
HAL Id: lirmm-00131835
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00131835

Submitted on 19 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Parametrized Complexity of Maximum
Agreement Subtree and Maximum Compatible Tree

problems
Vincent Berry, François Nicolas

To cite this version:
Vincent Berry, François Nicolas. Improved Parametrized Complexity of Maximum Agreement Subtree
and Maximum Compatible Tree problems. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2006, 3 (3), pp.289-302. �10.1109/TCBB.2006.39�. �lirmm-00131835�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00131835
https://hal.archives-ouvertes.fr

Improved parameterized complexity of the

Maximum Agreement Subtree and Maximum

Compatible Tree problems

LIRMM, Tech.Rep. num 04026

Vincent Berry∗, François Nicolas

Équipe Méthodes et Algorithmes pour la Bioinformatique – L.I.R.M.M.

161, rue Ada 34392 Montpellier cedex 5, France

E-mails:vberry@lirmm.fr, nicolas@lirmm.fr ∗

Abstract

Given a set of evolutionary trees on a same set of taxa, the maximum
agreement subtree problem (MAST), respectively maximum compatible
tree problem (MCT), consists of finding a largest subset of taxa such that
all input trees restricted to these taxa are isomorphic, respectively com-
patible. These problems have several applications in phylogenetics such
as the computation of a consensus of phylogenies obtained from different
datasets, the identification of species subjected to horizontal gene trans-
fers and, more recently, the inference of supertrees, e.g. Trees Of Life.

We provide two linear time algorithms to check the isomorphism, re-
spectively compatibility, of a set of trees or otherwise identify a conflict
between the trees with respect to the relative location of a small subset
of taxa.

Then, we use these algorithms as subroutines to solve MAST and
MCT on rooted or unrooted trees of unbounded degree. More precisely,
we give exact fixed-parameter tractable algorithms, whose running time
is uniformly polynomial when the number of taxa on which the trees
disagree is bounded. The improves on a known result for MAST and
proves fixed-parameter tractability for MCT.

Keywords: Phylogenetics, algorithms, consensus, pattern matching, trees,
compatibility, fixed-parameter tractability.

1 Introduction

This paper investigates two tree consensus problems with applications in phylo-
genetics. This field aims at reconstructing the evolutionary history of species or

∗Supported by the Action Incitative Informatique-Mathématique-Physique en Biologie

Moléculaire [ACI IMP-Bio].

1

1 INTRODUCTION 2

more generally taxa. This evolutionary history is represented by an evolutionary
tree, or phylogeny, in which leaves are labelled by present-day taxa and inter-
nal nodes correspond to hypothetical ancestors of taxa. The branching pattern
of such a tree shows how speciation events have resulted in different taxonomic
groups, i.e. shows how taxa relate to one another in terms of common ancestors.

1.1 Overview of MAST and MCT

The two problems considered in this paper take as input a set of evolutionary
trees on a same set of taxa. We begin by stating the problems and indicating
motivation for their study.

1.1.1 Maximum agreement subtree

Given a set of evolutionary trees on the same set of taxa, the Maximum

Agreement SubTree problem (MAST) consists of finding a subtree home-
omorphically included in all input trees and with the largest number of taxa
[1, 2, 3, 4, 5, 6]. In other words, this involves selecting a largest set of taxa such
that the input trees are isomorphic, i.e. agree, when restricted to these taxa.

This problem arises in various areas, including phylogenetics, where it can
be used to reach different practical goals:

• to obtain the largest intersection of a set of phylogenies inferred from
different molecular or morphological datasets. These datasets can be,
e.g. different regions of the same molecular sequences, or sequences of
different genes, suspected to result from different evolutionary histories.
This largest intersection is used to measure the similarity of the different
estimated histories or to identify species that could be implied in horizontal
transfers of genes.

• Systematic biologists also use MAST (e.g., implemented in the well-known
PAUP package [7]) as a method to obtain a consensus of a set of phylo-
genies that are optimal for some tree-building criterion. E.g., for the
parsimony criterion, some datasets can induce several dozens (sometimes
hundreds) of optimal trees. Similarly, methods that build trees accord-
ing to a maximum likelihood criterion can give numerous trees with non-
significantly different likelihood values. In such cases, when ranking the
output phylogenies by decreasing likelihood values, the first tree alone
may not be a good representative of the evolutionary hypotheses for the
studied species, and a consensus of the first dozen trees is often preferred.

Depending on the differences in the trees considered, the MAST method
can be the consensus method giving the most informative output [7, 8].

• Recently, MAST also appeared as a subproblem of a supertree inference
method [9, 10]. This method builds an agreement supertree of a collection
of input trees having non-identical leaf sets. The main application of
supertree methods is the construction of Trees of Life spanning several

1 INTRODUCTION 3

thousands of species. Here, fast polynomial time algorithms are of crucial
importance.

