b3 and b4.

3.2 Processing Interval-Based Blocks

In this section, we consider the computation of blocks when intervals and
fuzzy intervals are considered, instead of single measure values. In this
case, the following modifications must be made in the two algorithms given
previously:

1. The supports and confidences must be computed accordingly. That
is, in the case of interval based measure values, supp and conf must
be replaced by i supp and i conf , respectively, and in the case of
fuzzy interval based measure values, supp and conf must be replace
by f supp and f conf , respectively.

2. In Algorithm 2, the most outer loop must range over the set of intervals
(fuzzy or not according to the considered case), instead of over the set
of all single measure values.

On the other hand, when considering intervals or fuzzy intervals, a pre-
processing task must be applied on the data in order to discretize the mea-
sure values into (fuzzy) intervals. This discretization process can be auto-

14



Algorithm 2: Discovery of MS-blocks

Data: A k-dimensional data cube C, a measure value m, a support
threshold σ, and a confidence threshold γ.

Result: The set of blocks B associated with C
foreach measure value m from C do

Compute L1(m) and B1(m)
for l = 2 to k do
Bl(m)← ∅
Generate from Ll−1 all candidates δi1 × . . .× δil

such that
(∀p, p′ ∈ [1, l])(ip 6= ip′). Let Ll(m) be this set.
Pruning: Delete from Ll(m) all candidates δi1 × . . .× δil

such that
(∃p ∈ {1, . . . , l})(δi1 × . . .× δip−1

× δip+1
× . . .× δil

6∈ Ll−1)
foreach remaining candidate δi1 × . . .× δil

do
Let b be the block δ1 × . . .× δk where δp = δpj

if dimension dp

has been treated and δp = ALLp otherwise
if supp(b,m) < σ then

Remove δi1 × . . .× δil
from Ll(m)

else
if conf(b,m) ≥ γ then Bl(m)← Bl(m) ∪ {b}

B(m)← {b ∈
l=k⋃

l=1

Bl(m) | b is an MS-block}

/* If MG-blocks are to be computed then replace MS with MG is the
previous statement */

B ←
⋃

m

B(m)

15



matically performed, provided that the user defines the number of intervals
(s)he wants to consider.

Denoting by N this number of intervals, and assuming that mb (respec-
tively mt) is the bottom value (respectively the top value) of the measure
values, [mb, mt] can be divided into n intervals either in an equi-width man-
ner (i.e., the widths of all intervals are equal), or in an equi-depth manner
(i.e., all intervals cover the same number of cells). These intervals are de-
noted by [boti, topi] for i = 1, . . . , N , and we note that for every i = 2, . . . , N ,
boti = topi−1.

Then, in the case of fuzzy intervals, we consider N trapezoidal member-
ship functions µ1, . . . , µN such that:

• [bot1, top1] and [bot1, top2] are respectively the kernel and the support
of µ1,

• [botN , topN ] and [botN−1, topN ]) are respectively the kernel and the
support of µn,

• [boti−1, topi+1] and [boti, topi] are respectively the support and kernel
of µi, for i = 2, . . . , N − 1.

It should also be noted from Proposition 2 that blocks based on intervals
and fuzzy intervals of measure values are larger than blocks based on single
values.

3.3 Complexity Issues

In this section, we show that our method for computing blocks is polynomial
in time with respect to the size of the cube C, but not complete, in the sense
that blocks that fullfil the threshold conditions might not be output by our
algorithms.

Let m be a measure value. In Algorithm 1, the cube is scanned once for
each dimension di. Thus, this step requires k scans of the cube C. Regarding
the complexity of Algorithm 2, at each level, the whole cube is scanned at
most once, since the intervals produced by Algorithm 1 for a given measure
value do not overlap. As in Algorithm 2, at most k iterations are processed,
its execution requires at most k scans of the cube C. As a consequence, the
computation of all frequent blocks associated to a given measure value m is
in O(k . |C|). As computing the confidence of a block does not require the
scanning of the cube (because the size of a block is the product of the sizes
of the intervals defining this block), the time complexity of Algorithm 2 is
in O(k . |C|).
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Hence, in the case of single measure values, the computation of all blocks
is in O(k . |C|2), because C contains at most |C| distinct measure values. We
note that although polynomial, the complexity of our method is not linear.
On the other hand, in the cases of (fuzzy) intervals of measure values, if
we denote by N the number of these intervals, then the computation of
blocks is in O(k . |C| . N), i.e., linear with respect to the size |C| of C. The
experiments reported in Section 5 show the influence of the three factors
(i.e., k, |C| and N) on the computation time.

