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ODOMETERS ON REGULAR LANGUAGES

VAL�ERIE BERTH�E AND MICHEL RIGOy

Abstract. Odometers or \adding machines" are usually introduced in the

context of positional numeration systems built on a strictly increasing sequence

of integers. We generalize this notion to systems de�ned on an arbitrary in�nite

regular language. In this latter situation, if (A;<) is a totally ordered alphabet,

then enumerating the words of a regular language L over A with respect to

the induced genealogical ordering gives a one-to-one correspondence between

N and L. In this general setting, the odometer is not de�ned on a set of

sequences of digits but on a set of pairs of sequences where the �rst (resp. the

second) component of the pair is an in�nite word over A (resp. an in�nite

sequence of states of the minimal automaton of L). We study some properties

of the odometer like continuity, injectivity, surjectivity, minimality,. . .We then

study some particular cases: we show the equivalence of this new function with

the classical odometer built upon a sequence of integers whenever the set of

greedy representations of all the integers is a regular language; we also consider

substitution numeration systems as well as the connection with �-numerations.

1. Introduction

To any in�nite regular language L over a totally ordered alphabet (A;<), an

abstract numeration system S = (L;A;<) is associated in the following way [22].

Enumerating the words of L by increasing genealogical order gives a one-to-one

correspondence between N and L: the non-negative integer n being represented by

the (n+1)-th word of the ordered languageL. In particular, these systems generalize

classical positional systems like the k-ary systems, the Fibonacci system or more

generally the numeration systems built on a sequence of integers satisfying a linear

recurrence relation whose characteristic polynomial is the minimal polynomial of a

Pisot number [4].

In this framework of abstract numeration systems, the properties of the so-

called S-recognizable sets of integers have been extensively studied (see for instance

[22, 31, 32]). Moreover, these abstract systems have been extended to allow not only

the representation of integers but also of real numbers [23]. In this latter situation,

a real number is represented by an in�nite word which is the limit of a converging

sequence of words in L. Clearly, these systems lead to the generalization of various

concepts related to the representation of integers like the automatic sequences or

the summatory functions of additive functions [20, 33].

In this paper, we want to de�ne and study the properties of odometers (also

called adding machines) in the framework of abstract numeration systems built on

an in�nite regular language. In [19] odometers for positional numeration systems

de�ned on a strictly increasing sequence (Un)n2N of integers such that U0 = 1 are

investigated. In this latter situation, the odometer function is de�ned on the set R

of right in�nite words �0�1�2 : : : satisfying a greedy property [14], i.e., for all ` � 0,

(1)

`X
i=0

�iUi < U`+1:

yCorresponding author.
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2 V. BERTH�E AND M. RIGO

(We will also consider the greedy property (1) for �nite words in the following.)

The least signi�cant digits are written �rst: the pre�x �0 � � ��k of a word in R has

value �0U0 + � � � + �kUk. The odometer is thus de�ned as the in�nite extension

of the successor function acting on the �nite words of the form �0 � � ��k. As an

example, let us consider a �nite word: the usual decimal representation of one

hundred seventy-two is the word \172"; but here, we will write representations

backward and so this number is written \271" and adding one leads to the word

\371". Moreover, the language of the �nite words representing all the integers can

be embedded into R by concatenating 0! to the right of a greedy representation

starting with the least signi�cant digit �rst. So, one hundred seventy-two gives

the element 271(0)! 2 R. Adding one to an in�nite word in R can produce a

carry propagating to the right. As an example, the application of the odometer to

9992(0)! gives 0003(0)!. In the case of the Fibonacci system where U0 = 1, U1 = 2

and Un+2 = Un+1 + Un applying the odometer to 010101(0)! gives 0000001(0)!

(indeed, to be in R the greedy condition (1), i.e., the pattern \11" does not occur,

must be satis�ed). For these reasons, we will consider mirror of representations all

along this paper.

There is an important literature devoted to the study of odometers. Let us briey

quote [5] which continues the study of [19] from a combinatorial and topological

point of view, and [6] for a metrical approach. Odometers can also be de�ned

for two-sided dynamical systems as investigated in [15, 35], we refer to [37] for

the golden ratio case. See also [7] for an ergodic application of this notion in the

framework of unimodal maps and wild attractors. Lastly, let us mention [16] which

studies the sequential properties of the successor function for positional numeration

systems.

This paper is organized as follows. After recalling the basic notions required

in this paper, we de�ne in Section 2 the set eK on which the odometer acts, and

state a few preliminary properties. Special focus is given on its extremal elements

in Section 3, which allows us to de�ne the odometer in Section 4. Its �rst proper-

ties (continuity, injectivity, surjectivity and minimality) are then stated in Section

5. We illustrate this study by making explicit the connection with a few well-

known situations where the odometer is perfectly described: we consider the case

of positional number systems in Section 6, the case of substitution numeration

systems (with special focus on Pisot substitutions) in Section 7, and the case of

�-numeration in Section 8. We consider the possibility of getting a real represen-

tation of the odometer in Section 9 and end this paper by considering some special

cases in Section 10.

2. Preliminaries

Let A = fa0 < a1 < � � � < akg be a �nite and totally ordered alphabet. In this

paper L � A� will always denote a regular language such that a�0L � L. In other

words, L is in�nite and has the following property

(2) w 2 L, 8n � 0; an0w 2 L:

In some sense, property (2) can be related to the property of numeration systems

built on a sequence of integers (Un)n2N such that if w = w0 � � �wk is the greedy

representation of an integer w0 U0 + � � � + wk Uk (remember that we have taken

the convention to write the least signi�cant digit �rst) then w 0n, n 2 N, still

satis�es the greedy condition (1) and represents the same integer. Here, since we

will consider the mirror of words in L, we will be able to write an arbitrary number

of a0's on the right of the mirror of any word in L and still obtain mirror of words

belonging to L. Property (2) will therefore ensure the embedding of the �nite words



ODOMETERS ON REGULAR LANGUAGES 3

of L representing the non-negative integers into some set of in�nite sequences that

will be precised later (De�nition 1 below).

The minimal automaton of L is denotedML = (Q; q0; A; Æ; F ) where Q is the set

of states, q0 is the initial state, F � Q is the set of �nal states and Æ : Q�A! Q

is the transition function. We assume that Æ is total or equivalently that ML is

complete, i.e., Æ is de�ned for all pairs (q; a) 2 Q � A (notice that even with this

assumption, ML might contain a sink, i.e., a non-�nal state s such that for any

a 2 A, Æ(s; a) = s). As usual, Æ can be extended to Q� A�. As a consequence of

property (2), ML has a loop in q0 of label a0. For the properties of the minimal

automaton, see for instance [12].

For any state q 2 Q, we denote by Lq the regular language accepted by ML

from state q,

Lq = fw 2 A
� j Æ(q; w) 2 Fg

and by uq(n) the number of words of length n in Lq. In particular, L = Lq0 .

Since A is totally ordered, we can order the words of A� using the genealogical

ordering. Let u; v 2 A�. We say that u < v if juj < jvj or if juj = jvj and there exist

p; u0; v0 2 A�, a; b 2 A, a < b such that u = pau0 and v = pbv0. If M is a language

over A, we de�ne Max(M) as the set of the greatest words of each length in M ,

i.e.,

Max(M) = fu 2M j 8v 2M; juj = jvj ) v � ug:

Observe that for all n � 0, #(Max(M) \ An) 2 f0; 1g. In the same way, we can

also de�ne the set Min(M) containing the smallest word of each length in M . It is

well-known that if M is regular then Max(M) and Min(M) are also regular [36].

If w = w0 � � �w` is a word over A then the reversal (or mirror) of w is w` � � �w0

and is denoted ew. If M is a language, then fM is the language f ew j w 2 Mg.

We also consider the non-deterministic �nite automaton gML = (Q;F;A; eÆ; fq0g)
having the same set of states asML, F as set of initial states, the transition relationeÆ � Q�A�Q is de�ned by

(q; a; r) 2 eÆ , Æ(r; a) = q:

So, since q0 is the only �nal state then a word w is accepted by gML if and only ifew 2 L. SinceML is accessible, in gML for any state q there exists at least one path

from q to q0. Moreover, we also have a loop in q0 of label a0. Let us already observe

that in our later developments, the set of �nal states of gML will be irrelevant since

we mainly work with limits of words recognized by gML.

We denote by eL the set of in�nite words over A which are the limits of the

converging sequences of words belonging to eL. Otherwise stated, x = x0x1x2 : : :

belongs to eL if there exists a sequence (wn)n2N of words in L such that for all ` > 0

there exist N` > 0 such that for all n � N`, fwn and x have a common pre�x of

length at least `. We use the topology induced by the in�nite product topology

on AN. Notice that if all the sates in ML are �nal, then eL is the set of labels of

in�nite paths in gML.

