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ODOMETERS ON REGULAR LANGUAGES

VALERIE BERTHE AND MICHEL RIGO#

ABSTRACT. Odometers or “adding machines” are usually introduced in the
context of positional numeration systems built on a strictly increasing sequence
of integers. We generalize this notion to systems defined on an arbitrary infinite
regular language. In this latter situation, if (A, <) is a totally ordered alphabet,
then enumerating the words of a regular language L over A with respect to
the induced genealogical ordering gives a one-to-one correspondence between
N and L. In this general setting, the odometer is not defined on a set of
sequences of digits but on a set of pairs of sequences where the first (resp. the
second) component of the pair is an infinite word over A (resp. an infinite
sequence of states of the minimal automaton of L). We study some properties
of the odometer like continuity, injectivity, surjectivity, minimality,... We then
study some particular cases: we show the equivalence of this new function with
the classical odometer built upon a sequence of integers whenever the set of
greedy representations of all the integers is a regular language; we also consider
substitution numeration systems as well as the connection with S-numerations.

1. INTRODUCTION

To any infinite regular language L over a totally ordered alphabet (4, <), an
abstract numeration system S = (L, A, <) is associated in the following way [22].
Enumerating the words of L by increasing genealogical order gives a one-to-one
correspondence between N and L: the non-negative integer n being represented by
the (n+1)-th word of the ordered language L. In particular, these systems generalize
classical positional systems like the k-ary systems, the Fibonacci system or more
generally the numeration systems built on a sequence of integers satisfying a linear
recurrence relation whose characteristic polynomial is the minimal polynomial of a
Pisot number [4].

In this framework of abstract numeration systems, the properties of the so-
called S-recognizable sets of integers have been extensively studied (see for instance
[22, 31, 32]). Moreover, these abstract systems have been extended to allow not only
the representation of integers but also of real numbers [23]. In this latter situation,
a real number is represented by an infinite word which is the limit of a converging
sequence of words in L. Clearly, these systems lead to the generalization of various
concepts related to the representation of integers like the automatic sequences or
the summatory functions of additive functions [20, 33].

In this paper, we want to define and study the properties of odometers (also
called adding machines) in the framework of abstract numeration systems built on
an infinite regular language. In [19] odometers for positional numeration systems
defined on a strictly increasing sequence (Uy,)nen of integers such that Uy = 1 are
investigated. In this latter situation, the odometer function is defined on the set R
of right infinite words agayas ... satisfying a greedy property [14], i.e., for all £ > 0,
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(1) ZaiUi < Ug+1.
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2 V. BERTHE AND M. RIGO

(We will also consider the greedy property (1) for finite words in the following.)
The least significant digits are written first: the prefix ag - - - ay of a word in R has
value agUpy + -+ + aiUy. The odometer is thus defined as the infinite extension
of the successor function acting on the finite words of the form ag---ag. As an
example, let us consider a finite word: the usual decimal representation of one
hundred seventy-two is the word “172”; but here, we will write representations
backward and so this number is written “271” and adding one leads to the word
“371”. Moreover, the language of the finite words representing all the integers can
be embedded into R by concatenating 0“ to the right of a greedy representation
starting with the least significant digit first. So, one hundred seventy-two gives
the element 271(0)¥ € R. Adding one to an infinite word in R can produce a
carry propagating to the right. As an example, the application of the odometer to
9992(0)« gives 0003(0)%. In the case of the Fibonacci system where Uy = 1, U; = 2
and Upy2 = Upy1 + U, applying the odometer to 010101(0)¢ gives 0000001(0)%
(indeed, to be in R the greedy condition (1), i.e., the pattern “11” does not occur,
must be satisfied). For these reasons, we will consider mirror of representations all
along this paper.

There is an important literature devoted to the study of odometers. Let us briefly
quote [5] which continues the study of [19] from a combinatorial and topological
point of view, and [6] for a metrical approach. Odometers can also be defined
for two-sided dynamical systems as investigated in [15, 35], we refer to [37] for
the golden ratio case. See also [7] for an ergodic application of this notion in the
framework of unimodal maps and wild attractors. Lastly, let us mention [16] which
studies the sequential properties of the successor function for positional numeration
systems.

This paper is organized as follows. After recalling the basic notions required
in this paper, we define in Section 2 the set K on which the odometer acts, and
state a few preliminary properties. Special focus is given on its extremal elements
in Section 3, which allows us to define the odometer in Section 4. Its first proper-
ties (continuity, injectivity, surjectivity and minimality) are then stated in Section
5. We illustrate this study by making explicit the connection with a few well-
known situations where the odometer is perfectly described: we consider the case
of positional number systems in Section 6, the case of substitution numeration
systems (with special focus on Pisot substitutions) in Section 7, and the case of
B-numeration in Section 8. We consider the possibility of getting a real represen-
tation of the odometer in Section 9 and end this paper by considering some special
cases in Section 10.

2. PRELIMINARIES

Let A ={ap <a; <--- < ai} be a finite and totally ordered alphabet. In this
paper L C A* will always denote a regular language such that ajL C L. In other
words, L is infinite and has the following property

(2) weL&VYN>0, agw € L.

In some sense, property (2) can be related to the property of numeration systems
built on a sequence of integers (U, )nen such that if w = wg ---wy, is the greedy
representation of an integer wo Uy + - -+ + wy, U (remember that we have taken
the convention to write the least significant digit first) then w0", n € N, still
satisfies the greedy condition (1) and represents the same integer. Here, since we
will consider the mirror of words in L, we will be able to write an arbitrary number
of ag’s on the right of the mirror of any word in L and still obtain mirror of words
belonging to L. Property (2) will therefore ensure the embedding of the finite words
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of L representing the non-negative integers into some set of infinite sequences that
will be precised later (Definition 1 below).

The minimal automaton of L is denoted My, = (Q, qo, 4, , F) where @ is the set
of states, go is the initial state, F' C () is the set of final states and § : Q@ x A — @
is the transition function. We assume that ¢ is fotal or equivalently that My is
complete, i.e., § is defined for all pairs (q,a) € @ x A (notice that even with this
assumption, My, might contain a sink, i.e., a non-final state s such that for any
a € A, §(s,a) = s). As usual, § can be extended to @ x A*. As a consequence of
property (2), My, has a loop in go of label ag. For the properties of the minimal
automaton, see for instance [12].

For any state ¢ € ), we denote by L, the regular language accepted by M,
from state ¢,

Ly={we A" |§(q,w) € F}
and by u,(n) the number of words of length n in L,. In particular, L = L.

Since A is totally ordered, we can order the words of A* using the genealogical
ordering. Let u,v € A*. We say that v < v if |u| < |v| or if |u| = |v| and there exist
p,u’, v € A* a,b € A, a < b such that v = pau’ and v = pbv'. If M is a language
over A, we define Maxz(M) as the set of the greatest words of each length in M,
ie.,

Maz(M) ={ue M |Yve M,|u| =|v]|=>v < u}.
Observe that for all n > 0, #(Maxz(M) N A™) € {0,1}. In the same way, we can
also define the set Min(M) containing the smallest word of each length in M. Tt is
well-known that if M is regular then Maxz(M) and Min(M) are also regular [36].

If w=wp---wis a word over A then the reversal (or mirror) of w is wy - --wp
and is denoted w. If M is a language, then M is the language {@ | w € M}.
We also consider the non-deterministic finite automaton My, = (Q,F,A,g, {q0})
having the same set of states as My, F' as set of initial states, the transition relation
0 C Q@ x A xQ is defined by

(g,a,r) € s & o(r,a) = q.

So, since qq is the only final state then a word w is accepted by /\7L if and only if
w € L. Since M, is accessible, in M, for any state g there exists at least one path
from ¢ to go. Moreover, we also have a loop in ¢g of label ag. Let us already observe
that in our later developments, the set of final states of /\/;l/L will be irrelevant since
we mainly work with limits of words recognized by /\/;l/L

We denote by L the set of infinite words over A which are the limits of the
converging sequences of words belonging to L. Otherwise stated, z = zoz122 ...
belongs to L if there exists a sequence (wy,)nen of words in L such that for all £ > 0
there exist N; > 0 such that for all n > N;, w, and z have a common prefix of
length at least /. We use the topology induced by the infinite product topology
on AN. Notice that if all the sates in M, are final, then L is the set of labels of
infinite paths in //\712

Due to the non-deterministic behavior of //\712, the reading of a word in this
automaton can lead to more than one path. As an example, assume that in My,
we have three states p, ¢ and r such that §(p,a) = r and d(q,a) = r then in M
from state r when reading a both states p and ¢ could be reached and a non-
deterministic choice has to be made. Therefore, we will not only consider words
but also the extra information given by the sequence of reached states. This is the
reason of the introduction of the set K defined below.

Definition 1. We define the set K C (Ax Q) by (z,y) = (zoz12Z2 ..., YoU1Y2 - - )
belongs to K if and only if the following conditions hold
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(1) z belongs to L,
(2) yo belongs to F,
(3) for all i > 0, (yi,x;,yit+1) belongs to 0, i.e., 6(yit1,2i) = yi.

