. Moreover, we have considered a representation of the cube defined from the usual order as implicitly stated in the titanic file [8], that is: 1. rep 1 (1st) < rep 1 (2nd) < rep 1, ) < rep 1 (crew), 2. rep 2 (adult) < rep

C. C. Aggrawal and P. S. Yu, Finding generalized clusters in high dimensional spaces, Proc. of the Int. Conf. on Management of Data (SIGMOD'00), pp.70-81, 2000.

R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of items in large databases, Proc. of ACM SIGMOD, pp.207-216, 1993.

D. Barbara and M. Sullivan, Quasi-cubes, ACM SIGMOD Record, vol.26, issue.3, pp.12-17, 1997.
DOI : 10.1145/262762.262764

Y. W. Choong, D. Laurent, and A. Laurent, Summarizing multidimensional databases using fuzzy rules, Int. Conf. IPMU'04, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108883

Y. W. Choong, D. Laurent, and A. Laurent, Pixelizing Data Cubes: A Block-Based Approach, Visual Information Expert Workshop (VIEW'06), 2006.
DOI : 10.1007/978-3-540-71027-1_7

URL : https://hal.archives-ouvertes.fr/lirmm-00130712

Y. W. Choong, D. Laurent, and P. Marcel, Computing appropriate representations for multidimensional data, Proceedings of the 4th ACM international workshop on Data warehousing and OLAP , DOLAP '01, pp.181-203, 2003.
DOI : 10.1145/512236.512239

E. F. Codd, S. B. Codd, and C. T. Salley, Providing olap to user-analysts: An it mandate, Technical Report. Arbor Software Corporation, 1993.

C. L. Blake, D. J. Newman, S. Hettich, and C. J. Merz, UCI repository of machine learning databases, 1998.

D. Dubois, E. Hülermeier, and H. Prade, A Note on Quality Measures for Fuzzy Association Rules, Int. Fuzzy Systems Association World Congress on Fuzzy Sets and Systems, 2003.
DOI : 10.1007/3-540-44967-1_41

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu, Incremental clustering for mining in a data warehousing environment, Proc. of the Int. Conf. on Very Large Data Bases (VLDB), pp.323-333, 1998.

S. Guha, R. Rastagi, and K. Shim, Cure: An efficient clustering algorithm for large databases, Proc. of the ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'98), pp.73-84, 1998.
DOI : 10.1016/s0306-4379(01)00008-4

A. Gyenesei, A fuzzy approach for mining quantitative association rules, Turku Center for Computer Science, 2000.

W. H. Inmon, Building the Data Warehouse, 1992.

A. Kaufmann, Introduction to the theory of fuzzy subsets, 1973.

L. Lakshmanan, J. Pei, and J. Han, Quotient Cube, Proc. of VLDB, pp.778-789, 2002.
DOI : 10.1016/B978-155860869-6/50074-3

H. Motoda, . Liu-huan, and . Liu, Feature Selection for Knowledge Discovery and Data Mining, 1998.

R. T. Ng and J. Han, CLARANS: a method for clustering objects for spatial data mining, IEEE Transactions on Knowledge and Data Engineering, vol.14, issue.5, pp.1003-1016, 2002.
DOI : 10.1109/TKDE.2002.1033770

S. Philipp-foliguet, M. B. Vieira, and M. Sanfourche, Fuzzy segmentation of color images and indexing of fuzzy regions, 1st European Conference on Color in Graphics, Image and Vision (CGIV'02), pp.507-512, 2002.

D. Gunopulos, R. Agrawal, J. Gehrke, and P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, Proc. of the Int. Conf. on Management of Data (SIGMOD'98), pp.94-105, 1998.

R. H. Turi, Clustering-based colour image segmentation, 2001.

W. Wang, H. Lu, J. Feng, and J. X. Yu, Condensed cube: an effective approach to reducing data cube size, Proceedings 18th International Conference on Data Engineering, pp.155-165, 2002.
DOI : 10.1109/ICDE.2002.994705

T. Zhang, R. Ramakrishnan, and M. Livny, Birch: An efficient data clustering method for very large databases, Proc. of the ACM- SIGMOD Int. Conf. on Management of Data (SIGMOD'06), pp.104-114, 1996.