Due to the non-deterministic behavior of gML, the reading of a word in this

automaton can lead to more than one path. As an example, assume that in ML

we have three states p, q and r such that Æ(p; a) = r and Æ(q; a) = r then in gML

from state r when reading a both states p and q could be reached and a non-

deterministic choice has to be made. Therefore, we will not only consider words

but also the extra information given by the sequence of reached states. This is the

reason of the introduction of the set eK de�ned below.

De�nition 1. We de�ne the set eK � (A�Q)! by (x; y) = (x0x1x2 : : : ; y0y1y2 : : :)

belongs to eK if and only if the following conditions hold
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(1) x belongs to eL,
(2) y0 belongs to F ,

(3) for all i � 0, (yi; xi; yi+1) belongs to eÆ, i.e., Æ(yi+1; xi) = yi.

Lemma 2. If (x; y) = (x0x1x2 : : : ; y0y1y2 : : :) belongs to eK then for all k 2 N,

xk � � �x0 belongs to Lyk+1
.

Proof. By de�nition of eK, for i = 0; : : : ; k, Æ(yi+1; xi) = yi. Therefore in ML we

have a path from yk+1 to y0 of label xk � � �x0. Since y0 is a �nal state, this means

that xk � � �x0 is accepted from yk+1. �

Remark 3. Let k � 0. If (x; y) = (x0x1x2 : : : ; y0y1y2 : : :) belongs to eK then

y0 � � � yk is completely determined by x0 � � �xk and yk+1. This is due to the third

condition in the de�nition of eK and becauseML is deterministic.

De�nition 4. Let j � 0. A �nite word (x; y) = (x0x1 � � �xk ; y0y1 � � � yk) 2

(A�Q)k+1, k > j, (resp. an in�nite word (x; y) = (x0x1 : : : ; y0y1 : : :) 2 (A�Q)!)

is said to have the property maxj and we write (x; y) 2 maxj if xj � � �x0 be-

longs to Max(Lyj+1
). In the same way, (x; y) has the property minj if xj � � �x0 2

Min(Lyj+1
).

Lemma 5. Let (x; y) = (x0x1x2 : : : ; y0y1y2 : : :) 2 eK and j � 0. If (x; y) has

property maxj (resp. minj) then for all k < j, (x; y) has also the property maxk
(resp. mink).

Proof. Assume that (x; y) 2 maxj but (x; y) 62 maxk, k < j. Therefore there

exists x0
k
� � �x00 accepted from yk+1 and genealogically greater than xk � � �x0. So

xj � � �xk+1x
0
k
� � �x00 belongs to Lyj+1

and is greater than xj � � �x0. This is a contra-

diction. �

Corollary 6. Let (x; y) = (x0x1x2 : : : ; y0y1y2 : : :) 2 eK and j � 0. If (x; y) 62maxj
(resp. (x; y) 62minj) then for all i � j, (x; y) 62maxi (resp. (x; y) 62mini).

Let us now present some other properties of this set eK.
Proposition 7. For each x 2 eL, there exists y 2 Q!

such that (x; y) belongs to eK.
Proof. If w = w1 � � �w` is a word in L, we denote by p(w) the word

p(w) := Æ(q0; w1) Æ(q0; w1w2) � � � Æ(q0; w1 � � �w`) 2 Q
`

which represents the path given by the states reached consecutively in ML by

reading w. Since x belongs to eL, there exists a sequence (xn)n2N of words in eL
converging to x. For an in�nite number of n 2 N, the last element of p(fxn) is

a same state in F . We take the corresponding subsequence (xk1(n))n2N. For an

in�nite number of n, the words p(x̂k1(n)) have the same suÆx of length two. So

we consider the corresponding subsequence (xk2(n))n2N. If we iterate this process,

(xkn(1))n2N is converging to x if n tends to in�nity and the reversal of the p(x̂kn(1))'s

are converging to an in�nite word y in Q! such that (x; y) belongs to eK. �

Example 8. In this example, we consider a regular language L � fa < b < cg�

satisfying the hypothesis a�L � L and given by its minimal automaton depicted in

Figure 1. We just present some elements belonging to eK:
((bba)!; (210)!); (a)!; 1(0)!); (b(a)!; 2(1)!);

(ba(bbc)!; 10(210102021)!) and (ba(bbc)!; 10(021210102)!):
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c

b

a,bc b
c

2

0 1

a a

Figure 1. The minimal automaton of a language L.

As shown in the previous example, to one in�nite word x 2 eL, it may correspond

more than one sequence of states. If two such sequences give rise to elements in eK
then they di�er almost everywhere.

Lemma 9. Let (x; y) and (x; y0) be two elements of eK such that y 6= y0. Then there

exists an index i such that yi 6= y0
i
and for all n � 0, yi+n 6= y0

i+n.

Proof. This is a direct consequence of Remark 3. �

The next proposition shows that to any �nite word in L corresponds at least one

element in eK. The same kind of properties holds in the case of numeration systems

built on a sequence of integers. If w is the greedy representation of an integer

(least signi�cant digit �rst), then w(0)! belongs to the set R of right in�nite words

satisfying the greedy property 1.

Proposition 10. If w = wk � � �w1 belongs to L then there exists y1 � � � yk 2 Qk

such that (w1 � � �wk (a0)
!; y1 � � � yk (q0)

!) belongs to eK.
Proof. By our assumption (2) on L, if w belongs to L then an0w also belongs to

L, n � 0. Using the same notation as in the proof of Proposition 7, if yk � � � y1 =

p(wk � � �w1) then qn0 yk � � � y1 = p(an0 wk � � �w1). The result follows easily. �

3. Properties of Max( eK) and Min( eK)
For odometers de�ned upon classical positional systems related to a sequence

(Un)n2N of integers, some sequences of digits play a special role. Namely, they are

the sequences for which the carry when adding one can propagate to in�nity. A

sequence �0�1�2 : : : is of this kind if

`jX
i=0

�iUi = U`j+1 � 1

for a strictly increasing in�nite sequence (`j)j2N of indices. In our framework,

the corresponding elements in eK will be de�ned as the elements in Max( eK). The
elements which have the dual property will belong to Min( eK).
De�nition 11. Let us de�ne two particular subsets of eK,

Max( eK) = f(x; y) 2 eK j 8i � 0; (x; y) 2maxig

and

Min( eK) = f(x; y) 2 eK j 8i � 0; (x; y) 2minig:

Let us observe that following Lemma 5, then it is suÆcient in the de�nition of

Max( eK) (resp. Min eK)) that there exist in�nitely many i such that (x; y) 2maxi
(resp. (x; y) 2 mini). In this section, we concentrate on the structural properties

of those sets Max( eK) and Min( eK). The following lemma is obvious.
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Lemma 12. Let L be a regular language satisfying our assumption (2).

� A word w belongs to Min(L) if and only if for all n � 0, an0w belongs to

Min(L) (assuming that a0 is the smallest letter in the ordered alphabet A).

� Let q be a state ofML. If vw belongs to Max(Lq) then the word w belongs

to Max(LÆ(q;v)).

De�nition 13. Let w be the smallest word in Min(L), i.e., w is the �rst word in

the ordered language L. If w = w1 � � �w` is not the empty word (i.e., if q0 62 F )

then we have a path inML of the form

q0
w1
�! q1

w2
�! � � �

w`�! q` 2 F:

We set 0 = ( ew(a0)! ; q` � � � q1(q0)!). Otherwise w = " and we set 0 = ((a0)
! ; (q0)

!).

Proposition 14. The sets Max( eK) and Min( eK) are non-empty.

Proof. As a consequence of Lemma 5 and Lemma 12, the element 0 given in De�-

nition 13 belongs to Min( eK).
We use the same idea as in the proof of Proposition 7. Let wi be the i-th word

of Max(L) (clearly, jwij < jwi+1j for all i � 1). An in�nite number of wi's have the

same last letter ak1 and lead inML from q0 to a same �nal state qk1 . We therefore

consider the corresponding subsequence (wk1(n))n2N built upon those wi's. We

iterate this process: an in�nite number of words among the wk1(n)'s have the same

suÆx ak2ak1 and �nally lead inML to the states qk2 followed by qk1 . Therefore we

build a sequence converging to

(ak1ak2 � � � ; qk1qk2 � � � ):

Thanks to Lemma 12, this element belongs to Max( eK). �

Example 15. We consider the language and the automaton given in Example 8.

It is easy to check that (b(c)!; 2(120)!), (c!; (120)!) and (c!; (201)!) belong to

Max( eK). We also have 0 = (b(a)! ; 1(0)!) and (a!; 1!) as elements of Min( eK). To
show that these elements are the only ones, we will need some more results about

the structure of Max(Lq) and Min(Lq).

In some particular cases, the structure of Max(Lq) is easy to obtain.

Notation 16. Let q be a state inML. If there exists a 2 A such that Æ(q; a) is not

the sink then we denote by m(q) the largest letter having this property, otherwise

we set m(q) = ".

Recall that a state s is a sink if for any a 2 A, Æ(s; a) = s and s is not a �nal

state. Let us introduce a small algorithm to detect what we will call the maximal

cycles inML.