Lemma 2. If (z,y) = (xox1T2-..,Yoy1y2--.) belongs to K then for all k € N,

Ty -+ - xo belongs to Ly, ..

Proof. By definition of K, for i = 0,...,k, 6(yis1,2;) = y;. Therefore in My, we
have a path from yiy1 to yo of label zy - - - xg. Since yp is a final state, this means
that xy, - - - zo is accepted from y1. O

Remark 3. Let £ > 0. If (z,y) = (vox122---,Y0y1y2 .-.) belongs to K then
Yo - - - Yi is completely determined by z¢ - - -z and yg41. This is due to the third
condition in the definition of X and because M, is deterministic.

Definition 4. Let j > 0. A finite word (z,y) = (xox1- - Tk, YoU1 " " Yr) €
(A x Q)**1, k> j, (resp. an infinite word (z,y) = (zoz1 ...,yoy1-..) € (A x Q)¥)
is said to have the property max; and we write (z,y) € max; if z;---zo be-
longs to Max(Ly,,,). In the same way, (z,y) has the property min; if z;---zg €
Min(Ly,,,).

Lemma 5. Let (z,y) = (zox122...,Y%001Y2...) € K and j > 0. If (z,y) has
property max; (resp. min;) then for all k < j, (z,y) has also the property max;
(resp. miny, ).

Proof. Assume that (z,y) € max; but (z,y) ¢ maxy, k < j. Therefore there
exists x}, - --x( accepted from y,1 and genealogically greater than zy ---zo. So
T Tpg1Ty, - - xg belongs to Ly, and is greater than x; - - - xo. This is a contra-
diction. O

Corollary 6. Let (z,y) = (zoz1Z2 ..., YoY1Y2-..) € K and j > 0. If (z,y) ¢ max;
(resp. (x,y) ¢ min;) then for all i > j, (z,y) ¢ max; (resp. (z,y) ¢ min;).

Let us now present some other properties of this set K.
Proposition 7. For each x € Z, there exists y € Q* such that (z,y) belongs to K.
Proof. If w = w; ---wy is a word in L, we denote by p(w) the word

p(w) 1= 0(go, w1) 6(go, w1ws) - --6(qo, w1 - - - we) € QZ

which represents the path given by the states reached consecutively in M by
reading w. Since z belongs to E, there exists a sequence (x,)nen of words in L
converging to x. For an infinite number of n € N, the last element of p(z,) is
a same state in . We take the corresponding subsequence (j,(n))nen. For an
infinite number of n, the words p(m ) have the same suffix of length two. So
we consider the corresponding subsequence (o4, (n))nen. If we iterate this process,
(Tk, (1))nen is converging to x if n tends to infinity and the reversal of the p(m)’s

are converging to an infinite word y in Q¥ such that (z,y) belongs to K. O

Example 8. In this example, we consider a regular language L C {a < b < c}*
satisfying the hypothesis a*L C L and given by its minimal automaton depicted in
Figure 1. We just present some elements belonging to K:

((bba)*, (210)), (a)*,1(0)), (b(a)”,2(1)*),
(ba(bbc)“,10(210102021)%) and (ba(bbc)?, 10(021210102)%).
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FIGURE 1. The minimal automaton of a language L.

As shown in the previous example, to one infinite word = € /3, it may correspond
more than one sequence of states. If two such sequences give rise to elements in
then they differ almost everywhere.

Lemma 9. Let (z,y) and (z,y') be two elements of K such that y # y'. Then there
exists an index i such that y; # y; and for alln >0, Yiyn # Yiyp-

Proof. This is a direct consequence of Remark 3. O

The next proposition shows that to any finite word in L corresponds at least one
element in K. The same kind of properties holds in the case of numeration systems
built on a sequence of integers. If w is the greedy representation of an integer
(least significant digit first), then w(0)* belongs to the set R of right infinite words
satisfying the greedy property 1.

Proposition 10. If w = wy - w1 belongs to L then there exists yi---yr € QF
such that (wq -+ - wg (a0)¥,y1 - -y (o)) belongs to K.

Proof. By our assumption (2) on L, if w belongs to L then ajw also belongs to
L, n > 0. Using the same notation as in the proof of Proposition 7, if gy ---y; =
p(wy - -+ wy) then ¢f yi - -y1 = p(af wy, - - -w1). The result follows easily. O

3. PROPERTIES OF Maz(K) AND Min(K)

For odometers defined upon classical positional systems related to a sequence
(Un)nen of integers, some sequences of digits play a special role. Namely, they are
the sequences for which the carry when adding one can propagate to infinity. A
sequence g Qs ... is of this kind if

iz
ZaiUi = U[]._H -1
i=0
for a strictly increasing infinite sequence (¢;);jen of indices. In our framework,

the corresponding elements in K will be defined as the elements in Maz(K). The
elements which have the dual property will belong to Min(K).

Definition 11. Let us define two particular subsets of E,
Maz(K) = {(z,y) € K | Vi > 0, (z,y) € max;}

and B B
Min(K) = {(z,y) € K | Vi >0, (z,y) € min;}.

Let us observe that following Lemma 5, then it is sufficient in the definition of
Maz(K) (resp. MinK)) that there exist infinitely many i such that (z,y) € max;
(resp. (z,y) € min;). In this section, we concentrate on the structural properties

of those sets Maxz(K) and Min(K). The following lemma is obvious.
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Lemma 12. Let L be a regular language satisfying our assumption (2).

o A word w belongs to Min(L) if and only if for all n > 0, allw belongs to
Min(L) (assuming that ag is the smallest letter in the ordered alphabet A).

e Let q be a state of M. If vw belongs to Max(Ly) then the word w belongs
to Ma:r(L(;(qw)).

Definition 13. Let w be the smallest word in Min(L), i.e., w is the first word in
the ordered language L. If w = wy ---wy is not the empty word (i.e., if go & F)
then we have a path in M, of the form

G5 q = .. g eF

We set 0 = (@W(ap)“, qe-- - q1(qo)*). Otherwise w = ¢ and we set 0 = ((ap)®, (go0)*).

Proposition 14. The sets Max(K) and Min(K) are non-empty.

Proof. As a consequence of Lemma 5 and Lemma 12, the element 0 given in Defi-
nition 13 belongs to Min(K).

We use the same idea as in the proof of Proposition 7. Let w; be the i-th word
of Max(L) (clearly, |w;| < |wit1| for all 4 > 1). An infinite number of w;’s have the
same last letter ay, and lead in My, from ¢ to a same final state gx, . We therefore
consider the corresponding subsequence (wg, (n))nen built upon those w;’s. We
iterate this process: an infinite number of words among the wy, (,)’s have the same
suffix ay,ar, and finally lead in My, to the states g, followed by gi,. Therefore we
build a sequence converging to

(ks Qo 3 Gy Qs =+ )-

Thanks to Lemma 12, this element belongs to Maz(K). O

Example 15. We consider the language and the automaton given in Example 8.
It is easy to check that (b(c)¥,2(120)¢), (¢, (120)¥) and (¢, (201)¥) belong to
Maz(K). We also have 0 = (b(a)*,1(0)%) and (a¥,1¥) as elements of Min(K). To
show that these elements are the only ones, we will need some more results about
the structure of Maxz(L,) and Min(Ly).

In some particular cases, the structure of Maz(L,) is easy to obtain.

Notation 16. Let g be a state in M. If there exists a € A such that d(g, a) is not
the sink then we denote by m(q) the largest letter having this property, otherwise
we set m(q) = e.

Recall that a state s is a sink if for any a € A, §(s,a) = s and s is not a final
state. Let us introduce a small algorithm to detect what we will call the mazimal
cycles in Myp,.

Algorithm 17. Let g € Q.

e Set yo < q and ¢ + 0.

e If m(y;) # € then set y;+1 < d(yi, m(y;)) and i < i + 1.
Otherwise stop the algorithm.

e If yg,...,y; are all different, repeat the previous step.
Otherwise, a cycle is found and stop the algorithm.

After applying this algorithm to a state ¢ € ) which is not the sink, we can have
two kinds of situations. If we encounter some state yi such that m(y;) = e then
we have obtained something like

Yo %) U m—y1>) T Yk—1 m(y—k_>1)
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where all the y;’s are different and y;, belongs necessarily to F' (because My, is
minimal). Or we have the situation

po MO )l )
where o, ..., Yr+n are all different; we say that (yg, m(yr), - -, Yktn, M(Yk+n), Yr)

is a mazimal cycle starting in y;, and the word m(yg) - - - m(ygrrn) is the label of this
cycle. Notice that two maximal cycles have no state in common or share exactly
the same states. In this latter case, the label of one of the two cycles is a cyclic
permutation of the other one.

Example 18. Considering the automaton of Example 8, we have three maximal
cycles: (0,¢,2,¢,1,¢,0), (2,¢,1,¢,0,¢,2) and (1,¢,0,¢,2,¢,1) all having the same
label cce and sharing the same states.