As mentioned in the introductory section, the general problem of com-
puting blocks of in a cube is known to be NP -hard, and the polynomial
method proposed in the paper computes an approximation of the solution,
meaning that our method is not complete. As an example, we recall from Ex-
ample 1 that the block b = [C1, C2]× [P1, P2] is not an output, although its
support and confidence are greater than the support and confidence thresh-
olds, respectively. This is due to the fact that the slice T (C2) is not frequent
for 6, which implies that the interval [C1, C2] is not computed by Algorithm
1.

However, the following example shows that this is not the only reason
for non completeness. More precisely, even if completeness would mean the
computation of all blocks b = δ1 × . . . × δk such that, for a given measure
value m,

1. supp(b, m) ≥ σ and conf(b, m) ≥ γ, and

2. (∀i = 1, . . . , k)(∀v ∈ δi)(supp(T (v), m) ≥ σ)

then Example 2 below shows that our method is not complete either.

Example 2 Consider the cube C as shown in Figure 3.3 in which blocks
are to be computed according to support and confidence thresholds equal to
1/12 and 80%, respectively.

The computation of L1(8) using Algorithm 1 returns the intervals [C1, C6]
and [P1, P4] because all slices contain at least two 8-cells. However, since
the confidence for 8 of the block [C1, C6] × [P1, P4] is equal to 15/24,
which is less than 80%, this block is not computed by Algorithm 2. On
the other hand, it is easy to see that the two 8-blocks [C1, C3]× [P3, P4] and
[C4, C6]× [P1, P2] satisfy the two items above.

In the next section, we study how to modify Algorithm 1 so as to take into
account situations as in Example 2 above. Then we study the completeness
of this modified method.
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P2 5 5 5 8 8 8
P3 8 8 8 6 6 6
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C1 C2 C3 C4 C5 C6 CITY

Figure 4: The Cube for Example 2

4 Refining the Computation of Blocks

In this section, we take into account the cell neighborhoods in order to
enhance the completeness of our method.

4.1 Modified Computation of Blocks

In this section, we consider single measure vales. The modified algorithm
(referred to as Algorithm 3) generates intervals of member values based not
only on the support but also on the neighbors of the cells. Intuitively, cells
are considered as neighbors if they share one side in the representation. For
instance, in Figure 3.3 the cells 〈P2, C3, 5〉 and 〈P2, C4, 8〉 are neighbors.

Definition 11 - Cell Neighborhood. Two distinct cells c = 〈v1, . . . , vk, m〉
and c′ = 〈v′1, . . . , v

′
k, m

′〉 are neighbors if there exists a unique i0 in {1, . . . , k}
such that:

• |repi0(vi0)− repi0(v
′
i0

)| = 1 and

• for every i = 1, . . . , k such that i 6= i0, vi = v′i.

We note that in a k-dimensional cube, a cell has at most 2 . k neighbors.
Moreover, considering a slice T (v) where v is a member value of the domain
domi of dimension i, let v− and v+ be the member values of domi such that
repi(v

−) = repi(v)− 1 and repi(v
+) = repi(v) + 1, respectively.

Clearly, every cell c in T (v) has exactly one neighbor in each of the slices
T (v−) and T (v+). Given a measure value m, we denote by n(v−, m), respec-
tively n(v+, m), the number of m-cells in T (v) whose neighbor in T (v−),
respectiveley in T (v+), is also an m-cell. Then, we define neighbors(v−, m)
and neighbors(v+, m) as follows:

neighbors(v−, m) = n(v−,m)
Count(T (v),m) and neighbors(v−, m) = n(v+,m)

Count(T (v),m) .
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Intuitively, neighbors(v−, m) and neighbors(v+, m) are respectively the ra-
tios of m-cells in a given slice having m-cells as neighbors in the previous
slice, respectively in the next slice.

Based on this notation, our method works roughly as follows: We assume
that, in addition to the support and confidence thresholds, we are given a
new threshold called the neighbor threshold, denoted by ν. When scanning
dimension i for a given measure value m, let v be the member in domi of
which the slice is being considered. If an interval of the form [V, NIL] where
V 6= NIL is under construction and if the support of T (v) is greater than
or equal to the support threshold, then:

• If neighbors(v−, m) < ν, then the interval [V, v−] is output and the
computation of the new interval [v, NIL] is considered.