Algorithm 17. Let q 2 Q.

� Set y0  q and i 0.

� If m(yi) 6= " then set yi+1  Æ(yi;m(yi)) and i i+ 1.

Otherwise stop the algorithm.

� If y0; : : : ; yi are all di�erent, repeat the previous step.

Otherwise, a cycle is found and stop the algorithm.

After applying this algorithm to a state q 2 Q which is not the sink, we can have

two kinds of situations. If we encounter some state yk such that m(yk) = " then

we have obtained something like

y0
m(y0)
�! y1

m(y1)
�! � � � �! yk�1

m(yk�1)
�! yk
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where all the yi's are di�erent and yk belongs necessarily to F (because ML is

minimal). Or we have the situation

y0
m(y0)
�! y1

m(y1)
�! � � � �! yk

m(yk)
�! � � � �! yk+n

m(yk+n)
�! yk

where y0; : : : ; yk+n are all di�erent; we say that (yk;m(yk); : : : ; yk+n;m(yk+n); yk)

is a maximal cycle starting in yk and the word m(yk) � � �m(yk+n) is the label of this

cycle. Notice that two maximal cycles have no state in common or share exactly

the same states. In this latter case, the label of one of the two cycles is a cyclic

permutation of the other one.

Example 18. Considering the automaton of Example 8, we have three maximal

cycles: (0; c; 2; c; 1; c; 0), (2; c; 1; c; 0; c; 2) and (1; c; 0; c; 2; c; 1) all having the same

label ccc and sharing the same states.

Lemma 19. If C is a maximal cycle of label w starting in q, then there exist an

integer k � jwj depending only on C and k words u1; : : : ; uk of minimal length such

that juij 6� juj j mod jwj if i 6= j and

Max(Lq) = w�fu1; : : : ; ukg:

Proof. Let w be the label of a maximal cycle C starting in q. If v belongs to

Max(Lq) then by construction of the maximal cycle, wv also belongs to Max(Lq).

Assume now that u; v 2 Max(Lq) are such that juj � jvj mod jwj and juj < jvj.

Therefore, there exists i such that wiu belongs to Max(Lq) and jw
iuj = jvj. But

Max(Lq) contains at most one word of each length, so wiu = v. Consequently, if v

belongs to Max(Lq) then it is of the form wnu for some n � 0 and w is not a pre�x

of u. For each j 2 f0; : : : ; k�1g there is at most one u of this kind such that juj � j

mod jwj (actually u is the smallest word of length j + njwj possibly belonging to

Max(Lq), n � 0). Notice that it does not mean that juj < jwj. Clearly two states

in the same maximal cycle give rise to the same kind of maximal set. �

It is more diÆcult to express the form of Max(Lq) when this set is in�nite

and q does not belong to a maximal cycle. But hopefully we have a more general

result extending Lemma 19 which holds even if q does not belong to a maximal

cycle. Indeed, since #(Max(Lq) \A
n) � 1 for all n 2 N then it is well-known (see

[27] or [36]) that there exists a �nite set R of words, an integer k � 0 and words

ui; wi 2 A
�, vi 2 A

+, i = 0; : : : ; k such that

(3) Max(Lq) =

k[
i=0

ui v
�
i
wi [ R

where the languages ui v
�
i
wi are pairwise disjoint and also disjoint from R. Other-

wise stated, if i 6= j then

fjuiwij+ njvij : n 2 Ng \ fjujwj j+ njvj j : n 2 Ng = ;

and fjuiwij + njvij : n 2 Ng \ jRj = ;, for all i (jRj denotes the set of lengths of

elements of R). One can observe that the form of Max(Lq) given in Lemma 19 is

a special case of (3).

Proposition 20. Any element in Max( eK) is ultimately periodic and Max( eK) is

�nite.

Proof. (a) The ideas of the �rst part of this proof are the same as in [23, Lemma

7]. Let q be such that #Max(Lq) =1. If x is a word in Max(Lq) of length large

enough then thanks to (3) there exist unique words u; v; w (depending on x) such

that x = uvnw. Among

(4) Æ(q; u); Æ(q; u v); : : : ; Æ(q; u v#Q)
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a same state appears at least twice. Let t be the �rst state appearing twice in this

list. Let i < j be the smallest integers such that Æ(q; u vi) = Æ(q; u vj) = t. We

set P = (j � i)jvj. We can already notice that P is bounded by #Q � jvj. In what

follows, we write simply t, i, j, P assuming that the word x is understood from the

context.

(b) If z = z0 � � � z` is a word over A and f is a state, we build the pair

pf (z) := (z0 � � � z`; Æ(f; z0) Æ(f; z0z1) � � � Æ(f; z0 � � � z`)):

Actually, pf (z) contains a word z and the sequence of states reached from f when

reading z in ML (since ML is complete, Æ(f; z0 � � � zk) is de�ned for 0 � k � `).

Consider again the word x = uvnw 2 Max(Lq) introduced in (a). For n large

enough, pq(uv
nw) is a word over A�Q having

i) a non-periodic pre�x pq(u v
i) of length bounded by juj+#Q � jvj;

ii) a maximal periodic factor having a period of length P ; actually the Eu-

clidean division of n� i by P=jvj gives

n� i = m
P

jvj
+ r with r < P=jvj:

The periodic factor corresponding to vmP=jvj is pt(v
mP=jvj) and the period

corresponding to vP=jvj is pt(v
P=jvj) where t is as in (a) the �rst state

appearing twice in the list (4);

iii) a non-periodic suÆx of length bounded by jwj + P , indeed this factor cor-

responds to vrw and is of the form pt(v
rw).

For a better understanding, the situation is sketched in Figure 2.

v v
t

v
t

v
t

v
t

v v

v v

u w

vi

j

vn−i

r

m−th appearance
of the period

first appearance
of the period

non−periodic suffixnon−periodic prefix

Figure 2. A schematic representation of pq(uv
nw).

(c) Let n0 > n and x0 = uvn
0

w. Then pq(uv
nw) and pq(uv

n
0

w) have the same pre�x

corresponding to u vi. The periodic factors have the same period of length P but

the number of repetitions could be larger for x0. Finally, if n and n0 are not con-

gruent modulo P=jvj then the corresponding suÆxes could be di�erent, otherwise

the suÆxes are the same. Notice that there are only �nitely many possible suÆxes

corresponding to the words of the form vrw for r = 0; : : : ; P=jvj � 1.

(d) From the previous observations, we can easily exhibit elements inMax( eK). Let
n0 be large enough and set xm = pq(u v

n0+mP=jvj w) for m � 0. From the previous

point, fxm is converging to an ultimately periodic element in eK. From Lemma 12,

this element belongs to Max( eK).
(e) Clearly, any element (x; y) = (x0x1 : : : ; y1y2 : : :) in Max( eK) is ultimately pe-

riodic. Since Q is �nite, a state q must appear in�nitely often in y say in strictly

increasing positions k(n). For each n, xk(n) � � �x0 belongs to Max(Lq) and the

words of this kind have a longer and longer common suÆx when n is increasing.

As a consequence of (a), (x; y) is ultimately periodic with x of the form ew (ev)!, for
some �nite words v and w.

(f) In (d), we have obtained elements of Max( eK) of a special form but in (e) we

have shown that any element in Max( eK) is of this kind. To conclude, we have to



ODOMETERS ON REGULAR LANGUAGES 9

show thatMax( eK) is �nite. First from (3), for each state q the number of words ui,

vi, wi used to obtain the structure of Max(Lq) is �nite. For each of these 3-tuples

(ui; vi; wi) of words, we can obtain ultimately periodic elements in Max( eK) but

the period of such an element is bounded by #Q � jvij (see (a)) and the length of

its pre�x is bounded by jwij+#Q � jvij (see (b)). In other words, we have a �nite

number of 3-tuples (ui; vi; wi) each one giving at most a �nite number of elements

in Max( eK). �

This proof shows that the elements of Max( eK) can be determined by the knowl-

edge of the languagesMax(Lq). As we will see in the following example, obtaining

the decomposition of the form (3) for the languages Max(Lq) gives rise to all the

elements in Max( eK). Moreover, observe that these languages Max(Lq) can be

eÆciently obtained fromML.

Naturally, Algorithm 17, Lemma 19 and Proposition 20 are easily adapted to

the set Min( eK). In this case, similarly as in Notation 16, if there exists a 2 A such

that Æ(q; a) is not the sink then we denote by m(q) the smallest letter having this

property.