Lemma 19. If C is a mazimal cycle of label w starting in q, then there exist an
integer k < |w| depending only on C and k words uy,...,u, of minimal length such
that Ju;| # |u;| mod |w| if i # j and

Maz(Ly) = w*{u1,...,ug}

Proof. Let w be the label of a maximal cycle C starting in ¢. If v belongs to
Mazx(L,) then by construction of the maximal cycle, wv also belongs to Max(L,).
Assume now that u,v € Maxz(L,) are such that |u| = |v| mod |w| and |u| < |v|.
Therefore, there exists i such that wiu belongs to Maz(L,) and |w'u| = |v|. But
Maz(L,) contains at most one word of each length, so wiu = v. Consequently, if v
belongs to Max(L,) then it is of the form w™u for some n > 0 and w is not a prefix
of u. For each j € {0,...,k—1} there is at most one u of this kind such that |u| = j
mod |w| (actually « is the smallest word of length j + n|w| possibly belonging to
Maz(Lg), n > 0). Notice that it does not mean that |u| < |w|. Clearly two states
in the same maximal cycle give rise to the same kind of maximal set. O

It is more difficult to express the form of Max(L,) when this set is infinite
and ¢ does not belong to a maximal cycle. But hopefully we have a more general
result extending Lemma 19 which holds even if ¢ does not belong to a maximal
cycle. Indeed, since #(Maxz(L,) N A™) <1 for all n € N then it is well-known (see
[27] or [36]) that there exists a finite set R of words, an integer £ > 0 and words
u,w; € A*, v; € AT,i=0,...,k such that

k
(3) Maz(Ly) = U u; vf w; UR
i=0
where the languages u; v} w; are pairwise disjoint and also disjoint from R. Other-
wise stated, if i # j then

{Jusw;| + n|v;| : n € N} N {Jujw;| + n|v;| :n € N} =0
and {|u;w;| + nlv;| : n € N} N |R| =0, for all i (|R| denotes the set of lengths of

elements of R). One can observe that the form of Maz(L,) given in Lemma 19 is
a special case of (3).

Proposition 20. Any element in Maz(K) is ultimately periodic and Maz(K) is
finite.

Proof. (a) The ideas of the first part of this proof are the same as in [23, Lemma
7]. Let ¢ be such that #Maz(L,) = co. If z is a word in Maxz(L,) of length large
enough then thanks to (3) there exist unique words u, v, w (depending on x) such
that £ = uv™w. Among

(4) 8(q,u), 8(q,uv), ..., d(q,uv®?)
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a same state appears at least twice. Let ¢ be the first state appearing twice in this
list. Let i < j be the smallest integers such that 6(q,uv’) = §(q,uv?) = t. We
set P = (j —i)|v]. We can already notice that P is bounded by #@ - |v|. In what
follows, we write simply ¢, ¢, 7, P assuming that the word z is understood from the
context.

(b) If z =20 ---2¢ is a word over A and f is a state, we build the pair

pf(Z) = (ZO T Zla(s(.ﬂ ZO) 6(f> ZOZI) e 6(f7 20" Zl))
Actually, pr(z) contains a word z and the sequence of states reached from f when
reading z in My, (since My, is complete, d(f, 2o --2x) is defined for 0 < k < £).
Consider again the word & = wv™w € Maxz(L,) introduced in (a). For n large
enough, p,(uwv™w) is a word over A x @ having
i) a non-periodic prefix p,(uv?) of length bounded by |u| + #Q - |v[;
ii) a maximal periodic factor having a period of length P; actually the Eu-
clidean division of n — i by P/|v| gives

n—i:m%—kr with < P/|v|.
The periodic factor corresponding to v™F/1?l is p, (v and the period
corresponding to v/l is p,(vF/!"l) where t is as in (a) the first state
appearing twice in the list (4);
iii) a non-periodic suffix of length bounded by |w| + P, indeed this factor cor-
responds to v"w and is of the form p;(v"w).

mP/ vl

For a better understanding, the situation is sketched in Figure 2.

vl vr
_—=
vi yn-i
u V] v ] v ] e v v v v W
non-periodic prefix  firstappearance m-th appearance  non-periodic suffix
of the period of the period

FIGURE 2. A schematic representation of p,(uv™w).

(c) Let n’ > n and 2’ = wv™ w. Then p,(uv™w) and p,(uv™ w) have the same prefix
corresponding to uv’. The periodic factors have the same period of length P but
the number of repetitions could be larger for z'. Finally, if n and n’ are not con-
gruent modulo P/|v| then the corresponding suffixes could be different, otherwise
the suffixes are the same. Notice that there are only finitely many possible suffixes
corresponding to the words of the form v"w for r =0, ..., P/jv| — 1.

(d) From the previous observations, we can easily exhibit elements in Maz(K). Let
no be large enough and set x,,, = py(u v tmP/1vl ) for m > 0. From the previous
point, ,, is converging to an ultimately periodic element in K. From Lemma 12,
this element belongs to Maz(K).

(e) Clearly, any element (z,y) = (zoz1...,¥1Y2...) in Maa:(lz) is ultimately pe-
riodic. Since @ is finite, a state ¢ must appear infinitely often in y say in strictly
increasing positions k(n). For each n, zy(,)---zo belongs to Max(L,) and the
words of this kind have a longer and longer common suffix when 7 is increasing.
As a consequence of (a), (z,y) is ultimately periodic with = of the form @ (v)“, for
some finite words v and w. B

(f) In (d), we have obtained elements of Max(K) of a special form but in (e) we

have shown that any element in Maz(K) is of this kind. To conclude, we have to
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show that Maz(K) is finite. First from (3), for each state ¢ the number of words w;,
v;, w; used to obtain the structure of Max(L,) is finite. For each of these 3-tuples
(ui,vi, w;) of words, we can obtain ultimately periodic elements in Maa:(lz) but
the period of such an element is bounded by #@ - |v;| (see (a)) and the length of
its prefix is bounded by |w;| + #Q - |v;| (see (b)). In other words, we have a finite
number of 3-tuples (u;,v;, w;) each one giving at most a finite number of elements
in Maz(K). O

This proof shows that the elements of Maxz(K) can be determined by the knowl-
edge of the languages Maz(L,). As we will see in the following example, obtaining
the decomposition of the form (3) for the languages Max(L,) gives rise to all the
elements in Maxz(K). Moreover, observe that these languages M az(Ly) can be
efficiently obtained from My,.

Naturally, Algorithm 17, Lemma 19 and Proposition 20 are easily adapted to

the set Min(K). In this case, similarly as in Notation 16, if there exists a € A such
that &(q, a) is not the sink then we denote by m(q) the smallest letter having this
property.
Example 21. Continuing again Example 8. We are now able to show that Maz(K)
contains exactly the elements (b(c)¥,2(120)¥), (¢¥,(120)¥) and (¢¥, (201)¥). We
have a maximal cycle of label ccc containing the three states of My, so using
Lemma 19 we obtain Maxz(Lg) = (ccc)*{c, cc,ccb}, Max(Ly) = (cee)*{e,b, cc} and
Maz(Ly) = (cce)*{e, ¢, cb}. Let us first see which elements in Maz(K) come from
the words in Maz(Lg). The word (ccc)™c read from the state 0 gives in My, the
path

0525150--52515052.
With the notation of the proof of Proposition 20, we have
po((cee)™c) = ((ece)™c, (210)™2).

Reading this path from the right and letting n tends to infinity gives the element
(¢¥,2(012)%) = (¥, (201)¥). In the same way, the word (ccc)™cc gives (¢¥, (120))
and finally (cec)™cch gives (b(c),2(120)¢). If we do the same for the words in
Mazx(L;), i = 1,2, then we consider paths starting in ¢ and we obtain exactly the
same three elements of K. It is clear that each set M az(Lg) produces the same

elements of Maz(K) because all the states are in the same maximal cycle.

Let us now show that Min(K) contains exactly 0 = (b(a)¥,1(0)%) and (a*,1¢).
Here we have two minimal cycles: (0,a,0) and (1,a,1). So thanks to the analogue
of Lemma 19, we have Min(Lo) = a*b and Min(L,) = a*. From the analogue of
(3), one finds Min(L2) = a*abU{e, c}. For instance, starting in state 2 and reading
a™ab gives the path

2505%0--- 505051,

Reading this path from the right and letting n tends to infinity gives the element O.
Starting in 0 with a™b also leads to the same element 0. Finally starting in 1 with
a™ gives (a¥,1%). Obviously, if two states ¢ and ¢' belong to two different minimal
cycles then the sets Min(L,) and Min(L,) will never lead to a same element in

Min(K) because the two cycles have no state in common.
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4. DEFINING THE ODOMETER

In [19], if a sequence apajas ... of digits belonging to R, i.e., satisfying the

greedy condition (1), is such that there exists M such that for all £ > M

¢
[Oé() .- 'Oé[] = ZazUt < U(+1 -1
=0

then the odometer maps agaias ... onto af - - - aj, 010442 ... € R where o - - - @,
is the representation of [ag - - - o] + 1 computed through the greedy algorithm (and
it is shown that the result is independent of the choice of the index k > M).
Obviously, the representations of [ag - - - ] and [« - - - a]+1 have the same length.
Otherwise, infinitely often the situation [ag - - ay] = Ugy1 — 1 occurs and then the
odometer is defined to map agaias ... onto 0“.