• If neighbors(v+, m) < ν, then the interval [V, v] is output and the
computation of the new interval [v+, NIL] is considered.

• Otherwise, the next slice, i.e., the slice defined by v+, is considered
for the interval [V, NIL].

In the remainder of the paper, we call Algorithm 2.1 the algorithm ob-
tained from Algorithm 2 by replacing Algorithm 1 with Algorithm 3 for the
computation of L1.

Example 3 We illustrate Algorithm 3 using the cube of Figure 3.3 and
we consider the same thresholds as in Example 2, that is: σ = 1/12 and
γ = 80%. Moreover, let the neighbor threshold ν be 60%.

In this case, for dimension CITY and measure value 8, Algorithm 3
starts with [NIL, NIL] as the value for currentInterval and processes the
first slice T (C1). As its support is greater than 1/12, and as j = 1, only n+

is computed, and is found equal to 1. Therefore the value of currentInterval
is set to [1, NIL] and the next slice, i.e., T (C2) is processed. In this case,
n+ and n− are computed and both are found equal to 1. Thus, the slice
T (C3) is processed.

At this stage, we find n− = 1 and n+ = 0. Since 0 ≤ ν, the interval
[C1, C3] is output, the value of currentInterval is set to [C4, NIL] and the
slice T (C4) is processed. Now, we find n− = 0 and n+ = 1. As in this
case, j = α in Algorithm 3, no computation is done and the slice T (C5) is
processed, which does not lead to any change. Finally the processing of the
slice T (C6) results in the interval [C4, C6], since |domCITY | = 6.

It can be seen that, for dimension PRODUCT and measure value 8, the
computation is similar and outputs the two intervals [P1, P2] and [P3, P4].
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Algorithm 3: Modified Computation of L1(m)

Data: A k-dimensional data cube C, a measure value m, a support
threshold σ, a neighbor threshold ν

Result: The set of intervals L1(m), the set of corresponding blocks B1(m)
L1(m)← ∅
foreach dimension di, i = 1, . . . , k do

int(m, i)← ∅
currentInterval← [NIL,NIL]
foreach j = 1, . . . , |domi| do

s← supp(T (rep−1

i (j)),m)
if j < |domi| then

n+ ← neighbors(rep−1

i (j + 1),m)

if j > 1 then

n− ← neighbors(rep−1

i (j − 1),m)

if s < σ then

if currentInterval = [α,NIL] where α 6= NIL then

int(m, i)← int(m, i) ∪ {[α, rep−1

i (j − 1)]}
currentInterval← [NIL,NIL]

else

/* s = supp(T (rep−1

i (j)),m) ≥ σ */
if currentInterval = [NIL,NIL] then

/* start a new current interval at position j */
currentInterval← [rep−1

i (j), NIL]

if currentInterval 6= [NIL,NIL] then
/* currentInterval = [α,NIL] */
if j > 1 and j 6= α then

if n− < ν then

int(m, i)← int(m, i) ∪ {[α, rep−1

i (j − 1)]}
currentInterval← [rep−1

i (j), NIL]

if j < |domi| then

if n+ < ν then

int(m, i)← int(m, i) ∪ {[α, rep−1

i (j)]}
currentInterval← [j + 1, NIL]

else
/* j = |domi| */
int(m, i)← int(m, i) ∪ {[α, rep−1

i (j)]}

L1(m)← L1(m) ∪ int(m, i)

B1(m)← {b = δ1 × . . .× δk | (∃i)(δi ∈ int(m, i)) and (∀j 6= i)(δj =
ALLj) and conf(b,m) ≥ γ}
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Therefore, for measure value 8, we obtain L1(8) = {[C1, C3], [C4, C6],
[P1, P2], [P3, P4]}.

Regarding the computation of the blocks, it is easy to see that, in this
example, Algorithm 2.1 computes the two blocks [C1, C3] × [P3, P4] and
[C4, C6]× [P1, P2], since their confidence is 1.

4.2 Neighbors and Intervals

In this section, we study the impact of considering neighbors for blocks
defined according to intervals or fuzzy intervals of measure values. We note
that, in the case of (fuzzy) intervals, dealing with cell neighborhood does not
affect Algorithm 3, provided that counting neighbors is defined accordingly.