Example 21. Continuing again Example 8. We are now able to show thatMax( eK)
contains exactly the elements (b(c)! ; 2(120)!), (c!; (120)!) and (c! ; (201)!). We

have a maximal cycle of label ccc containing the three states of ML, so using

Lemma 19 we obtain Max(L0) = (ccc)�fc; cc; ccbg, Max(L1) = (ccc)�f"; b; ccg and

Max(L2) = (ccc)�f"; c; cbg. Let us �rst see which elements in Max( eK) come from

the words in Max(L0). The word (ccc)nc read from the state 0 gives in ML the

path

0
c
! 2

c
! 1

c
! 0 � � �

c
! 2

c
! 1

c
! 0

c
! 2:

With the notation of the proof of Proposition 20, we have

p0((ccc)
nc) = ((ccc)nc; (210)n2):

Reading this path from the right and letting n tends to in�nity gives the element

(c!; 2(012)!) = (c!; (201)!). In the same way, the word (ccc)ncc gives (c!; (120)!)

and �nally (ccc)nccb gives (b(c)!; 2(120)!). If we do the same for the words in

Max(Li), i = 1; 2, then we consider paths starting in i and we obtain exactly the

same three elements of eK. It is clear that each set Max(Lq) produces the same

elements of Max( eK) because all the states are in the same maximal cycle.

Let us now show that Min( eK) contains exactly 0 = (b(a)!; 1(0)!) and (a!; 1!).

Here we have two minimal cycles: (0; a; 0) and (1; a; 1). So thanks to the analogue

of Lemma 19, we have Min(L0) = a�b and Min(L1) = a�. From the analogue of

(3), one �ndsMin(L2) = a�ab[f"; cg. For instance, starting in state 2 and reading

anab gives the path

2
a
! 0

a
! 0 � � �

a
! 0

a
! 0

b
! 1:

Reading this path from the right and letting n tends to in�nity gives the element 0.

Starting in 0 with anb also leads to the same element 0. Finally starting in 1 with

an gives (a!; 1!). Obviously, if two states q and q0 belong to two di�erent minimal

cycles then the sets Min(Lq) and Min(Lq0) will never lead to a same element in

Min( eK) because the two cycles have no state in common.
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4. Defining the odometer

In [19], if a sequence �0�1�2 : : : of digits belonging to R, i.e., satisfying the

greedy condition (1), is such that there exists M such that for all ` �M

[�0 � � ��`] :=

`X
i=0

�iUi < U`+1 � 1

then the odometer maps �0�1�2 : : : onto �
0
0 � � ��

0
k
�k+1�k+2 : : : 2 R where �00 � � ��

0
k

is the representation of [�0 � � ��k]+1 computed through the greedy algorithm (and

it is shown that the result is independent of the choice of the index k � M).

Obviously, the representations of [�0 � � ��k] and [�0 � � ��k]+1 have the same length.

Otherwise, in�nitely often the situation [�0 � � ��`] = U`+1 � 1 occurs and then the

odometer is de�ned to map �0�1�2 : : : onto 0!.

Here we want to do the same in the context of abstract numeration systems and

de�ne a function �L : eK ! eK, or simply � if L is clearly understood, having the

adding behavior awaited for an odometer. First we de�ne � on eKnMax( eK). Assume

that for (x; y) = (x0x1 : : : ; y0y1 : : :) 2 eK there exists i � 0 such that (x; y) 62maxi.

For each state q ofML, we de�ne the function

Succq : Lq ! Lq

mapping the k-th word in the genealogically ordered language Lq to the (k+1)-th

one in the same language (if Lq is �nite, we decide that Succq maps the largest

word in Lq onto the smallest one). Since (x; y) 62 maxi, it is clear that xi � � �x0
and Succyi+1

(xi � � �x0) have the same length. Let us denote this latter word be-

longing to Lyi+1
by x0

i
� � �x00. We set y0

i
= Æ(yi+1; x

0
i
) and y0

j
= Æ(y0

j+1; x
0
j
) for

j = i � 1; : : : ; 0. In other words, y0
i
; : : : ; y00 are the states reached in ML when

reading x0
i
� � �x00 from yi+1. In particular, observe that y00 belongs to F . Hence

(x00 � � �x
0
i
xi+1 : : : ; y

0
0 � � � y

0
i
yi+1 : : :) belong to eK. The function � is de�ned by

�(x0 � � �xi xi+1 : : : ; y0 � � � yi yi+1 : : :) = (x00 � � �x
0
i xi+1 : : : ; y

0
0 � � � y

0
i yi+1 : : :):

We have to show that � is well-de�ned. Assume that there exist i < j such that

(x; y) 62 maxi and (x; y) 62 maxj . (Notice that in view of Corollary 6, if (x; y) 62

maxi then for all k � i, (x; y) 62 maxk.) Then the previous construction does

not depend on the choice of the index. Indeed, notice that by de�nition of eK,
Æ(yj+1; xj � � �xi+1) = yi+1 and as a consequence of the genealogical ordering,

Succyj+1
(xj � � �xi+1xi � � �x0) = xj � � �xi+1 Succyi+1

(xi � � �x0):

Therefore, as a consequence of Remark 3, the corresponding sequences of states are

the same: if y00
j
� � � y000 are the states reached inML when reading Succyj+1

(xj � � �x0)

from yj+1, we have

y00
j
� � � y00

i+1y
00
i
� � � y000 = yj � � � yi+1y

0
i
� � � y00:

Thus, the value of � does not depend on the index i such that (x; y) 62maxi.

Example 22. We still consider the language and the automaton given in Example

8. For instance, (x; y) = (bbaccb(a)!; 210201(0)!) belongs to eK. The word b belongs
to Max(L1) so (x; y) 2max1 but bb belongs to L0 nMax(L0) so (x; y) 62max2. It

is easy to see that the next word accepted from 0 is cc and the path is 0
c
! 2

c
! 1,

thus

�(bbjaccb(a)! ; 21j0201(0)!) = (ccjaccb(a)!; 12j0201(0)!):

If we had considered the word ccabb accepted from state 1 (because (x; y) 62max5),

the next word in L1 is ccacc and this would have lead to the same element in eK:
�(bbaccjb(a)! ; 21020j1(0)!) = (ccaccjb(a)!; 12020j1(0)!):
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In the next section, we will see that in general, the continuity of the odometer

cannot be ensured on Max( eK) whatever is the value taken by � for the points

in this set (see Example 29). Therefore, we decide that for all (x; y) 2 Max( eK),
�(x; y) = 0, where 0 is the canonical element of Min( eK) given in De�nition 13.

Remark 23. We can as in [19] or [40] de�ne a partial ordering on eK, called antipodal

order, in the following way. We have (x; y) � (x0; y0) if (x; y) = (x0; y0) or there

exists some index k such that xk < x0
k
and for all j > k, (xj ; yj) = (x0

j
; y0

j
).

The elements in Max( eK) are therefore the maximal elements in ( eK;�). For any

(x; y) 62 Max( eK), then its image under � is the smallest (with respect to �) of all

the elements in eK which are larger than (x; y). Hence the map � is a successor

function which can be considered as an adic transformation following [40].

5. Properties of the odometers

Proposition 24. The application � is surjective onto eK nMin( eK).
Proof. The proof is immediate. Let (x; y) = (x0x1 : : : ; y0y1 : : :) be such that (x; y)

is not in mini for some i. Therefore, there exists a word x0 = x0
i
� � �x00 of length

i+ 1 such that Succyi+1
(x0

i
� � �x00) = xi � � �x0. As usual, if y

0 = y0
i
� � � y00 is the path

followed inML from yi+1 when reading x0 then

�(ex0xi+1xi+2 : : : ; ey0yi+1yi+2 : : :) = (x; y):

�

Remark 25. A similar result holds in the framework of positional number systems:

the odometer is proved to be surjective if and only if 0! admits an antecedent (see

[19]).

Proposition 26. The application � is injective on eK nMax( eK).
Proof. Let (x; y) = (x0x1 : : : ; y0y1 : : :) and (x0; y0) = (x00x

0
1 : : : ; y

0
0y
0
1 : : :) be in eK n

Max( eK) and such that �(x; y) = �(x0; y0). Let i and i0 be such that xi � � �x0 62

Max(Lyi+1
) and x0

i
� � �x00 62Max(Ly0

i+1
). Pose I = supfi; i0g. Thanks to Lemma 5,

(x; y) and (x0; y0) do not belong to maxI so the application of � will at most a�ect

their pre�x of length I + 1. Since �(x; y) = �(x0; y0), we have xj = x0
j
and yj = y0

j

for all j > I . Therefore, xI � � �x0 and x0
I
� � �x00 belongs to LyI+1

= Ly0
I+1

and have

the same successor. So these two words are the same. The conclusion that yI � � � y0
and y0

I
� � � y00 are the same comes from Remark 3. �

Corollary 27. The map � is one-to-one from eK nMax( eK) onto eK nMin( eK).
Proof. It is a direct consequence of the fact that �( eK nMax( eK)) � eK nMin( eK).
Indeed the restriction of � on eK nMax( eK) is surjective onto eK nMin( eK) since the
image of Max( eK) equals f0g �Min( eK). �

The topology on (A�Q)! is as usual induced by the distance d de�ned by

d((x; y); (x0; y0)) = 2�k where k = inffi j (xi; yi) 6= (x0i; y
0
i)g:

Proposition 28. The application � is continuous on eK nMax( eK).
Proof. Let (u; v) 2 eK nMax( eK) and � > 0. We show that there exists � > 0 such

that if d((u; v); (x; y)) < � then d(�(u; v); �(x; y)) < �. Let j be the smallest index

such that (u; v) 62 maxj . If there exists i > j such that (u; v) and (x; y) have the
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same pre�x of length i + 1 then �(u; v) and �(x; y) also have the same pre�x of

length i+ 1. Clearly, one can take

� = 2� supf1�log2 �;j+1g:

�

The following example shows that � is generally not continuous on the points ofeK nMax( eK).
Example 29. Consider the regular languageL accepted by the automaton depicted

in Figure 3 (where the sink is not represented). For instance, (u; v) = (d! ; (12)!)

c

d

d1 234 0
c

b a a

b,cd

Figure 3. The minimal automaton of a language L.

belongs to Max( eK). The points
((dd)nb(a)!; (12)n1(0)!) and ((dd)nc(a)! ; (12)n1(0)!)

can be chosen arbitrarily close of (u; v) for n large enough. Whatever is the value

of �(u; v), the application � is not continuous at (u; v). Indeed,

�((dd)nb(a)!; (12)n1(0)!) = ((aa)nc(a)!; (11)n1(0)!)

but

�((dd)nc(a)! ; (12)n1(0)!) = ((bb)nd(a)! ; (33)n3(0)!):

So clearly, if a point (x; y) is close from an element in Max( eK) then its image

�(x; y) is close from an element in Min( eK) but nothing more can be said.

Remark 30. In the case of positional number systems, such a phenomenon can-

not occur: the odometer is always continuous on the points which correspond to

Max( eK).
Proposition 31. The set eK is a compact subset of (A�Q)!. If the odometer � is

continuous, then the dynamical system ( eK; �) is minimal, that is, every non-empty

closed subset of eK invariant under the action of � is equal to eK.
Proof. We follow here the proof of [19] adapted to our situation. The compactness

of eK is immediate as a closed subset of (A�Q)!.

We assume that � is continuous. Let us prove that the closure of the orbit

f�n(x; y) j n 2 Ng of any point (x; y) 2 eK is equal to eK.
Let us �rst observe that the orbit f�n(0) j n 2 Ng of 0 is dense in eK. Indeed,

let (x; y) 2 eK. Let (wn)n2N be a sequence of words in L such that x is the limit

of the sequence (fwn)n2N. Let ln denote the n-th word in the ordered language L.

The point �n(0) is by de�nition equal to

(eln(a0)! ;]p(ln)(q0)!);
according to notation of Proposition 7. Hence (x; y) is a limit of elements of f�n(0) j

n 2 Ng, and eK, which is a closed set, is the closure of f�n(0) j n 2 Ng.

Now if (x; y) 2 Max( eK), then �(x; y) = 0 and 0 belongs to the orbit (x; y),

which implies the desired result.
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Let us suppose that x 62Max( eK). Let
D : eK nMax( eK)! N : x 7! supfk j (x; y) 2maxkg:

Let us assume that D takes bounded values on the orbit of (x; y). Let C such

that D(�n(x; y)) < C, for every n. In particular, (x; y) does not have the property

maxC . By de�nition of the odometer, after a suitable number of iterations of � ,

say n, then �n(x; y) is easily seen to belong to maxC . Hence D does not take

bounded values on the orbit of (x; y), which implies that there exists an increasing

sequence of integers (nk)k2N such that �
nk (x; y) 2maxk. By compactness of eK, one

can extract from (nk)k2N an increasing sequence (mk)k2N such that the sequence

(�mk (x; y)) converges; its limit belongs to Max( eK), according to Lemma 5. By

continuity of � , (�mk+1(x; y)) converges toward 0, which implies that the closure

of the orbit of (x; y) contains 0 and thus equals eK. �

6. Equivalence with positional systems

Let (Un)n2N be a strictly increasing sequence of integers such that U0 = 1. Such

a sequence is called a positional number system. We assume furthermore that the set

L = 0� rep
U
(N) of all the greedy representations of the integers is a regular language

over a �nite alphabet AU (from now on repU (n) denotes the U -representation of

n computed by the greedy algorithm with the most signi�cant digit on the left).

The �niteness of AU implies that the ratio Un+1=Un is bounded. In particular,

for L = 0� repU (N) (or equivalently for repU (N)) to be regular, it is shown in [36]

that the sequence (Un)n2N must satisfy a linear recurrence relation with constant

coeÆcients. In [21], a suÆcient condition is given in terms of the polynomials of the

recurrence that (Un)n2N satis�es. (The reader can also see the special case treated

in [24].) As an example, the set rep
U
(N) is regular whenever the sequence (Un)n2N

satis�es a linear recurrence relation whose characteristic polynomial is the minimal

polynomial of a Pisot number [4].

In this small section, we study the link between the odometer �L built over the

language L and the odometer �U presented in [19]. Notice that we allow leading

zeroes in the greedy representations to obtain a language satisfying hypothesis (2).

Remark 32. Notice that, in this particular setting, as a consequence of the greedy

algorithm, if uv belongs to L then v belongs also to L.

Proposition 33. Let (Un)n2N be a strictly increasing sequence of integers such

that U0 = 1, �U be the odometer associated to this sequence, and let us assume that

the language L = 0� rep
U
(N) associated to the numeration system built upon the

sequence (Un)n2N is regular. Let p1 : eK ! eL be the projection mapping (x; y) onto

x. Then the following relation holds on eK:
p1 Æ �L = �U Æ p1:

Proof. Let us �rst observe that the set on which �U is de�ned and acts, which is the

set of right in�nite words satisfying the greedy property (1), is exactly eL, following
Remark 32.

Let (x; y) = (x0x1 : : : ; y0y1 : : :) be an element in eK nMax( eK). Thus there exists
i such that (x; y) 62maxi.

Notice that if u belongs to Lq, since ML is accessible, then there exists v such

that vu belongs to L. So thanks to Remark 32, u also belongs to L.

Therefore xi � � �x0 belongs to both Lyi+1
and L. Since xi � � �x0 does not belong to

Max(Lyi+1
), then it does not belong toMax(L) which means that xiUi+ � � �+x0U0

is strictly less than Ui+1 � 1. We set x0
i
� � �x00 = Succyi+1

(xi � � �x0), so with our
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notation

�L(x0 � � �xi xi+1 : : : ; y) = (x00 � � �x
0
i xi+1 : : : ; y

0)

for some y0 2 Q!. We have to show that the successor of the word xi � � �x0 in the

genealogically ordered language L is x0
i
� � �x00 which means therefore that

xiUi + � � �+ x0U0 + 1 = x0
i
Ui + � � �+ x00U0

and thus �U (x0 � � �xi xi+1 : : :) = (x00 � � �x
0
i
xi+1 : : :). To the contrary, assume that

there exists zi � � � z0 2 L such that xi � � �x0 < zi � � � z0 < x0
i
� � �x00. Let v be such

that Æ(q0; v) = yi+1. The words vxi � � �x0 and vx0
i
� � �x00 are accepted from q0

and satisfy therefore the greedy condition (1). Since zi � � � z0 < x0
i
� � �x00, vzi � � � z0

satis�es the greedy condition and so it belongs to L. Since ML is deterministic,

zi � � � z0 is also accepted from yi+1. Therefore x0
i
� � �x00 6= Succyi+1

(xi � � �x0) which

is a contradiction.

Consequently if p1 is the projection mapping (x; y) onto x then we have shown

that on eK nMax( eK), the following holds

(5) p1 Æ �L = �U Æ p1:

Observe that here, 0 is (0!; q!0 ) because " is the representation of 0 and belongs to

L. If (x; y) belongs to Max( eK) then �L(x; y) = 0 and it is clear that
Pi

`=0 x` U` =

Ui+1 � 1 for an in�nite number of indices i. Therefore from [19], �U (x) = 0! and

the relation (5) holds on the whole set eK. �

Remark 34. A characterization of the continuity of the odometer for positional

number system is given in [16], in terms of the right subsequentiality of the successor

function on 0�L. We will see in Proposition 45 that we can have �L continuous

whereas �U is not continuous.

7. Substitution numeration systems

7.1. De�nition. Let � = fa1; � � � ; adg be an alphabet (here, � does not need

to be totally ordered). Let � : � ! �+ be a substitution, i.e., a morphism of

the free monoid �� such that �(a1) 2 a1�
+. To this substitution, we associate

a deterministic automaton M� = (Q; a1; A; Æ; F ) in the classical way. The set of

states is Q = � [ fsg where a sink state s 62 Q is possibly added to Q in order to

makeM� complete when � is not a uniform substitution (a substitution is said to

be uniform if the images of all the letters have the same length). The alphabet of

the automaton is

A = f0; : : : ; sup
a2�

j�(a)j � 1g:

There is an edge of label i 2 A between two states a and b, that is, Æ(a; i) = b if

and only if the (i+1)-th letter in �(a) is b. The initial state is a1 and all the states

are �nal, i.e., F = �.