Here we want to do the same in the context of abstract numeration systems and
define a function 77, : K — IE, or simply 7 if L is clearly understood, having the
adding behavior awaited for an odometer. First we define 7 on K\ Maz(K). Assume
that for (z,y) = (zox1 ..., yoy1 ...) € K there exists i > 0 such that (z,y) ¢ max;.
For each state g of My, we define the function

Succ, : Ly = Ly

mapping the k-th word in the genealogically ordered language L, to the (k + 1)-th
one in the same language (if L, is finite, we decide that Succ, maps the largest
word in L, onto the smallest one). Since (z,y) ¢ max;, it is clear that z;--- 2o
and Succy,,, (z; - --xo) have the same length. Let us denote this latter word be-
longing to Ly, , by z}---z5. We set y; = d(yir1,7;) and y; = 0(yj,,, 7)) for
j =1—1,...,0. In other words, y},...,y, are the states reached in My when
reading z}---z{ from y;41. In particular, observe that yj belongs to F. Hence
(b -xh®iv1 .., yh - Yl Yir1 . . .) belong to K. The function 7 is defined by

T(To Ty Tit1 -, Yo YiYir1 o) = (T T i1 s Yo Yi Yir1 - - )
We have to show that 7 is well-defined. Assume that there exist i < j such that
(z,y) € max; and (z,y) ¢ max;. (Notice that in view of Corollary 6, if (z,y) ¢
max; then for all k& > 4, (z,y) ¢ maxy.) Then the previous construction does
not depend on the choice of the index. Indeed, notice that by definition of IE,
O(yj41,2j -+ - Tit1) = yi+1 and as a consequence of the genealogical ordering,

SuCCyH_1 (.Tj L1 TG '.770) =Tj - Tip1 Succyi+1 (CEZ v ZU()).

Therefore, as a consequence of Remark 3, the corresponding sequences of states are
the same: if y7 - - - yg are the states reached in My, when reading Succy, ,, (z; - - - o)
from y;41, we have

Yi YRyl e =Y Vil Yo
Thus, the value of 7 does not depend on the index ¢ such that (z,y) ¢ max;.

Example 22. We still consider the language and the automaton given in Example
8. For instance, (z,y) = (bbaccb(a)®, 210201(0)“) belongs to K. The word b belongs
to Max(L1) so (z,y) € max; but bb belongs to Lo \ Maxz(Lg) so (x,y) ¢ maxs. It
is easy to see that the next word accepted from 0 is cc and the path is 0 = 2 = 1,
thus
T(bblacchb(a)?, 21]0201(0)*) = (cc|aceb(a)®,12|0201(0)*).

If we had considered the word ccabb accepted from state 1 (because (x,y) ¢ max;),
the next word in Ly is ccace and this would have lead to the same element in K:

T(bbacc|b(a)®, 21020]1(0)*) = (ccacc|b(a)®,12020[1(0)*).
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In the next section, we will see that in general, the continuity of the odometer

cannot be ensured on Maxz(K) whatever is the value taken by 7 for the points

in this set (see Example 29). Therefore, we decide that for all (z,y) € Maxz(K),

7(x,y) = 0, where 0 is the canonical element of Min(K) given in Definition 13.

Remark 23. We can as in [19] or [40] define a partial ordering on K, called antipodal
order, in the following way. We have (z,y) < (z,y') if (z,y) = (2',y') or there
exists some index k such that z; < 7z} and for all j > k, (z;,y;) = (2,y)).

The elements in Maz(K) are therefore the maximal elements in (K, <). For any
(z,y) € Max(K), then its image under 7 is the smallest (with respect to <) of all
the elements in I which are larger than (z,y). Hence the map 7 is a successor

function which can be considered as an adic transformation following [40].

5. PROPERTIES OF THE ODOMETERS
Proposition 24. The application T is surjective onto K \ Mm(l%)

Proof. The proof is immediate. Let (z,y) = (zox1...,Yo¥y1 ...) be such that (z,y)
is not in min; for some i. Therefore, there exists a word &' = ) ---z{ of length
i+ 1 such that Succy, , (z]---x4) = ;- --xo. As usual, if y' = y;---y; is the path
followed in My, from y;11 when reading z’ then

T(@'Tip1Tign - Y Yi1Yite - - ) = (T, ).
O

Remark 25. A similar result holds in the framework of positional number systems:
the odometer is proved to be surjective if and only if 0¥ admits an antecedent (see
[19]).

Proposition 26. The application T is injective on K \ Maa:(lz).

Proof. Let (z,y) = (zoz1...,y0y1...) and (z',y") = (zoz]...,yoy1...) be in K\
Maz(K) and such that 7(z,y) = 7(z',y’). Let i and i’ be such that z;---zo ¢
Max(Ly,,,) and @} - - -z & Maa:(Lylr_H). Pose I = sup{i,i'}. Thanks to Lemma 5,
(z,y) and (z',y") do not belong to max; so the application of 7 will at most affect
their prefix of length I + 1. Since 7(z,y) = 7(z',y'), we have z; = 2 and y; = y;
for all j > I. Therefore, z;---xo and 27 --- zj belongs to Ly,,, = Ly, and have
the same successor. So these two words are the same. The conclusion that yr---yo
and yj - - - y; are the same comes from Remark 3. a

Corollary 27. The map 7 is one-to-one from K \ Maz(K) onto K \ Min(K).

Proof. Tt is a direct consequence of the fact that 7(K \ Maz(K)) c K \ Min(K).
Indeed the restriction of 7 on K \ Maz(K) is surjective onto K \ Min(K) since the

image of Maxz(K) equals {0} C Min(K). O
The topology on (A x Q) is as usual induced by the distance d defined by
d((z,y), (z',y") = 27" where k = inf{i | (zi,y:) # (7,97 }-

Proposition 28. The application T is continuous on K \ Maz(K).

Proof. Let (u,v) € K\ Maxz(K) and € > 0. We show that there exists > 0 such
that if d((u,v), (z,y)) < n then d(7(u,v),7(x,y)) < €. Let j be the smallest index
such that (u,v) ¢ max;. If there exists ¢ > j such that (u,v) and (z,y) have the
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same prefix of length ¢ + 1 then 7(u,v) and 7(z,y) also have the same prefix of
length ¢ + 1. Clearly, one can take

n= 2—sup{1—10g2 e,j—i—l}.
O

__ The following example shows that 7 is generally not continuous on the points of
K\ Maz(K).

Example 29. Consider the regular language L accepted by the automaton depicted
in Figure 3 (where the sink is not represented). For instance, (u,v) = (d¥, (12)¥)

cbO daObcaO d
(D30~ a2)

FIGURE 3. The minimal automaton of a language L.

belongs to Maxz(K). The points
((dd)"b(a), (12)"1(0)*) and ((dd)"c(a)*, (12)"1(0))

can be chosen arbitrarily close of (u,v) for n large enough. Whatever is the value
of 7(u,v), the application 7 is not continuous at (u,v). Indeed,

7((dd)"b(a)”, (12)"1(0)*) = ((aa)"c¢(a)”, (11)"1(0))

but
T((dd)"c(a)”, (12)"1(0)*) = ((bb)"d(a)*, (33)"3(0)%).

So clearly, if a point (x,y) is close from an element in Maxz(K) then its image

7(z,y) is close from an element in Min(K) but nothing more can be said.

Remark 30. In the case of positional number systems, such a phenomenon can-
not, occur: the odometer is always continuous on the points which correspond to
Maz(K).

Proposition 31. The set K is a compact subset of (A x Q)*. If the odometer T is
continuous, then the dynamical system (KC,T) is minimal, that is, every non-empty

closed subset ofl% invariant under the action of T is equal to K.

Proof. We follow here the proof of [19] adapted to our situation. The compactness
of K is immediate as a closed subset of (A x Q)~.

We assume that 7 is continuous. Let us prove that the closure of the orbit
{7"(z,y) | n € N} of any point (z,y) € K is equal to K.

Let us first observe that the orbit {7"(0) | n € N} of 0 is dense in K. Indeed,
let (z,y) € K. Let (wy)nen be a sequence of words in L such that z is the limit
of the sequence (wy,)nen. Let I, denote the n-th word in the ordered language L.
The point 7*(0) is by definition equal to

(In(a0)”, p(In)(q0)*),
according to notation of Proposition 7. Hence (z,y) is a limit of elements of {7"(0) |
n € N}, and K, which is a closed set, is the closure of {7(0) | n € N}.

Now if (z,y) € Maz(K), then r(z,y) = 0 and 0 belongs to the orbit (z,y),

which implies the desired result.
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Let us suppose that z ¢ Maz(K). Let
D:K\ Maz(K) = N:zw sup{k| (z,y) € max;}.