In the case of intervals of measure values, given a member value v and an
interval [m1, m2], we denote by i n(v−, [m1, m2]), respectively i n(v+, [m1, m2]),
the number of cells in T (v) whose content is in [m1, m2] and whose neigh-
bor in T (v−), respectively in T (v+), is a cell whose content is in [m1, m2].
Then, i neighbors(v−, [m1, m2]) and i neighbors(v+, [m1, m2]) are defined
as follows:

i neighbors(v−, [m1, m2]) = i n(v−,[m1,m2])
iCount(T (v),[m1,m2]) and

i neighbors(v+, [m1, m2]) = i n(v+,[m1,m2])
iCount(T (v),[m1,m2]) .

Similarly to the case of intervals, dealing with cell neighborhood for fuzzy
intervals is modified as follows. We first recall from [14] that assessing the
fact that the contents of two cells c and c′ both belong to a given fuzzy inter-
val ϕ, denoted by µ(c, ϕ)⊗ µ(c′, ϕ), can be done according to the following
t-norms:

1. Probalistic t-norm: µ(c, ϕ)⊗ µ(c′, ϕ) = µ(c, ϕ).µ(c′, ϕ)

2. Zadeh’s t-norm: µ(c, ϕ)⊗ µ(c′, ϕ) = min(µ(c, ϕ), µ(c′, ϕ))

3. Lukasiewicz’s t-norm: µ(c, ϕ)⊗µ(c′, ϕ) = max(µ(c, ϕ)+µ(c′, ϕ)−1, 0).

Given one of the above t-norms and a member value v and a fuzzy interval
ϕ, we denote by f neighbors(v−, ϕ) and f neighbors(v+, ϕ) the following:

f neighbors(v−, ϕ) =
Σf

c∈T (v)
µ(c,ϕ)⊗µ(c−,ϕ)

fCount(T (v),ϕ) , and

f neighbors(v+, ϕ) =
Σf

c∈T (v)
µ(c,ϕ)⊗µ(c+,ϕ)

fCount(T (v),ϕ)
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where c− and c+ are the neighbors of c in T (v−) and T (v+), respectively.

Therefore, it should be clear that in the case of intervals (respectively
fuzzy intervals) of measure values, in Algorithm 3, supp and neighbors
should respectively be replaced by i supp and i neighbors (respectively by
f supp and f neighbors).

4.3 Completeness Properties

In this section, we study the completeness of our approach in the case of
single measure values. In particular, we show that if we consider a cube that
can be partitioned into non-overlapping blocks containing the same measure
value, then Algorithm 2.1 computes these blocks.

First, we show that, that for limit thresholds, our approach is complete
for any cube C, in the sense that Algorithm 2.1 outputs blocks that represent
exactly the content of C. In what follows, we call limit thresholds:

• a support threshold σ such that 0 < σ ≤ 1
|C| ,

• a confidence threshold γ such that γ = 1,

• a neighbor threshold ν such that ν = 1.

Before giving the corresponding theorem, we note that considering limit
thresholds implies the following:

• A block b is frequent for m if and only if b contains at least one m-cell.

• A block b such that conf(b, m) ≥ γ contains only m-cells.

• If in Algorithm 3, L1(m) is computed according to ν = 1, then for
every m-cell c in a block b returned by Algorithm 2.1, all neighbors of
c that belong to b are also m-cells.

Now, the completeness of our approach can be stated as follows, in the case
of limit thresholds.

Theorem 1 Let C be a k-dimensional cube. Then for limit thresholds, Al-
gorithm 2.1 outputs a set of blocks B such that for every cell c = 〈v1, . . . , vk,
m〉 in C, there exists one and only one block b in B associated with m that
contains c.
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Figure 5: The Cube for Example 4

Proof: Let us first consider a cell c = 〈v1, . . . , vk, m〉 in C. Since we assume
that 0 < σ ≤ 1

|C| , every slice T (vi) is frequent for m. Therefore, according

to Algorithm 3, each vi is in an interval δi of L1(m). Let us consider the
block b = δ1 × . . .× δk that, clearly, contains c.

Since we assume limit thresholds, all neighbors of c in b are m-cells, and
thus, so are all cells of b. As a consequence, conf(b, m) = 1 and thus b is
output by Algorithm 2.1, which shows that there exists at least one block b
in B associated with m that contains c.