In the literature [8, 9, 10, 11, 28, 30] the notion of pre�x automaton (respectively

pre�x-suÆx automaton) can also be found. In this latter case, the label i between

a and b is replaced by the pre�x of length i of �(a) (if i = 0 then the pre�x is ")

(respectively, the pre�x of length i of �(a) and the suÆx of length j�(a)j � i � 1

of �(a)). It is well-known (see for instance [10, 11]) that each integer n � 1 has a

unique decomposition of the form

(6) n =

`X
i=1

j�i�1(mi)j

where m` � � �m1 is the label of a path read in the pre�x automaton from the initial

state a1 with m` 6= ".
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Let us recall that d denotes the cardinal of the alphabet �. The incidence

matrix of the substitution � is de�ned as the d � d matrix whose entry of index

(a; b) counts the number of occurrences of the letter a in �(b). The incidence matrix

of � coincides with the transpose of the adjacency matrix of the automatonM�.

Since the alphabet A = f0; 1; : : : ; sup
a2� j�(a)j � 1g is totally ordered by the

usual ordering on N, we can order the words of the language L � A� accepted by

M� using the genealogical ordering. This leads to an abstract numeration system

S = (L;A;<) built upon L.

7.2. Equivalence between substitution and abstract numeration systems.

In this section, we give a new interpretation of the numeration systems built upon

a substitution according to (6).

LetM0
� be the automaton built upon M� but having an extra state a0 which

is the initial state of this new automaton. For k = 2; : : : ; j�(a1)j, we add an edge

labeled by k � 1 from a0 to the k-th letter of �(a1). Observe that if L is the

language accepted byM� then Ln0A� is the language accepted byM0
�. This kind

of construction is also classical and was for instance used in [33]. We denote from

now on by L0 the language accepted byM0
� .

Example 35. Consider the substitution on � = fa1; a2g de�ned by �(a1) = a1a2a1
and �(a2) = a1. We have the following automataM� andM0

�
sketched in Figure

4. Here A = f0; 1; 2g and the sink has not been represented.

Mσ

2

1

0,2

0

1
a

0 1
a

2
a

Figure 4. The automataM� andM0
� .

Naturally, we can also order the words of the language L0 � A� accepted by

M0
� using the genealogical ordering. This leads to an abstract numeration system

S0 = (L0; A;<) built upon L0. The representation of the integer n is de�ned as the

(n+1)-th word w of L0 and we write valS0(w) = n (let us recall that the �rst word

of L0 is the empty word).

The following proposition allows us to make the connection with the substitutive

numeration system as expressed in (6).

Proposition 36. The (n+1)th word w1 � � �w` of the genealogically ordered language

L0 generates the pre�x u0 � � �un�1 of length n of �!(a1) as follows: u0 � � �un�1 is

equal to the concatenation of �`�i[Æ(a1; w1 � � �wi�10) � � � Æ(a1; w1 � � �wi�1(wi � 1))]

in decreasing order of indices 1 � i � `, where w1 � � �wi�1 is understood as " if

i = 1, as well as Æ(a1; w1 � � �wi0) � � � Æ(a1; w1 � � �wi(wi � 1)) if wi = 0. In other

words, u0 � � �un�1 is equal to

�`�1[Æ(a1; 0) � � � Æ(a1; (w1�1))] � � ��
0[Æ(a1; w1 � � �w`�10) � � � Æ(a1; w1 � � �wl�1(w`�1))]

and

n =

`�1X
i=0

���i[Æ(a1; w1 � � �wi�10) � � � Æ(a1; w1 � � �wi�1(wi � 1))]
�� :
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Proof. The proof is based on the fact that the pre�x of �(q) of length t � j�(q)j

read from the state q 2 � is equal to Æ(q; 0) � � � Æ(q; t� 1).

Let us recall that for a state q, uq(n) denotes the cardinal of the set of the words

of length n accepted from q. If w = w1 � � �w` 2 L0 (this means in particular that

w1 > 0), then with respect to the automatonM0
�
the following formula holds (see

[22, 23])

(7)

valS0(w) =

`�1X
i=0

ua0(i) +
X
b<w1

uÆ(a0;b)(`� 1)

+
X
b<w2

uÆ(a0;w1b)(`� 2) + � � �+
X
b<w`

uÆ(a0;w1���w`�1b)(0):

The interested reader can �nd a combinatorial interpretation of this formula in [20].

We have two immediate observations
`�1X
i=0

ua0(i) = ua1(`� 1) and 8q 2 �; 8n 2 N;uq (n) = j�
n(q)j:

We are now able to prove the equivalence of the two formulas (6) and (7). First

notice that Æ(a0; 0) is the sink s ofM
0
� . Therefore uÆ(a0;0)(n) = 0 for all n. If b 6= 0

then Æ(a0; b) = Æ(a1; b). The �rst two terms in (7) can be written as

j�`�1(a1)j+
X

0<b<w1

���`�1[Æ(a1; b)]�� = ���`�1[Æ(a1; 0) � � � Æ(a1; w1 � 1)]
�� :

Notice that for the latter equality, we have used the fact that Æ(a1; 0) = a1 and

that � is a morphism. Consequently, (7) can be written as

valS0(w) =

`X
i=1

���`�i[Æ(a1; w1 � � �wi�10) � � � Æ(a1; w1 � � �wi�1(wi � 1))]
�� :

This gives another interpretation of (6).

�

7.3. First properties of the odometer. Since the in�nite language L accepted

by M� satis�es property (2), then one can consider the odometer eK built upon

(L;A;<). Let us observe that L0 does not satisfy (2), but that that eL and eL0 do
coincide. The set eK is a subshift of �nite type of (A�Q)! since every state (except

the sink) inM� is a �nal state. Let us observe

Proposition 37. The set eK corresponds to the set of in�nite paths (x; y) 2 (A �

�)! in the automaton fM�, i.e., 8i � 0, yi+1 is the (xi + 1)-th letter of �(yi).

Furthermore,

Max( eK) = f(x; y) 2 eKj 8i � 0; xi = j�(yi)j � 1g;

Min( eK) = f(x; y) 2 eKj 8i � 0; xi = 0g:

Proof. There is an edge in the automaton fM� of label i between two states u and

v if and only if the (i + 1)-th letter in �(v) is u; furthermore, all the states are

initial and �nal. Hence eL is equal to the set of labels of in�nite paths in fM� , which

implies the desired description of eK. The characterization of Max( eK) and Min( eK)
is immediate.

�

Let us recall that the odometer � is one-to-one from eKnMax( eK) onto eKnMin( eK)
following Corollary 27.
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Remark 38. The automatonM� associated to a substitution � is not necessarily

minimal. Indeed, if you consider the Thue-Morse substitution de�ned by �(a1) =

a1a2 and �(a2) = a2a1 then it is easy to see that M� accept f0; 1g� and is not

minimal. To obtain unambiguous constructions, we have always considered the

minimal automaton of a language but clearly, we could de�ne a set eK and an

odometer � depending on the choice of a �nite deterministic automaton which is

not necessarily minimal. We just need a loop in the initial state a1 labeled by the

smallest letter 0 of the alphabet (it is always the case for the automaton associated

to a substitution � which satis�es �(a1) 2 a1A
+).

We can say nothing in general concerning the continuity of � as illustrated in

Proposition 45.

7.4. The Pisot case. Nevertheless, there are some cases for which the automaton

M� can be proved to be minimal. A substitution is said of Pisot type if the

eigenvalues of its incidence matrix satisfy the following: there exists a dominant

eigenvalue � such that for every other eigenvalue �, one gets 0 < j�j < 1 < j�j. A

substitution of Pisot type is primitive and the characteristic polynomial �� of its

incidence matrix is irreducible over Q [9]. Let us recall that �� is also the minimal

polynomial of the adjacency matrix ofM�.

Proposition 39. Let � be a Pisot substitution. The automatonM� is minimal.

Proof. Let � be a substitution of Pisot type. The automatonM� is accessible since

� is primitive, that is, all its states can be reached from its initial state a1. Hence

the minimal polynomial �� of its adjacency matrix is dividable by the minimal

polynomial of the minimal automaton recognizing the language M�. Since �� is

irreducible, this implies that both polynomials do coincide, and thus that M� ,

which is deterministic, is the minimal automaton recognizing the languageM�. �

In the particular case of a Pisot substitution, we are now able to give a dynamical

interpretation of ( eK; �). Let S denote the shift map on �Z: S((wi)i2Z) = (wi+1)i2Z.

A word u 2 �Z such that there exists a positive integer k with Sk(u) = u is called

a periodic point under the action of �. Let us recall that the (two-sided) symbolic

dynamical system generated by a primitive substitution � is the pair (X� ; S), where

X� is the set of two-sided sequences in �
Zwith the same set of factors of any periodic

point u of �; this de�nition does not depend on the choice of u by primitivity of �.