Let us assume that D takes bounded values on the orbit of (z,y). Let C' such
that D(r"(z,y)) < C, for every n. In particular, (z,y) does not have the property
maxc. By definition of the odometer, after a suitable number of iterations of 7,
say n, then 7"(x,y) is easily seen to belong to maxc. Hence D does not take
bounded values on the orbit of (z,y), which implies that there exists an increasing
sequence of integers (ny)ren such that 7% (z,y) € maxy. By compactness ofIE, one
can extract from (ng)ren an increasing sequence (myg)gen such that the sequence
(7™ (,y)) converges; its limit belongs to Maz(K), according to Lemma 5. By
continuity of 7, (r™**!(z,y)) converges toward 0, which implies that the closure

of the orbit of (z,y) contains 0 and thus equals K. O

6. EQUIVALENCE WITH POSITIONAL SYSTEMS

Let (Un)nen be a strictly increasing sequence of integers such that Up = 1. Such
a sequence is called a positional number system. We assume furthermore that the set
L = 0* repy;(N) of all the greedy representations of the integers is a regular language
over a finite alphabet Ay (from now on repg(n) denotes the U-representation of
n computed by the greedy algorithm with the most significant digit on the left).
The finiteness of Ay implies that the ratio U,11/U, is bounded. In particular,
for L = 0*repy;(N) (or equivalently for repy;(N)) to be regular, it is shown in [36]
that the sequence (U, )nen must satisfy a linear recurrence relation with constant
coefficients. In [21], a sufficient condition is given in terms of the polynomials of the
recurrence that (Up)nen satisfies. (The reader can also see the special case treated
in [24].) As an example, the set rep;;(N) is regular whenever the sequence (Up)nen
satisfies a linear recurrence relation whose characteristic polynomial is the minimal
polynomial of a Pisot number [4].

In this small section, we study the link between the odometer 77, built over the
language L and the odometer 7y presented in [19]. Notice that we allow leading
zeroes in the greedy representations to obtain a language satisfying hypothesis (2).

Remark 32. Notice that, in this particular setting, as a consequence of the greedy
algorithm, if uv belongs to L then v belongs also to L.

Proposition 33. Let (Up)nen be a strictly increasing sequence of integers such
that Uy = 1, 1y be the odometer associated to this sequence, and let us assume that
the language L = 0*repy(N) associated to the numeration system built upon the
sequence (Up)nen is regular. Let p; : K — L be the projection mapping (z,y) onto
x. Then the following relation holds on K:

prLoTL =Ty op1-

Proof. Let us first observe that the set on which 77 is defined and acts, which is the
set of right infinite words satisfying the greedy property (1), is exactly £, following
Remark 32. _ _

Let (z,y) = (zo®1-..,YoY1 -..) be an element in K\ Maz(K). Thus there exists
i such that (z,y) ¢ max;.

Notice that if u belongs to L,, since My, is accessible, then there exists v such
that vu belongs to L. So thanks to Remark 32, u also belongs to L.

Therefore x; - - - 9 belongs to both Ly, , and L. Since z; - - - z9 does not belong to
Max(Ly,. ), then it does not belong to Max(L) which means that z;U;+- - -+ xoUp
is strictly less than U;1; — 1. We set zj---x5 = Succy,,, (2;---2o), so with our
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notation

(x0T i1 -, y) = (Ty T Tigr -, Y")
for some y' € Q¥. We have to show that the successor of the word z; - - - zg in the
genealogically ordered language L is - - - z, which means therefore that

z Ui+ +zoUp + 1 =2iU; + - + 23Uy

and thus (- T xiq1...) = (xf - -z} 41 ...). To the contrary, assume that
there exists z;---zp € L such that x;---x9 < 2z;---20 < x}---x{. Let v be such
that d(go,v) = yiy1- The words vz; -z and vz} .-z are accepted from g
and satisfy therefore the greedy condition (1). Since z;---20 < &} -~ &, vz; - 2o
satisfies the greedy condition and so it belongs to L. Since M, is deterministic,
zi---Zp is also accepted from y;y1. Therefore x} - - -2y # Succy,,, (z; - - - zo) which
is a contradiction.

Consequently if p; is the projection mapping (z,y) onto = then we have shown
that on K \ Maz(K), the following holds

(5) pLoTL =Ty opi.

Observe that here, 0 is (0¥, ¢¥') because ¢ is the representation of 0 and belongs to
L. If (z,y) belongs to Maz(K) then 71 (z,y) = 0 and it is clear that Zizo xeUp =
Uit1 — 1 for an infinite number of indices ¢. Therefore from [19], 7y (z) = 0¥ and
the relation (5) holds on the whole set K. O

Remark 34. A characterization of the continuity of the odometer for positional
number system is given in [16], in terms of the right subsequentiality of the successor
function on 0*L. We will see in Proposition 45 that we can have 7, continuous
whereas 7y is not continuous.

7. SUBSTITUTION NUMERATION SYSTEMS

7.1. Definition. Let ¥ = {ay,---,aq4} be an alphabet (here, ¥ does not need
to be totally ordered). Let o : ¥ — ¥+ be a substitution, i.e., a morphism of
the free monoid ¥* such that o(a;) € a1 XF. To this substitution, we associate
a deterministic automaton M, = (@, a1, 4,0, F) in the classical way. The set of
states is @ = X U {s} where a sink state s ¢ ) is possibly added to @ in order to
make M, complete when o is not a uniform substitution (a substitution is said to
be uniform if the images of all the letters have the same length). The alphabet of
the automaton is

A=1{0,...,supl|o(a)| — 1}.
a€X

There is an edge of label i € A between two states a and b, that is, d(a,i) = b if
and only if the (i + 1)-th letter in o(a) is b. The initial state is a; and all the states
are final, i.e., FF = 3.

In the literature [8, 9, 10, 11, 28, 30] the notion of prefix automaton (respectively
prefiz-suffiz automaton) can also be found. In this latter case, the label i between
a and b is replaced by the prefix of length i of o(a) (if ¢ = 0 then the prefix is )
(respectively, the prefix of length ¢ of o(a) and the suffix of length |o(a)] —i — 1
of o(a)). It is well-known (see for instance [10, 11]) that each integer n > 1 has a
unique decomposition of the form

L
©) n=3" o (o)

where my - - -my is the label of a path read in the prefix automaton from the initial
state a; with m, # €.
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Let us recall that d denotes the cardinal of the alphabet X. The incidence
matriz of the substitution o is defined as the d x d matrix whose entry of index
(a,b) counts the number of occurrences of the letter a in o(b). The incidence matrix
of o coincides with the transpose of the adjacency matrix of the automaton M, .

Since the alphabet A = {0,1,...,sup,¢cx |0(a)] — 1} is totally ordered by the
usual ordering on N, we can order the words of the language L C A* accepted by
M, using the genealogical ordering. This leads to an abstract numeration system
S = (L, A, <) built upon L.

7.2. Equivalence between substitution and abstract numeration systems.
In this section, we give a new interpretation of the numeration systems built upon
a substitution according to (6).

Let M! be the automaton built upon M, but having an extra state ap which
is the initial state of this new automaton. For k = 2,...,|o(a1)|, we add an edge
labeled by k& — 1 from ag to the k-th letter of o(a;). Observe that if L is the
language accepted by M,, then L\ 0A* is the language accepted by M . This kind
of construction is also classical and was for instance used in [33]. We denote from
now on by L' the language accepted by M! .

Example 35. Consider the substitution on ¥ = {a;, as} defined by o(a;) = a1az2a;
and o(az) = a;. We have the following automata M, and M! sketched in Figure
4. Here A = {0, 1,2} and the sink has not been represented.

FIGURE 4. The automata M, and M.

Naturally, we can also order the words of the language L' C A* accepted by
M! using the genealogical ordering. This leads to an abstract numeration system
S"= (L', A, <) built upon L'. The representation of the integer n is defined as the
(n+1)-th word w of L' and we write valg/(w) = n (let us recall that the first word
of L' is the empty word).

The following proposition allows us to make the connection with the substitutive
numeration system as expressed in (6).

Proposition 36. The (n+1)th word wy - - - wy of the genealogically ordered language
L' generates the prefiz ug---u,_1 of length n of 0¥ (a1) as follows: wg---u,_1 i
equal to the concatenation of ot~ [§(ar,w; -+ w;—10) -+ §(ar, wy -+ w1 (w; — 1))]
in decreasing order of indices 1 < i < {, where w; ---w;—1 is understood as € if
i =1, as well as (a1, w; ---w;0)---d(ay,wy - --w;(w; — 1)) if w; = 0. In other
words, g - - - Uy,_1 1S equal to

06—1[5(a1’0) - d(ar, (wr—1))] - 00[5(a1,w1 crwp—10) - 8(ag, wy - wi—g (we—1))]

and

(-1
n = Z |ai[5(a1,w1 . -wi_10) . '6(0,1,11)1 . -wi_l(wi — 1))” .
i=0
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Proof. The proof is based on the fact that the prefix of o(q) of length ¢ < |o(q)|
read from the state ¢ € X is equal to §(g,0)---d(q,t — 1).