Assuming that two such blocks b and b′ can exist implies that b and
b′ overlap and that they both contain only m-cells. However, this situa-
tion cannot happen because for any given measure value m, Algorithm 3
computes non-overlapping intervals. So, the proof is complete. 2

We note that, although Theorem 1 shows an important theoretical fea-
ture of our approach, its impact in practice is of little relevance. Indeed, as
shown in the following example, in the worst case, Algorithm 2.1 outputs
blocks that are reduced to one single cell. However, the following example
also shows that, with realistic threshold values, our approach can compute
relevant blocks, even if in C, the measure values are not displayed in the
form of blocks.

Example 4 Let us consider the 2-dimensional cube C of Figure 4.3 and
limit thresholds, for instance σ = 0 and γ = ν = 98%. In this case, for
measure values 5 and 8, Algorithm 2.1 computes blocks that are reduced to
one single cell, whereas for the measure value 6, Algorithm 2.1 computes the
block [C5, C6]×ALLPRODUCT .

To see this, let us consider the computation of L1(8) for dimension
CITY . First, for σ = 0, every slice T (Ci), i = 1, . . . , 6, is frequent for
8. Moreover, for all slices, neighbors(Ci−, 8) or neighbors(Ci+, 8) are
less than 1. Therefore, Algorithm 3 computes the intervals [Ci, Ci], for
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i = 1, . . . , 6. For dimension PRODUCT , a similar computation is pro-
duced and we obtain:

L1(8) = {[Ci, Ci] | i = 1, . . . , 6} ∪ {[Pj, Pj] | j = 1, . . . , 4}.

Then, when combining these intervals, Algorithm 2.1 outputs each 8-cell of
C as a block.

It can be seen that a similar computation is done for the measure value 5,
whereas, for measure value 6 the block [C5, C6]×ALLPRODUCT is returned
by Algorithm 2.1.

Now, we would like to emphasize that if we consider non limit thresholds,
our approach computes relevant blocks, even in the case of this example.
Indeed, let us consider as in Example 2, σ = 1/12, γ = 80% and ν = 60%.
Then, Algorithm 3 returns the following:

L1(5) = {[C1, C1], [C3, C4], [P1, P3]},
L1(6) = {[C1, C1], [P1, P4]},
L1(8) = {[C2, C3], [P3, P4]}.

Applying Algorithm 2.1, we obtain the following blocks:

• For measure value 5: [C1, C1]× [P1, P3] and [C3, C4]× [P1, P3].

• For measure value 6: [C5, C6]× [P1, P4].

• For measure value 8: [C2, C3]× [P3, P4].

We note that, in this case, two blocks overlap and that only two cells (namely
〈C2, P1, 5〉 and 〈C4, P4, 8〉) do not belong to any of these blocks.

Now, the following proposition shows that, when in C, measure values are
displayed in the form of blocks, then Algorithm 2.1 actually computes these
blocks. To this end, we use the following terminology: a block b with all
cells containing the same measure value m is called an m-block. Moreover,
we introduce the notion of block partition as follows.

Definition 12 - Block Partition. Let C be a k-dimensional cube and
B = {b1, . . . , bn} a set of blocks such that, for every i = 1, . . . , n, all cells of
bi contain the same measure value mi. B is called a block partition of C if:

• for all distinct i and i′ in {1, . . . , n}, bi ∩ bi′ = ∅,

• b1 ∪ . . . ∪ bn is equal to the set of all cells of C.
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The block partition B = {b1, . . . , bn} of C is said to be maximal if for any
measure value m, there does not exist an m-block in C that contains an
m-block bi in B.

It is easy to see that, for the cube C of Figure 3.3, the set

B = { [C1, C3]× [P3, P4], [C4, C6]× [P1, P2],
[C1, C3]× [P1, P2], [C4, C6]× [P3, P4] }

is a maximal block partition of C in which [C1, C3]×[P3, P4] and [C4, C6]×
[P1, P2] are two 8-blocks, [C1, C3] × [P1, P2] is a 5-block and [C4, C6] ×
[P3, P4] is a 6-block. Moreover, it can also be seen that, considering limit
thresholds (i.e., σ = 1/24, γ = ν = 1), Algorithm 2.1 computes exactly
these blocks.

The following proposition generalizes this remark, and thus shows that
our method is complete when the cube can be maximally partitioned into
m-blocks.