We use here the notation and results of [8, 9] adapted to our framework. Fol-

lowing [26], every two-sided sequence v in X� has a unique decomposition

v = Sk(�(w)); with w 2 X� and 0 � k < j�(w0)j

(w0 denotes here the 0-th coordinate of w).

Let �
� : X� ! X� : v 7! w;

where v = Sk(�(w)); with 0 � k < j�(w0)j:

The map � is called the desubstitution map.

Let �
 : X� ! (A��) : v 7! (k + 1; w0);

where v = Sk(�(w)); with w 2 X� and 0 � k < j�(w0)j:

In other words, if (v) = (k; q), then v0 is the (k + 1)-th letter of �(q). Hence,

for every v 2 X� , the sequence ( Æ �
i(v))i2N is easily seen to belong to eK. Let us

now de�ne

� : X� ! eK : v 7! ( Æ �i(v))i2N:

The following theorem is a direct consequence of [8, 9].
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Theorem 40. [8, 9] Let � be a Pisot substitution. The map � is continuous and

onto eK; it is one-to-one except on the orbit of periodic points of �. Furthermore,

� Æ S = � Æ � and � Æ � = S
eK
Æ �;

where S
eK
denotes the shift map acting on elements of (A��)Z.

Proof. We know from [8] that (X� ; S) is measure-theoretically isomorphic with the

subshift of �nite type D de�ned as the set of labels of in�nite paths D in the

pre�x-suÆx automaton. Let us recall that there is an edge from a to b of label

(p; a; s) in the pre�x-suÆx automaton if �(b) = a, and all its states (which are the

letters of �) are both initial and �nal. Let us prove that eK and D are in one-to-one

correspondence. This comes from the fact that the following map is one-to-one:eK ! D; (x; y) 7! (Æ(yi+1; 0) � � � Æ(yi+1; xi � 1); yi; si)i2N;

where si is the suÆx of size j�(yi+1)j � xi � 1 of �(yi+1). Now from Remark 23,

the map � coincides with the adic transformation acting on D. It just remains to

apply the results of [8, 9].

�

Remark 41. Two dynamical systems can be built over eK, i.e., ( eK; �) and ( eK; S
eK
).

Theorem 40 gives us two combinatorial interpretations for these systems: the action

of the desubstitution map � (the \inverse" of �) on X� corresponds to the action

of the shift S
eK
on eK, whereas the action of the shift S on X� corresponds to action

of the odometer � on eK.
Remark 42. Furthermore, there exists a unique shift invariant measure on the

dynamical system (X� ; S) since � is primitive ((X� ; S) is said uniquely ergodic);

for more details see for instance [29]. This measure can be naturally carried on

( eK; �) via the map � (which is one-to-one except on a countable number of points).

Theorem 40 means that ( eK; �) endowed with this measure is measure-theoretically

isomorphic with (X� ; S). One interest of this approach is that it provides us some

insight on a metrical study of ( eK; �), following [6].

Remark 43. It is possible to give a combinatorial interpretation of Min( eK) and
Max( eK) in this framework. Following [8], Min( eK) and Max( eK) correspond re-

spectively to the periodic points (under the action of �) of X� (we denote this

set Per(X�)) and to the preimages S�1(Per(X�)) under the shift S of those peri-

odic points. Both sets do not have necessarily the same cardinal as illustrated for

instance in Section 8, Proposition 45.

8. The case of sofic beta-numerations

This section gathers results of Section 6 and 7 within the framework of �-

numeration. Let U = (Un)n2N be a positional numeration system such that the

ratio Un+1=Un is bounded, as de�ned in Section 6. Assume now that rep
U
(N)0� is

included in repU (N); the positional number system U is said to be a Bertrand nu-

meration system. Bertrand numeration systems are closely related to �-expansions

as recalled below.

Let � > 1 be a positive real number. The R�enyi �-expansion of a real number x 2

[0; 1] is de�ned as the sequence (xi)i�1 with values in f0; 1; : : : ; d�e � 1g produced

by the �-transformation T� : [0; 1]! [0; 1] : x 7! �x (mod 1) as follows

8i � 1; xi = b�T
i�1
�

(x)c; and thus x =
X
i�1

xi�
�i:
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Let d�(1) = (ti)i�1 denote the �-expansion of 1. Let d�
�
(1) = d�(1), if d�(1) is

in�nite, and d�
�
(1) = (t1 : : : tm�1(tm�1))

!, if d�(1) = (t1 : : : tm�1tm) is �nite (with

tm 6= 0). The set D� of �-expansions of numbers in [0; 1) is exactly the set of

sequences (ci)i�1 that satisfy:

8k 2 Z; (ci)i�k <lex d��(1):

For more details, see for instance [25]. We denote by F (D�) the set of �nite factors

of the sequences in D� .

Numbers � such that d�(1) is ultimately periodic are called �-numbers and those

such that d�(1) is �nite are called simple �-numbers. If � is a �-number (simple

or not), the minimal automaton M� recognizing the set of factors of F (D�) can

easily be constructed (representations of this classical automatonM� can be found

in [18] or [23]). Furthermore, let us recall that when � is assumed to be Pisot, then

� is either a �-number or a simple �-number, and (X� ; S) is so�c.

Bertrand numeration systems are characterized by the following theorem:

Theorem 44. [3] Let U be a positional number system over a �nite alphabet. Then

U is a Bertrand numeration system if and only if there exists a real number � > 1

such that L = 0� rep
U
(N) = F (D�). Furthermore, L is regular if and only if � is a

�-number.

There is a natural way to associate a substitution �� with the �-numeration

when � is a �-number (simple or not). These substitutions will be called in all

what follows �-substitutions. The automaton M��
associated with �� , as de-

�ned in Section 7, coincides with the minimal automaton M� which recognizes

F (D�). For more details, see [13, 39]. Let us note that d�(1) cannot be purely

periodic, hence one has either d�
�
(1) = (t1 � � � tn�1(tn � 1))! with tn 6= 0 or

d�
�
(1) = t1 � � � tn(tn+1 � � � tn+p)

!, with tn 6= tn+p and n � 1.

� Assume d�(1) = (t1 � � � tn�1tn) with tn 6= 0 and thus d�
�
(1) = (t1 � � � tn�1(tn�

1))!: Consider the substitution �� de�ned over the alphabet f1; 2; : : : ; ng

by:

�� :

8>>>>><>>>>>:

1 7! 1t12

2 7! 1t23
...

...

n� 1 7! 1tn�1n

n 7! 1tn :

� Assume d�(1) = d�
�
(1) = t1 � � � tn(tn+1 � � � tn+p)

!, with tn+1 � � � tn+p 6= 0p

and tn 6= tn+p. Furthermore n � 1. Consider the substitution �� de�ned

over the alphabet f1; 2; : : : ; n+ pg by:

�� :

8>>>>><>>>>>:

1 7! 1t12

2 7! 1t23
...

...

n+ p� 1 7! 1tn+p�1(n+ p)

n+ p 7! 1tn+p(n+ 1):

>From now on, we assume that the positional number system U is a Bertrand

numeration associated with � Pisot number; thus L = 0� repU (N) = F (D�) is an

in�nite regular language which satis�es (2). We still denote �L the odometer acting

on eK. When � is a simple �-number, then the substitutions �� are of Pisot type

since the characteristic polynomial of their incidence matrices coincides with the

minimal polynomial of �. Hence, the results of Section 7.4 do apply.
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We end now this section by proving that the odometer �L is continuous when � is

a Pisot number, contrarily to the positional number systems case where continuity

holds if and only if � is a simple �-number (see [19] and [16]).

Proposition 45. Let � be a Pisot number and let L = F (D�). Then the odometer

�L is continuous on eK.
Proof. Let (x; y) 2 Max( eK). Let us prove that for any sequence (x(n); y(n))n2N

with values in eK which converges toward (x; y), then �L(x
(n); y(n))n2N converges

toward 0 = (0!; q!0 ). Let (x(n); y(n))n2N be such a sequence. We assume further-

more that for n large enough, then (x(n); y(n)) 62 Max( eK). There exists a state q

for which there exist in�nitely many integers k such that xkxk�1 � � �x0 2Max(Lq).

Let N be �xed. Let k � N such that xkxk�1 � � �x0 2 Max(Lq) with q = yk+1.

For n large enough, (x(n); y(n)) coincides on its �rst N values with (x; y) and

(x(n); y(n)) 62 Max( eK). In particular, x
(n)

k
x
(n)

k�1 � � �x
(n)
0 2 Max(Lq), with q = y

(n)

k+1.