Let us recall that for a state ¢, uy(n) denotes the cardinal of the set of the words
of length n accepted from ¢. If w = wy ---wy € L' (this means in particular that
wy > 0), then with respect to the automaton M/ the following formula holds (see
22, 23))

Valsl Z uag Z ué(ao,b) (f - 1)
(7) b<wi
+ Z us ao,w1b)(£ 2 -+ Z U5 (ag,wy---we— 1b)(0)
b<ws b<wy

The interested reader can find a combinatorial interpretation of this formula in [20].
We have two immediate observations

Z“ao =u, ({—1) and Vg€ X, VneNu,(n)=|0"(q).

We are now able to prove the equivalence of the two formulas (6) and (7). First
notice that d(ao, 0) is the sink s of M. Therefore us(q,,0)(n) = 0 for all n. If b # 0
then d(ag,b) = 0(a1,b). The first two terms in (7) can be written as

lot= (ar)| + Z |0£_1[5(a1,b)]| = |al_1[5(a1,0) < 0(ar,wy — 1)]| .

0<b<ws

Notice that for the latter equality, we have used the fact that d(a;,0) = a; and
that o is a morphism. Consequently, (7) can be written as

valg (w Z|0Z (ar,wy -+ wi—10) -+ 8(ar, wy - wi—1 (w; —1))”

This gives another interpretation of (6).
a

7.3. First properties of the odometer. Since the infinite language L accepted
by M, satisfies property (2), then one can consider the odometer K built upon
(L, A,<). Let us observe that L' does not satisfy (2), but that that £ and £’ do
coincide. The set K is a subshift of finite type of (4 x Q)* since every state (except
the sink) in M, is a final state. Let us observe

Proposition 37. The set K corresponds to the set of infinite paths (z,y) € (A x
Y)¥ in the automaton M,, i.e., Vi > 0, y;y1 is the (x; + 1)-th letter of o(y;).
Furthermore,
Maz(K) = {(z,y) € /C| Vi>0, z; =|o(y;)| — 1},
Min(K) = {(,y) € K| Vi >0, ; = 0}.

Proof. There is an edge in the automaton /\/l(, of label 7 between two states u and
v if and only if the (i + 1)-th letter in o(v) is u; furthermore, all the states are
initial and final. Hence £ is equal to the set of labels of infinite paths in /\/l(,, which
implies the desired description of K. The characterization of Maz(K) and Min(K)

is immediate.
a

Let us recall that the odometer 7 is one-to-one from K\ Maz(K) onto K\ Min(K)
following Corollary 27.
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Remark 38. The automaton M, associated to a substitution o is not necessarily
minimal. Indeed, if you consider the Thue-Morse substitution defined by o(a;) =
ajaz and o(az) = agay then it is easy to see that M, accept {0,1}* and is not
minimal. To obtain unambiguous constructions, we have always considered the
minimal automaton of a language but clearly, we could define a set £ and an
odometer 7 depending on the choice of a finite deterministic automaton which is
not necessarily minimal. We just need a loop in the initial state a1 labeled by the
smallest letter 0 of the alphabet (it is always the case for the automaton associated
to a substitution o which satisfies o(a1) € a; A™).

We can say nothing in general concerning the continuity of 7 as illustrated in
Proposition 45.

7.4. The Pisot case. Nevertheless, there are some cases for which the automaton
M, can be proved to be minimal. A substitution is said of Pisot type if the
eigenvalues of its incidence matrix satisfy the following: there exists a dominant
eigenvalue « such that for every other eigenvalue A, one gets 0 < [A] <1 < |a. A
substitution of Pisot type is primitive and the characteristic polynomial x, of its
incidence matrix is irreducible over Q [9]. Let us recall that x, is also the minimal
polynomial of the adjacency matrix of M, .

Proposition 39. Let o be a Pisot substitution. The automaton M, is minimal.

Proof. Let o be a substitution of Pisot type. The automaton M, is accessible since
o is primitive, that is, all its states can be reached from its initial state a;. Hence
the minimal polynomial y, of its adjacency matrix is dividable by the minimal
polynomial of the minimal automaton recognizing the language M,. Since x, is
irreducible, this implies that both polynomials do coincide, and thus that M,
which is deterministic, is the minimal automaton recognizing the language M,. O

In the particular case of a Pisot substitution, we are now able to give a dynamical
interpretation of (K, 7). Let S denote the shift map on 3% S((w;)icz) = (wit1)icz.
A word u € X7 such that there exists a positive integer k with S*(u) = u is called
a periodic point under the action of o. Let us recall that the (two-sided) symbolic
dynamical system generated by a primitive substitution o is the pair (X,,.S), where
X, is the set of two-sided sequences in £ with the same set of factors of any periodic
point u of ¢; this definition does not depend on the choice of u by primitivity of o.

We use here the notation and results of [8, 9] adapted to our framework. Fol-
lowing [26], every two-sided sequence v in X, has a unique decomposition

v = S*(o(w)), with w € X, and 0 < k < |o(wp)]

(wo denotes here the 0-th coordinate of w).
Let

0: Xog > X,: v>w,

{ where v = S¥(o(w)), with 0 < k < |o(wo)|-

The map 6 is called the desubstitution map.

Let
v: Xo = (AXYE): v (kB4 1,w),
{ where v = S*(o(w)), with w € X, and 0 < k < |o(wo)|.

In other words, if y(v) = (k, q), then vy is the (k + 1)-th letter of o(q). Hence,

for every v € X,, the sequence (7 o #(v));en is easily seen to belong to K. Let us
now define

L:X, 5 K: v (060 (v))en.

The following theorem is a direct consequence of [8, 9].
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Theorem 40. [8, 9] Let 0 be a Pisot substitution. The map I is continuous and
onto K; it is one-to-one except on the orbit of periodic points of o. Furthermore,

[oS=70landT'0f = SgoT,
where S denotes the shift map acting on elements of (A x )%,

Proof. We know from [8] that (X, S) is measure-theoretically isomorphic with the
subshift of finite type D defined as the set of labels of infinite paths D in the
prefix-suffix automaton. Let us recall that there is an edge from a to b of label
(p,a,s) in the prefix-suffix automaton if o(b) = a, and all its states (which are the
letters of ¥) are both initial and final. Let us prove that K and D are in one-to-one
correspondence. This comes from the fact that the following map is one-to-one:

K =D, (z,y) = 0Yis1,0) - 8(yis1, xi — 1), 4s, 81)ien,

where s; is the suffix of size |o(y;41)| — i — 1 of o(y;41). Now from Remark 23,
the map 7 coincides with the adic transformation acting on D. It just remains to
apply the results of [8, 9].

O

Remark 41. Two dynamical systems can be built over K, i.e., (K, 7) and (K, Sg).
Theorem 40 gives us two combinatorial interpretations for these systems: the action
of the desubstitution map 6 (the “inverse” of o) on X, corresponds to the action
of the shift Sg on IE, whereas the action of the shift S on X, corresponds to action

of the odometer 7 on K.

Remark 42. Furthermore, there exists a unique shift invariant measure on the
dynamical system (X,,S) since o is primitive ((X,,S) is said uniquely ergodic);
for more details see for instance [29]. This measure can be naturally carried on
(K, 7) via the map T' (which is one-to-one except on a countable number of points).
Theorem 40 means that (K, 7) endowed with this measure is measure-theoretically
isomorphic with (X,,S). One interest of this approach is that it provides us some
insight on a metrical study of (K,7), following [6].

Remark 43. It is possible to give a combinatorial interpretation of Min(K) and
Maz(K) in this framework. Following [8], Min(K) and Maz(K) correspond re-
spectively to the periodic points (under the action of o) of X, (we denote this
set Per(X,)) and to the preimages S~!(Per(X,)) under the shift S of those peri-
odic points. Both sets do not have necessarily the same cardinal as illustrated for
instance in Section 8, Proposition 45.

8. THE CASE OF SOFIC BETA-NUMERATIONS

This section gathers results of Section 6 and 7 within the framework of (-
numeration. Let U = (U,)nen be a positional numeration system such that the
ratio Uyy1/Uy, is bounded, as defined in Section 6. Assume now that rep,,(N)0* is
included in rep;;(N); the positional number system U is said to be a Bertrand nu-
meration system. Bertrand numeration systems are closely related to -expansions
as recalled below.

Let 8 > 1 be a positive real number. The Rényi S-expansion of a real number z €
[0,1] is defined as the sequence (z;);>1 with values in {0,1,...,[3] — 1} produced
by the g-transformation T : [0,1] — [0,1] : x + Bz (mod 1) as follows

Vi>1, z; = LBTé_l(m)J, and thus z = Zmlﬂ*’

i>1
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Let dz(1) = (ti)i>1 denote the B-expansion of 1. Let dj(1) = dg(1), if ds(1) is
infinite, and d (1) = (t1 ... tm-1(tm —1))*, if dg(1) = (t1 ... tm—1t;) is finite (with
tm # 0). The set Dg of B-expansions of numbers in [0,1) is exactly the set of
sequences (c;);>1 that satisfy:

Vk € Z, (ci)i>k <jex d5(1).

For more details, see for instance [25]. We denote by F(Dg) the set of finite factors
of the sequences in Dg.