Proposition 3 Let C be a k-dimensional cube and let B = {b1, . . . , bn} be
a maximal block partition of C. Assume that, for every measure value m, it
is the case that for all m-blocks bi = δi,1× . . .× δi,k and bj = δj,1× . . .× δj,k

in B, δi,p ∩ δj,p = ∅ for every p = 1, . . . , k. Then, for limit thresholds,
Algorithm 2.1 returns B.

Proof: We first note that Theorem 1 shows that Algorithm 2.1 computes
sub-blocks of blocks in B. So, we have to show that for every m-block
bi = δi,1 × . . . × δi,k in B, Algorithm 3 returns exactly each interval δi,p for
every p = 1, . . . , k.

Given one of these intervals for dimension p, say δi,p = [α, β], let us as-
sume that Algorithm 3 returns an interval δ′i,p = [α′, β′] such that δ′i,p ⊂ δi,p.
Hence, at least one of the following two inequalities hold: rep(α) < rep(α′)
or rep(β′) < rep(β). Assuming that rep(α) < rep(α′), let us consider the
slice T (α′). According to our hypothesis on the intervals, bi is the only m-
block in B that intersects T (α′). As a consequence, T (α′) contains at least
one m-cell, and thus is frequent for m.

Moreover, since bi is a block and since rep(α) < rep(α′), for every m-
cell c = 〈v1, . . . , vp−1, α

′, vp+1, vk, m〉 in T (α′), the cell c− = 〈v1, . . . , vp−1, v,
vp+1, vk, m′〉 where v = rep−1

p (repp(α)− 1) is such that m = m′ (i.e., c− is
an m-cell). Therefore, in Algorithm 3, the value of n− for the slice T (α′) is
1, in which case no new interval is considered. Thus, we have α = α′. As it
can be shown in the same way that β = β ′, the proof is complete. 2
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Figure 6: The Cube for Example 5

The following example shows that, if in the maximal partition B of C
two m-blocks b = δ1× . . .× δk and b′ = δ′1× . . .× δ′k are such that δi∩ δ′i 6= ∅
for some i, then Algorithm 2.1 does not compute B.

Example 5 Consider the cube C as shown in Figure 4.3 in which blocks
are to be computed according to the limit thresholds. In this case, a maximal
partition B of C is

B = { [C1, C3]× [P1, P2], [C4, C4]× [P1, P2],
[C5, C6]× [P1, P2], [C1, C6]× [P3, P3], [C1, C6]× [P4, P4] }

It is clear that B does not satisfy the hypothesis of Proposition 3, due, for
instance, to the two 5-blocks [C1, C3] × [P1, P2] and [C1, C6] × [P4, P4].
On the other hand, running Algorithm 2.1 on the cube C of Figure 4.3 does
not produce B, since the 5-block [C1, C3]× [P4, P4] is split into [C4, C4]×
[P4, P4] and [C5, C6]× [P4, P4] by the algorithm. In fact, Theorem 1 shows
that in this case, Algorithm 2.1 outputs a non maximal partition of C that
refines B in the following sense: for every block b computed by Algorithm
2.1, there exists a block b′ in B such that b ⊆ b′.

It should be noticed that, in the case of intervals, Theorem 1 and Proposition
3 still hold since pairwise disjoint intervals can be thought of as single values.
However, in the case of fuzzy intervals, we conjecture that our completeness
results do not hold, because in this case, a member value v may belong to
more than one interval. On the other hand, based on Proposition 2, it is
conjectured that blocks computed by our method still cover the whole cube
C, i.e., it can be shown that:

• for Theorem 1, each cell belongs to at least one block in B, and

• for Proposition 3, Algorithm 2.1 outputs super blocks of blocks in B.
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5 Experiments

In this section, we report on experiments in terms of runtime, number of
blocks, and rate of overlapping blocks. Experiments have been performed
on synthetic multidimensional data randomly generated. Depending on the
experiments, the cubes contain up to 107 cells, the number of dimensions
ranges from 2 to 9, the number of members per dimension ranges from 2 to
10, and the number of cell values ranges from 5 to 1000.

The first experiments report on the impact of taking into account single
values, or intervals, or fuzzy intervals.

Figure 7 shows the number of blocks output by the three methods (single
values, intervals and fuzzy intervals) according to the number of dimensions,
and figure 8 shows the number of blocks output by the three methods (single
values, intervals and fuzzy intervals) according to the number of members
per dimension.