Since (x(n); y(n)) 62 Max( eK), there exists a non-negative integer l > k such that

x
(n)

l
x
(n)

l�1 � � �x
(n)
0 62 Max(L

y
(n)

l+1

): Let l0 denote the smallest of these integers. The

successor in L
y
(n)

l0+1

of x
(n)

l0
x
(n)

l0�1
� � �x

(n)
0 is (x

(n)

l0
+ 1)0l0 . Furthermore, any edge la-

beled by 0 inM� leads to the initial state q0 (recall that the interested reader can

�nd a representation of M� in [18, 23]). Hence �L(x
(n); y(n)) admits as a pre�x

(0N ; yN0 ) for n large enough, which ends the proof. �

Remark 46. The sets eK and eL are not in one-to-one correspondence. Indeed

the word 0! admits several representations in eK, hence we cannot deduce directly
continuity results from Proposition 33. Let us observe nevertheless that there is at

most a countable number of antecedents to elements of eL according to the projection
p1 : eK ! eL, (x; y) 7! x, in the particular situation described in this section.

9. Real representation of the odometer

The aim of this section is to outline the �rst steps of a study of a geometric

representation of the dynamical system ( eK; �). A geometric representation of the

dynamical system ( eK; �) is a continuous map ' from eK onto a geometric dynamical

system (Y; T ) such that 'Æ � = T Æ', and on which there exists a partition indexed

by the alphabet A � Q such that every word (x; y) is the itinerary of a point of

(Y; T ) with respect to the partition.

Let L be an arbitrary regular language satisfying (2). A �rst representation

which might be possible consists in extending the work of [22, 23, 34], where a

real value is attributed to limits of �nite words for abstract numeration systems

built on an exponential regular language satisfying the following conditions: there

exist � > 1 and P 2 R[X ] such that for all states q 2 Q, there exists some non-

negative real numbers aq such that limn!1
uq(n)

P (n)�n
= aq . (We recall that uq(n)

represents the number of words of length n in Lq.) We assume now that eL also

satis�es the previous conditions of [22, 23]. Clearly, if L is exponential then eL is also

exponential because #(L \ �n) = #(eL \ �n). The main assumptions for building

a representation map rely therefore on the asymptotic behavior of the sequences
uq0 (n)

P (n)�n
for all the states q0 of the minimal automaton of eL. Let v(n) denotes the

number of words of length at most n in L (or in eL), and val
eL
(w) the numerical value

of w 2 eL, i.e., if val~L(w) = n, then w is the (n + 1)-th word of eL. Let (x; y) 2 eK.
Since x 2 eL, there exists a sequence (wn)n2N of words in eL which converges to x.
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The limit

lim
n!1

val
eL
(wn)

v(jwnj)

does not depend on the choice of the sequence (wn)n2N (see [22, Corollary 8]) and

is denoted by val1(x). We thus can de�ne a map r : eK ! R : (x; y) 7! val1(x). It

remains to explore the properties of such a representation map r.

We propose now a second possible geometric representation in the framework of

languages associated with substitutions. We continue here with the notation of Sec-

tion 7. A substitution is said unimodular if the determinant of its incidence matrix

equals�1. It is conjectured that for a Pisot unimodular substitution, the dynamical

system (X� ; S), and hence ( eK; �) according to Remark 42, is measure-theoretically

isomorphic to a rotation on the torus Td�1, where d denotes the cardinal of the

alphabet �. For more details, see for instance Chap. 7 of [28]. There are however

families of substitutions for which this result is known to hold true. One simple way

to exhibit this rotation is to give a geometrical representation of ( eK; �) as explained
in the next paragraph. We follow the formalism of [8, 9].

Let L be a language associated with the substitution � of Pisot type over the

alphabet � of cardinal d, as explained in Section 7. Let us recall that the character-

istic polynomial �� of the incidence matrix of � is also the minimal polynomial of

the adjacency matrix of the minimal automatonML recognizing L. Let �1; : : : ; �r
denote the r real eigenvalues of ��, and �r+1; : : : ; �r+s; �r+1,: : :,�r+s; denote its

2s complex roots (r + 2s = d). Let us assume �1 > 1, hence, j�ij < 1, for i � 2.

Let ~v(1) be a left eigenvector associated with the eigenvalue �1 with coeÆcients

in the �eld Q(�1 ). Let �k be an eigenvalue and let �k be the canonical morphism

from Q(�1 ) onto Q(�k ), extended to Q(�1 )
d. Let ~v(k) = �k(~v

(1)). We propose

as a geometric representation of the set eK in this framework the following map

' : eK ! Rr�1 � C s :
(x; y) 7!

0@X
i�0

(~v
(2)

Æ(yi+1;0)
+ � � �+ ~v

(2)

Æ(yi+1;xi�1)
)�i2; � � � ; (~v

(r+s)

Æ(yi+1;0)
+ � � �+ ~v

(r+s)

Æ(yi+1;xi�1)
)�i

r+s

1A :

This series is easily seen to converge. This map can be factorized as a map on the

torus. Indeed, let L denote the lattice(
dX

k=1

nk~v
(k) j nk 2 Z;

dX
k=1

nk = 0

)
:

Following [8, 9], the map

'L : eK ! (Rr�1 � C s )=L � Td�1; (x; y) 7! '(x; y) mod L

is well de�ned and continuous. Consider the toral translation

T : (Rr�1 � C s )=L ! (Rr�1 � C s )=L : z 7! z + ~v(1) mod L:

One checks that 'L Æ � = T Æ 'L, and that ' is a geometrical representation of

( eK; �), the partition being given by the sets 'f(x; y) j (x; y) 2 eK; y0 = qg; q 2 Q.

In particular, for some families of �-substitutions, this map is known to provide

a measure-theoretical isomorphism (this is the case in particular for numbers �

having the �niteness property (F) introduced in [17], which states that the set of

non-negative real numbers with �nite �-expansion coincides with the set of non-

negative elements of Z[1=�]). We deduce the following proposition from the results

of [17, 1], stated in the framework of �-substitutions.

Proposition 47. Assume that L = F (D�), where � > 1 is either
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� the positive root of the polynomial Xm � t1x
m�1 � � � � � tm, where ti 2 Z,

and t1 � t2 � � � � � tm > 0,

� the dominant root of the polynomial Xm� t1x
m�1�� � �� tm, where ti 2 N,

and t1 >
P

d

i=2 jtij > 0, and (t1; t2) 6= (2;�1),

� a cubic Pisot unit.

Then the map 'L is continuous and onto Tm�1 (m = 3 in the third case); it is one-

to-one except on a at most countable number of points; furthermore 'L is a geomet-

rical representation of ( eK; �), the partition being given by the sets 'Lf(x; y)j (x; y) 2eK; y0 = qg; q 2 Q.

Proof. The fact that 'L is one-to-one except on a at most countable number of

points comes from [17] for the �rst case, and from [1] for the last two points. It

remains to prove that the sets 'Lf(x; y)j (x; y) 2 eK; y0 = qg; q 2 Q are disjoint

up to sets of zero Lebesgue measure. This is a direct consequence of the fact

that �-substitutions satisfy the so-called strong coincidence condition, according to

[2]. �

10. Some special cases

In [19], the odometer is de�ned on a set R of sequences of digits. Here, we have

introduced an odometer on a set eK of pairs of in�nite words. In this section, we

show that in some particular situations, we can restrict ourselves to unidimensional

sequences. So we exhibit hypothesis where the extra information given by the

sequence of states is useless, or more precisely, the projection map p1 : eK ! eL
(x; y) 7! x is injective, which implies, following Proposition 10, that both sets eK
and eL are in one-to-one correspondence. The interest relies on the fact that the

odometer can be directly de�ned on eL.
De�nition 48. Let d � 1. A regular language L is said to be d-synchronizing if

there exists a function f : Ad ! Q such that for any word w 2 A� of length d

and any q 2 Q, Æ(q; w) is equal to f(w) (let us recall that Æ denotes the transition

function of the minimal automaton of L). In other words, for any element (x; y) =

(x0x1 : : : ; y0y1 : : :) in eK, for all i � 0 the state yi is completely determined by

xi � � �xi+d�1. A language is synchronizing if there exists a positive integer d such

that L is d-synchronizing. Otherwise stated, this means that y can be deduced

from x.

Example 49. Consider the language accepted by the automatonM� depicted in

Figure 4 of Example 35. Here, we represent in Figure 5 the automaton gM� . This

0

1
,2

a a
1 2

Figure 5. The automaton gM�.

language is 1-synchronizing. Indeed, assume that (x; y) is an element in eK. The

factors possibly appearing in x are 00, 01, 02, 10, 12, 20 and 22. Actually, 11

and 21 cannot occur in x because no in�nite path in the automaton depicted in

Figure 5 contains such a factor. Clearly, if xi 2 f0; 2g then yi = a1 and if xi = 1

then yi = a2.
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Example 50. Continuing Examples 35 and 49, the language accepted by M�

depicted in Figure 4 is 1-synchronizing and we have the function

f : 0 7! a1; 1 7! a2; 2 7! a1:

For this automatonM�, we have Æ(a1; 0) = Æ(a2; 0) = f(0) = a1, Æ(a2; 1) = f(1) =

a2, Æ(a2; 1) is the sink, Æ(a1; 2) = f(2) = a1 and Æ(a2; 2) is also the sink.
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