Numbers /5 such that dg(1) is ultimately periodic are called S-numbers and those
such that dz(1) is finite are called simple B-numbers. If 8 is a S-number (simple
or not), the minimal automaton Mg recognizing the set of factors of F(Dg) can
easily be constructed (representations of this classical automaton Mg can be found
in [18] or [23]). Furthermore, let us recall that when £ is assumed to be Pisot, then
B is either a f-number or a simple f-number, and (Xg, S) is sofic.

Bertrand numeration systems are characterized by the following theorem:

Theorem 44. [3] Let U be a positional number system over a finite alphabet. Then
U is a Bertrand numeration system if and only if there exists a real number 8 > 1
such that L = 0% repy(N) = F(Dg). Furthermore, L is regular if and only if B is a
B-number.

There is a natural way to associate a substitution og with the S-numeration
when § is a S-number (simple or not). These substitutions will be called in all
what follows B-substitutions. The automaton M., associated with og, as de-
fined in Section 7, coincides with the minimal automaton Mg which recognizes
F(Dg). For more details, see [13, 39]. Let us note that dg(1) cannot be purely
periodic, hence one has either dj(1) = (t1---t,—1(t, — 1)) with ¢, # 0 or
d5(1) =t tu(tnsr -+ togp)®, With ¢y # tyyp and n > 1.

e Assumedg(l) = (t1---tn—1ty) wWith ¢, # 0 and thus dg(l) =(t1 - tpo1(tn—
1))¥. Consider the substitution o3 defined over the alphabet {1,2,...,n}
by:

1 102
2 — 1623

0p - : :
n—1 —1tn"Ip
n — 1in,
e Assume dg(l) = dg(l) =ty tp(tng1 - tngp)?, With tpyq - tpyp # OP
and t, # tp4p. Furthermore n > 1. Consider the substitution o defined
over the alphabet {1,2,...,n+ p} by:

1 — 1812
2 — 123

789 : :
n+p—1 5 1in+r-1(n + p)
n+p > 1tnte(n + 1),

JFrom now on, we assume that the positional number system U is a Bertrand
numeration associated with § Pisot number; thus L = 0* repy;(N) = F(Dg) is an
infinite regular language which satisfies (2). We still denote 71, the odometer acting
on K. When B is a simple f-number, then the substitutions o3 are of Pisot type
since the characteristic polynomial of their incidence matrices coincides with the
minimal polynomial of 8. Hence, the results of Section 7.4 do apply.
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We end now this section by proving that the odometer 77, is continuous when £ is
a Pisot number, contrarily to the positional number systems case where continuity
holds if and only if § is a simple S-number (see [19] and [16]).

Proposition 45. Let 3 be a Pisot number and let L = F/(Dg). Then the odometer
T, 1S continuous on K.

Proof. Let (z,y) € Maz(K). Let us prove that for any sequence (z(™,y(™),cx
with values in K which converges toward (z,y), then 77 (z(™,y(™),cn converges
toward 0 = (0¥, ¢¢). Let (2™, y(™),cn be such a sequence. We assume further-
more that for n large enough, then (z(™,y(™) & Maxz(K). There exists a state ¢
for which there exist infinitely many integers k such that zxzg_1 -+ o € Maz(Ly).
Let N be fixed. Let k > N such that zprg_1---x9 € Maxz(L,) with ¢ = yg41.
For n large enough, (z(™, y(™) coincides on its first N values with (x,y) and
(™, y() ¢ Maa:(lz). In particular, x,(gn)mgcn_)l . -m[()n) € Max(Ly), with ¢ = y,(ﬁ_)l
Since (z(™,y™) ¢ Maz(K), there exists a non-negative integer [ > k such that
2™ g Maa:(Lyl(i)l). Let Iy denote the smallest of these integers. The

successor in Lyl(;}rl of mz((?) xl(:ll . .x(()n) is (ml(:) + 1)0%. Furthermore, any edge la-
beled by 0 in Mg leads to the initial state go (recall that the interested reader can
find a representation of Mg in [18, 23]). Hence 7z (z(™,y(™) admits as a prefix

(0N, yV) for n large enough, which ends the proof. O

Remark 46. The sets K and £ are not in one-to-one correspondence. Indeed
the word 0 admits several representations in IE, hence we cannot deduce directly
continuity results from Proposition 33. Let us observe nevertheless that there is at
most a countable number of antecedents to elements of £ according to the projection
p1: K — Z, (z,y) — z, in the particular situation described in this section.

9. REAL REPRESENTATION OF THE ODOMETER

The aim of this section is to outline the first steps of a study of a geometric
representation of the dynamical system (/E, 7). A geometric representation of the
dynamical system (/E, 7) is a continuous map ¢ from K onto a geometric dynamical
system (Y, T') such that po7 = T oy, and on which there exists a partition indexed
by the alphabet A x @ such that every word (z,y) is the itinerary of a point of
(Y, T) with respect to the partition.

Let L be an arbitrary regular language satisfying (2). A first representation
which might be possible consists in extending the work of [22, 23, 34], where a
real value is attributed to limits of finite words for abstract numeration systems
built on an exponential regular language satisfying the following conditions: there
exist # > 1 and P € R[X] such that for all states ¢ € @, there exists some non-

negative real numbers a, such that lim,_, ;("n—()nﬁ)n = ay. (We recall that u,(n)

represents the number of words of length n in L,.) We assume now that L also
satisfies the previous conditions of [22, 23]. Clearly, if L is exponential then L is also
exponential because #(L N $") = #(L N X"). The main assumptions for building
a representation map rely therefore on the asymptotic behavior of the sequences

;E’;L—gg)n for all the states ¢’ of the minimal automaton of L. Let v(n) denotes the

number of words of length at most n in L (or in L), and val; (w) the numerical value
of w € L, i.e., if valj (w) = n, then w is the (n + 1)-th word of L. Let (z,y) € K.
Since z € L, there exists a sequence (wp)nen of words in L which converges to z.
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The limit

lim valy (wy,)

n=oo V(|wp|)
does not depend on the choice of the sequence (wy,)nen (see [22, Corollary 8]) and
is denoted by val, (z). We thus can define a map r : K — R : (z,y) — valoo (z). It
remains to explore the properties of such a representation map r.

We propose now a second possible geometric representation in the framework of
languages associated with substitutions. We continue here with the notation of Sec-
tion 7. A substitution is said unimodular if the determinant of its incidence matrix
equals +1. It is conjectured that for a Pisot unimodular substitution, the dynamical
system (X,,.S), and hence (/E, 7) according to Remark 42, is measure-theoretically
isomorphic to a rotation on the torus T¢~', where d denotes the cardinal of the
alphabet ¥. For more details, see for instance Chap. 7 of [28]. There are however
families of substitutions for which this result is known to hold true. One simple way
to exhibit this rotation is to give a geometrical representation of (K, 7) as explained
in the next paragraph. We follow the formalism of [8, 9].

Let L be a language associated with the substitution o of Pisot type over the
alphabet ¥ of cardinal d, as explained in Section 7. Let us recall that the character-
istic polynomial y, of the incidence matrix of ¢ is also the minimal polynomial of
the adjacency matrix of the minimal automaton My, recognizing L. Let oy, ..., q,
denote the r real eigenvalues of x,, and a,y1,...,Qrts, @ri1,- . -,0rts, denote its
2s complex roots (r + 2s = d). Let us assume ay > 1, hence, |a;| < 1, for i > 2.

Let 7Y be a left eigenvector associated with the eigenvalue a; with coefficients
in the field Q(ay ). Let ay be an eigenvalue and let pi be the canonical morphism
from Q(ay1) onto Q(ay), extended to Q(ay)?. Let ¥ = p(71)). We propose
as a_geometric representation of the set K in this framework the following map
p: KR! xC:

(z,y) — Z(gg?) +...+17§2) Yad, - ’(17((57(“;1)1’0) Y G i,

Yi+1,0) (Yit1,2i—1) d(yit1,2i—1)

i>0

This series is easily seen to converge. This map can be factorized as a map on the
torus. Indeed, let . denote the lattice

d d
{anﬁ(k) | ng € Z,an = 0} .
k=1 k=1

Following [8, 9], the map
oL K — (R x C*)/L=T41, (2,y) = ¢(z,y) mod L
is well defined and continuous. Consider the toral translation
T: (R xC)/L— (R xC)/L: 2z~ z+ 7 mod L.

One checks that ¢, o7 = T o ¢, and that ¢ is a geometrical representation of
(E,T), the partition being given by the sets p{(z,y) | (z,y) € K, Yo=4q}, ¢ € Q.

In particular, for some families of S-substitutions, this map is known to provide
a measure-theoretical isomorphism (this is the case in particular for numbers
having the finiteness property (F) introduced in [17], which states that the set of
non-negative real numbers with finite S-expansion coincides with the set of non-
negative elements of Z[1/3]). We deduce the following proposition from the results
of [17, 1], stated in the framework of S-substitutions.