It should be noted that we obtain more blocks based on intervals than
blocks based on single values. This is due to the fact that taking intervals
into account increases the chance for a value to match a block value. How-
ever, the number of blocks based on fuzzy intervals is lower than the number
of blocks based on the other two methods. This is due to the fact that fuzzy
blocks can merge several blocks (which would have overlapped, as shown
below).

Figures 9 and 10 show the runtime of the three methods (single values,
intervals, fuzzy intervals) according to the size of the cube (number of cells).
It can be seen that taking intervals and fuzzy intervals into account leads to
slightly higher runtimes, if compared with the case of single measure values.
However, all runtimes are still comparable and behave the same way.

Figure 11 shows the rate of overlapping blocks depending on the method
(single values, intervals of fuzzy intervals) according to the number of di-
mensions of the cube. This figure suggests that, in the case of this dataset,
using crisp methods leads to the fact that many blocks overlap (100% in
the case of this experiment), while taking fuzziness into account reduces
the rate of overlapping. This fact could be put in relation with the im-
precision/uncertainty trade off, i.e., the more certain, the less precise and
conversely.

The following experiments show the impact of taking neighbors into
account. Figure 12 shows the behaviour of the runtime according to the
number of cell values. It can be seen that taking neighbors into account has
no significant effect on the runtime.
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Figure 7: Number of discovered blocks w.r.t. the number of dimensions
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Figure 8: Number of discovered blocks w.r.t. the number of members
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Figure 9: Runtime w.r.t. the size of the cube
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Figure 10: Runtime w.r.t. the size of the cube
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Figure 11: Rate of overlapping blocks w.r.t. the number of dimensions
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Figure 12: Runtime w.r.t. the number of measure values with and without
neighbors (5 dimensions, 9 members per dimension)
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Figure 13: Number of blocks w.r.t. the number of measure values with and
without neighbors (5 dimensions, 8 members per dimension, ν = 50%)

Figure 13 shows the behaviour of the number of blocks according to the
number of measure values. It can be seen that taking neighbors into account
leads to the discovery of more blocks.

We have also applied our method on the titanic database [8]. In this
case, the database is organized according to four dimensions:

1. Dimension called PASSENGER CLASS and defined on
domPASSENGER CLASS = {1st, 2nd, 3rd, crew}.

2. Dimension called AGE and defined on domAGE = {adult, child}.

3. Dimension called SEX and defined on domSEX = {male, female}.

4. Dimension called SURV IV ED and defined on domSURV IV ED = {yes, no}.

Moreover, we have considered a representation of the cube defined from the
usual order as implicitly stated in the titanic file [8], that is:

1. rep1(1st) < rep1(2nd) < rep1(3rd) < rep1(crew),

2. rep2(adult) < rep2(child),
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3. rep3(male) < rep3(female),

4. rep4(yes) < rep4(no).

The cube consists of 32 cells the content of which being the number of
passengers concerned by the combination of one value per dimension. These
numbers ranging from 0 to 670, we have partitioned the interval [0, 670] into
the following four intervals: [0, 0], ]0, 20], ]20, 192], ]192, 670].

Considering the actual content of the cube, the first bin corresponds to
no passenger, the second bin corresponds to numbers of passengers ranging
from 4 to 20 (since there are no values between 0 and 4), the third bin
corresponds to numbers of passengers ranging from 35 to 192 (since there
are no values between 20 and 35), and the last bin corresponds to numbers
of passengers ranging from 387 to 670 (since there are no values between
192 and 387).

We first note that, with a minimum confidence threshold of 50% and a
minimum support threshold of 2

32 , taking single measure values into account
has lead to the discovery of no block. On the other hand, with the same
thresholds, when considering the intervals defined above, the following four
blocks have been discovered:

1. b1 = ALLPASSENGER CLASS × [child, child] × ALLSEX × [no, no], a
]192, 670]-block meaning that the number of those passengers who were
male children and who did not survive is among the highest.

2. b2 = [1st, 3rd]× [adult, adult]×ALLSEX×ALLSURV IV ED, a ]20, 192]-
block meaning that the number of those adult passengers who were not
crewmembers, whatever their sex and whatever their fate (survived or
not) was between 35 and 192.