1.1.2 Maximum compatible tree

A variant of MAST, most often called Maximum Compatible Tree (MCT)
[11, 12, 13, 8] is also of particular interest in phylogenetics when the input trees
are not binary. In an evolutionary tree, a node with more than two descen-
dants usually represents uncertainty with respect to the relative groupings of
its descendants rather than a multi-speciation event. The MCT problem takes
this into account by seeking a tree that is compatible with the input trees and
that contains a largest number of taxa The compatibility of two trees means
that the least common ancestor of a subset of taxa can be of high degree in one
tree and of low degree in the other, as long as the groups defined by both trees
on this subset of taxa can be represented together in a same output tree. In
practice, phylogenetic softwares usually output binary trees from primary data.
However, one can typically resort to the MCT problem when the input trees
are provided with confidence values assigned to their edges (e.g. thanks to a
bootstrap process of the primary data). The edges with the lowest confidence
are usually discarded from the analysis, which results in the creation of some
higher degree nodes in the input trees.

Note that a maximum compatible tree of a collection of trees always contains
at least as many taxa as a maximum agreement subtree of the collection, since
compatibility is a weaker constraint than isomorphism. Also, the MCT and
MAST problems are identical when the input trees are binary.

1.2 Previous results

1.2.1 Polynomial cases of MAST and MCT

The MAST problem is NP-hard on only three rooted trees of unbounded degree
[3], and MCT on two rooted trees as soon as one of them is of unbounded de-
gree [13]. Efficient polynomial time algorithms have been recently proposed
for MAST on two rooted n-leaf trees: O(n log n) for binary trees [6], and
O(
√

dn log 2n
d

) for trees of degree bounded by d [5]. When the two input trees
are unrooted and of unbounded degree, the O(n1.5) algorithm of [14] can be
used.

Suppose k rooted trees are given as input:

• if at least one of these input trees has maximum degree d then MAST

can be solved in O(nd + kn3) time [2, 3, 15] and,

• if all of the input trees have maximum degree d then MCT can be solved
in O(22kdnk) time [12].

1 INTRODUCTION 4

1.2.2 Fixed parameter tractability

MAST is known to be fixed-parameter tractable (FPT) in p, the smallest num-
ber of labels to remove from the input set of labels such that the input trees
agree: [16] describe an algorithm in O(3pkn logn) time and [17] give an algo-
rithm in O(2.27p + kn3) time. This parameterized version of the problem is of
particular interest in phylogenetics where many instances of MAST and MCT

now consist of phylogenies inferred by different tree-building methods on the
basis of molecular sequences of reasonable length. Hence, the trees given as
input to MAST and MCT usually differ w.r.t. the location of a small number
p of species.

1.2.3 Approximability

See [18] and references therein.

1.3 Our contribution

1.3.1 Linear-time algorithms

We propose two linear time algorithms that check the isomorphism, respectively
compatibility of a collection of k input trees or that otherwise identify a small
set of taxa on which two input trees conflict. By identifying such a set of
taxa, our algorithms extend the work of [19], respectively [20] that only decide
isomorphism, respectively compatibility, without increasing the running time.
We provide algorithms for both collections of rooted trees and collections of
unrooted trees.

1.3.2 Fixed parameter tractability

Building on the work of [16], we obtain an O(min{3pkn, 2.27p + kn3}) parame-
terized algorithm for both MAST and MCT on rooted trees. This improves the
time bound for the MAST problem with respect to [16] and is the first result of
fixed-parameter tractability for MCT. Moreover, from this standpoint, MCT

has the same complexity as MAST which was not expected.
We show how these algorithms can be used at most p+1 times to handle the

case of collections of unrooted trees. The exponential term in the complexity
of the presented FPT algorithms for MCT does not depend on the degree
or number of input trees, which might be an advantage in practice over the
algorithm of [12], although the latter may be faster for trees with a high level
of disagreement.

1.4 Organization of our paper

Sect. 2 presents definitions and preliminary results, then Sect. 3 presents linear
time algorithms that conclude on the isomorphism and compatibility of trees,
or otherwise identify a conflict on a small subset of labels. Then Sect. 4 shows

2 DEFINITIONS AND PRELIMINARIES 5

b

u

T T MAST(T ,T)21 2 MCT(T ,T)1 2

S(u)

L(u) d
a

a
ca e

d b ec
eb ca

1

ec

Figure 1: Four rooted trees. A collection T := {T1, T2}, one of the MAST (T)
trees, and the MCT (T).

how these algorithms can be used as subroutines of fixed-parameter algorithms
to solve MAST and MCT for rooted and unrooted trees.

2 Definitions and preliminaries

Formally, any tree T considered in this paper has its leaf set L(T) in bijection
with a label set representing taxa, and is either rooted, in which case all internal
nodes have at least two children, or unrooted, in which case internal nodes have
degree at least three. When there is no ambiguity, we identify a leaf with its
label. The size of a tree T is the number of its leaves and is denoted #T . Let u
be a node in a rooted tree, we denote S(u) the subtree rooted at u (i.e. u and
its offspring) and denote L(u) the set of leaves of this subtree. As an example,
for the node u in the tree T1 of Fig. 1, the subtree S(u) is the one enclosed in
the dashed area and L(u) is the set of leaves enclosed in the dotted area, i.e.
{a, b, c}. If C is a set of nodes in a tree, then define L(C) :=

⋃

u∈C L(u). Given
a rooted tree T and a set of leaves L ⊆ L(T), we denote lcaT (L) the node that
is the lowest common ancestor of L in T .