Proposition 47. Assume that L = F(Dg), where § > 1 is either
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e the positive root of the polynomial X™ — t;z™ 1 —--- —t,,, where t; € 7,
and t; > to >+ >ty >0,
e the dominant root of the polynomial X™ —t1x™ ' —- .- —t,,, wheret; €N,

and t; > S0, [ti| > 0, and (t1,12) # (2, 1),
e a cubic Pisot unit.

Then the map @1, is continuous and onto T™~! (m = 3 in the third case); it is one-
to-one except on a at most countable number of points; furthermore pL is a geomet-
rical representation of (K, ), the partition being given by the sets pr{(x,y)| (z,y) €

IC) ?JOZQ},QEQ-

Proof. The fact that ¢p, is one-to-one except on a at most countable number of
points comes from [17] for the first case, and from [1] for the last two points. It
remains to prove that the sets pr{(z,9)| (z,y) € K, yo = q}, ¢ € Q are disjoint
up to sets of zero Lebesgue measure. This is a direct consequence of the fact
that S-substitutions satisfy the so-called strong coincidence condition, according to
[2]. O

10. SOME SPECIAL CASES

In [19], the odometer is defined on a set R of sequences of digits. Here, we have
introduced an odometer on a set K of pairs of infinite words. In this section, we
show that in some particular situations, we can restrict ourselves to unidimensional
sequences. So we exhibit hypothesis where the extra information given by the
sequence of states is useless, or more precisely, the projection map p; : K- LC
(z,y) — x is injective, which implies, following Proposition 10, that both sets K

and L are in one-to-one correspondence. The interest relies on the fact that the
odometer can be directly defined on L.

Definition 48. Let d > 1. A regular language L is said to be d-synchronizing if
there exists a function f : A% — @ such that for any word w € A* of length d
and any q € @, d(q,w) is equal to f(w) (let us recall that J denotes the transition
function of the minimal automaton of L). In other words, for any element (z,y) =
(vox1---,Y0y1--.) in K, for all i > 0 the state y; is completely determined by
i - Tipqg—1- A language is synchronizing if there exists a positive integer d such
that L is d-synchronizing. Otherwise stated, this means that y can be deduced
from z.

Example 49. Consider the language accepted by the automaton M, depicted in
Figure 4 of Example 35. Here, we represent in Figure 5 the automaton M. This

,2
1
& 0, &)
FIGURE 5. The automaton //\712

language is 1-synchronizing. Indeed, assume that (z,y) is an element in K. The
factors possibly appearing in x are 00, 01, 02, 10, 12, 20 and 22. Actually, 11
and 21 cannot occur in x because no infinite path in the automaton depicted in
Figure 5 contains such a factor. Clearly, if z; € {0,2} then y; = a; and if z; = 1
then y; = as.
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Example 50. Continuing Examples 35 and 49, the language accepted by M,
depicted in Figure 4 is 1-synchronizing and we have the function

f:0—ay, 1—>as, 2—a;.

For this automaton M, we have d(a1,0) = d(az,0) = f(0) = a1, §(az,1) = f(1) =
as, 0(asq, 1) is the sink, d(az,2) = f(2) = a; and d(asq,2) is also the sink.

REFERENCES

[1] S. Akiyama, H. Rao, W. Steiner, A certain finiteness property of Pisot number systems, J.
Number Theory, to appear.

[2] P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon
Stevin 8 (2001), 181-207.

[3] A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entiére,
Acta Math. Acad. Sci. Hugar. 54 (1989), 237-241.

[4] V. Bruyere, G. Hansel, Bertrand numeration systems and recognizability, Latin American
Theoretical INformatics (Valparaiso, 1995), Theoret. Comput. Sci. 181 (1997), 17-43.

[5] G. Barat, T. Downarowicz, P. Liardet, Dynamiques associées & une échelle de numération,
Acta Arith. 103 (2002), 41-78.

[6] G. Barat, T. Downarowicz, A. Iwanik, P. Liardet, Propriétés topologiques et combinatoires
des échelles de numération, Collog. Math. 84 /85 (2000), 285-306.

[7] H. Bruin, G. Heller, M. St. Pierre, Adding machines and wild attractors, Ergodic Theory
Dynam. Systems., 17 (1997), 1267-1268.

[8] V. Canterini, A. Siegel, Automate des préfixes-suffixes associé & une substitution primitive,
J. Théor. Nombres Bordeauz 13 (2001), 353-369.

[9] V. Canterini, A. Siegel, Geometric representation of substutions of Pisot type, Trans. Amer.
Mah. Soc. 353 (2001), 5121-5144.

[10] J.-M. Dumont, A. Thomas, Systémes de numération et fonctions fractales relatifs aux sub-
stitutions, Theoret. Comp. Sci. 65 (1989), 153-169.

[11] J.-M. Dumont, A. Thomas, Digital sum moments and substitutions, Acta Arith. 64 (1993),
205-225.

[12] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New York, (1974).

[13] S. Fabre, Substitutions et 3-systémes de numération, Theoret. Comput. Sci. 137 (1995),
219-236.

[14] A. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), 105-114.

[15] C. Frougny, On-line odometers for two-sided symbolic dynamical systems, Proceedings of
DLT 2002, Lect. Notes in Comput. Sci. 2450 (2002), 405-416.

[16] C. Frougny, On the sequentiality of the successor function, Inform. and Comput. 139 (1997),
17-38.

[17] C. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12,
(1992), 713-723.

[18] C. Frougny and B. Solomyak, On representation of integers in linear numeration systems,
Ergodic theory of Zy actions (Warwick, 1993—-1994), 345-368, London Math. Soc. Lecture
Note Ser. 228, Cambridge Univ. Press, Cambridge, 1996.

[19] P. J. Grabner, P. Liardet, R. F. Tichy, Odometers and systems of numeration, Acta Arith.
70 (1995), 103-123.

[20] P. J. Grabner, M. Rigo, Additive functions with respect to numeration systems on regular
languages, Monatsh. Math. 139 (2003), 205-219.

[21] M. Hollander, Greedy numeration systems and regularity, Theory Comput. Syst. 31 (1998),
111-133.

[22] P.B.A. Lecomte, M. Rigo, Numeration systems on a regular language, Theory Comput. Syst.
34 (2001), 27-44.

[23] P. Lecomte, M. Rigo, Real numbers having ultimately periodic representations in abstract
numeration systems, to appear in Inform. and Comput. (2004).

[24] N. Loraud, (-shift, systémes de numération et automates, J. Théor. Nombres Bordeauz T
(1995), 473-498.

[25] M. Lothaire, Algebraic Combinatorics on words, Cambridge University Press, Cambridge,
(2002).

[26] B. Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, Bull.
Soc. Math. France 124 (1996), 329-346.

[27] G. Paun, A. Salomaa, Thin and slender languages, Discrete Appl. Math. 61 (1995), 257-270.



24

(28]
29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]
(39]

[40]

V. BERTHE AND M. RIGO

N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lect. Notes in
Math. 1794, Springer-Verlag, Berlin, (2002).

M. Queftélec, LSubstitution dynamical systems. Spectral analysis, Lect. Notes in Math. 1294,
Springer-Verlag, (1987).

G. Rauzy, Sequences defined by iterated morphisms, Sequences (Naples/Positano, 1988), pp.
275-286, Springer, New York, 1990.

M. Rigo, Numeration systems on a regular language: arithmetic operations, recognizability
and formal power series, Theoret. Comput. Sci. 269 (2001), 469-498.

M. Rigo, Construction of regular languages and recognizability of polynomials, Discrete Math.
254 (2002), 485-496.

M. Rigo, A. Maes, More on generalized automatic sequences, J. Autom. Lang. Comb. T
(2002), 351-376.

M. Rigo, W. Steiner, Abstract 8-expansions and ultimately periodic representations, prepub-
lication.

K. Schmidt, Algebraic coding of expansive group automorphisms and two-sided beta-shifts,
Monatsh. Math. 129 (2000), 37-61.

J. Shallit, Numeration systems, Linear recurrences, and Regular sets, Inform. and Comput.
113 (1994), 331-347.

N. Sidorov, A. Vershik, Ergodic properties of the Erdés measure, the entropy of the golden
shift, and related problems, Monatsh. Math. 126 (1998), 215-261.

B. Solomyak, Substitutions, adic transformations and beta-expansions, Symbolic Dynamics
and its applications, 135, P. Walters Editor (1992), 361-372.

W. P. Thurston, Groups, tilings and finite state automata, Lectures notes distributed in
conjunction with the Colloquium Series, in AMS Colloquium lectures, (1989).

A. M. Vershik, Uniform algebraic approximation of shift and multiplication operators, Soviet
Math. Dokl. 24 (1981), 97-100.

(V. Berthé)

LIRMM, UNIVERSITE MONTPELLIER II
161 RUE ADA

34392 MONTPELLIER CEDEX 5
FRANCE.

E-mail address: berthe@lirmm.fr

(M. Rigo)

UNIVERSITE DE LIEGE
INSTITUT DE MATHEMATIQUES
GRANDE TRAVERSE 12 (B 37)
B-4000 LIEGE

BELGIUM.

E-mail address: M.Rigo@ulg.ac.be