3. b3 = [1st, 2nd]× [child, child]× ALLSEX × ALLSURV IV ED, a ]0, 20]-
block meaning that the number of those children passengers belonging
to class 1st or 2nd, whatever their sex and their fate (survived or not),
was very low but not null.

4. b4 = [crew, crew]× [child, child]×ALLSEX×ALLSURV IV ED, a [0, 0]-
block meaning that there were no children hired as crew members.

6 Related Work

The work on the building of blocks of similar values in a given data cube as
presented in this paper can be related to the work on data clustering of high
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dimensional data, which is an important area in data mining. For a large
multidimensional database where the data space is usually not uniformly
occupied, data clustering identifies the sparse and dense areas and thus dis-
covers the overall distribution patterns (or summary) of the dataset. Some
examples of work on clustering of high dimensional data include CLARANS
[17], BIRCH [22], CLIQUE [19] and CURE [11].

Several subspace clustering methods are introduced to detect clusters
residing in different subspaces (i.e., subsets of the original dimensions). In
this case, no new dimension is generated. Each resultant cluster is associated
with a specific subspace. Some examples of these methods are CLIQUE [19]
and ORCLUS [1].

CLIQUE (CLustering In QUEst) adopts a density-based approach to
clustering in which a cluster is defined as a region that has higher density of
points than its surrounding area. To approximate the density of data points,
the data space is partitioned into a finite set of cells. Note that a block in
our work is almost similar to the concept unit in [19] which is obtained by
partitioning every dimension into intervals of equal length. Thus a unit in
the subspace is the intersection of an interval from each of the k dimensions
of a k-dimensional cube. However, the construction of the blocks in [19] is
not determined by the same measure value, but rather by arbitrary chosen
partitions of the member values.

Constructing subspaces using various methods can be viewed as related
research but the aim is normally directed to tackling the issue of high di-
mensionality for clustering problems.

Research work on (fuzzy) image segmentation may appear as related
works [18]. Although the goals are the same, it is not possible to apply
such methods due to problems of scalability and because also of the mul-
tidimensional nature of data. For example, clustering-based color image
segmentation [20] is normally limited to a 2-dimensional environment with
the possibility of an extension to 3 dimensions.

Segmentation methods (e.g. clustering) have been proposed in the mul-
tidimensional context [19], [10]. In [12], the authors study the generation
of fuzzy partitions over numerical dimensions. However, these propositions
are not related to our measure-based approach, and thus these propositions
are different from our work where the measure value is the central criterion.

On the other hand, the feature selection methods are used to select a
subset of dimensions for supervised classification problem [16]. The idea is
to produce an optimal pool of good dimension subsets for searching clusters.
Therefore, in this approach, clusters are built up according to criteria related

33



to dimensions whereas in our approach, blocks are built up according to
similarrity criteria on the measure values.

In [15] the authors aim at compressing data cubes. However there is no
consideration on cube representations and homogeneous blocks generation.

The work presented in [3] proposes a method to divide cubes into regions
and to represent those regions. However, the authors aim at representing
the whole cube. They use statistical methods to construct an approximation
of the cube, while we aim at discovering relevant areas, which may not cover
the whole cube.

In [21], the authors propose the concept of condensed data cube. How-
ever, the authors aim at considering the cube without loss of information,
while we aim at displaying relevant information to the user, which may be
a partial representation of data.

7 Conclusion

In this paper, we have presented an efficient method for summarizing and
visualizing multidimensional data. In our approach, blocks of homogeneous
data are built to summarize the content of a given data cube, based on user
specified thresholds. We have used a levelwise approach for the computation
of the blocks and we have shown that our approach is tractable, in particular
when the set of measure values is partioned into (fuzzy) intervals. Although
efficiency results in a non complete method, completeness issues have been
considered, and the experimental results obtained on synthetic data sets
show that relevant blocks can be obtained efficiently.

In our future work, we plan to run further tests on real data to better
assess the effectiveness and the accuracy of our approach. Moreover, we are
also investigating the following research issues:

• How to combine the work in [6] and the work presented in this paper,
in order to find a representation of the data cube for which large blocks
can be computed?

• How standard OLAP operators such as roll-up or drill-down impact
the blocks? More precisely, having built the blocks for a given level
of details, can we optimize the construction of the blocks on the same
data cube on which a roll-up or drill-down operation has been applied?

• The visualization of the blocks computed by our approach is also an
issue we want to investigate further, based on our preliminary work
reported in [5].
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