2.1 Definition of MAST and MCT

The definitions and results of this section apply both to rooted and unrooted
trees.

Definition 1 Given a set L of labels and a tree T , the restriction of T to L,
denoted T |L, is the tree obtained in the following way: take the smallest induced
subgraph of T connecting leaves with labels in L∩L(T); then remove any degree
two (non-root) node to make the tree homeomorphically irreducible. If T is a
collection of trees, then define T |L := {T |L : T ∈ T }.

See trees U, U ′ in Fig. 2 for an example. Note that for any tree T and any two
label sets L and L′, it holds that (T |L)|L′ = T |(L ∩ L′) = (T |L′)|L.

2 DEFINITIONS AND PRELIMINARIES 6

c

U U’ U’’

b

f

e
c

d

a a e

c d

a
b

f

e

Figure 2: Three unrooted trees U , U ′, U ′′ such that U ′ = U |{a, c, e} ⊑ U and
U ′′ � U .

Definition 2 Two rooted (respectively unrooted) trees T , T ′ are isomorphic,
which is denoted T = T ′, iff there exists a one-to-one mapping from the nodes
of T onto the nodes of T ′ preserving leaf labels and descendancy (respectively leaf
labels and adjacency). Let T, T ′ be two trees, T is homeomorphically included
in T ′, which is denoted T ⊑ T ′, iff T = T ′|L(T).

The well-known MAST problem is defined as follows:

Definition 3 Given a collection T of rooted, respectively unrooted, trees with
identical leaf set L, an agreement subtree of T is any rooted, respectively un-
rooted, tree T with leaves in L s.t. ∀Ti ∈ T , T ⊑ Ti. An agreement subtree
of T that is of maximum size is called a maximum agreement subtree of T
and is denoted MAST (T). The corresponding optimization problem is stated
as follows:

Name: Maximum Agreement SubTree (MAST)

Input: A collection T = {T1, T2, . . . , Tk} of k trees (all rooted or all unrooted)
with identical leaf set L of cardinality n.

Task: Find a maximum agreement subtree of T .

The MCT variant of MAST is based on the relation of refinement instead
of that of isomorphism.

Definition 4 A tree T refines a tree T ′, which is denoted T � T ′, whenever T
can be transformed into T ′ by contracting some of its internal edges (contracting
an edge (u, v) means removing nodes u and v, replacing them by a single new
node that is made adjacent to every node previously adjacent to u or v). More
generally, a tree T refines a collection T , which is denoted T � T , whenever T
refines all trees in T .

Note that an evolutionary tree T refining another tree T ′ agrees with the entire
evolutionary history of T ′, while containing additional history absent from T ′.
See Fig. 2 for an illustration of the � notation on unrooted trees. The MCT

problem is defined as:

2 DEFINITIONS AND PRELIMINARIES 7

Definition 5 Given a collection T of rooted, respectively unrooted, trees, with
identical leaf set L, a rooted, respectively unrooted, tree T with leaves in L is
said to be compatible with T iff ∀Ti ∈ T , T � Ti|L(T). If there is a tree T
compatible with T s.t. L(T) = L, i.e. that is a common refinement to all trees
in T , then the collection T is simply said to be compatible. Note that this is
generally not the case and it is thus interesting to find a maximum compatible
tree of T , defined as a tree compatible with T that contains a maximum number
of leaves. Such a tree is denoted MCT (T). The corresponding optimization
problem is stated as follows:

Name: Maximum Compatible Tree (MCT)

Input: A collection T = {T1, T2, . . . , Tk} of k trees (all rooted or all unrooted)
with identical leaf set L of cardinality n.

Task: Find a maximum compatible tree of T .

Fig. 1 shows an example of a tree MAST (T) and a tree MCT (T) for a collection
of two rooted trees. Note that for all collections T , a maximum compatible tree
of T includes at least as many leaves as a maximum agreement subtree of T .
Also note that the tree MAST (T), and similarly MCT (T), may not be unique,
so then the notations MAST (T) and MCT (T) denote any single tree among the
possible trees. However, the number of leaves in a maximum agreement subtree,
respectively maximum compatible tree, of a collection T is unique and denoted
#MAST (T), respectively #MCT (T). Note also that the MCT problem is
equivalent to MAST when input trees are binary. However, as stated before,
MCT is of particular interest when considering evolutionary trees that are not
binary as input.

The particular case where #MAST (T) = #L arises whenever all trees in T
are isomorphic. Similarly, #MCT (T) = #L occurs whenever the collection T
is compatible.

From now on, by default, leaves are denoted by ℓ, rooted trees are denoted
by T and unrooted trees are denoted by U . In a similar way, collections of
rooted trees, respectively unrooted trees, are denoted T , respectively U .

2.2 Other formalisms to describe trees

Rooted trees can be described in terms of rooted triples and fans:

Definition 6 (Triples and fans) Let T be a rooted tree.
For any three distinct leaves ℓ, ℓ′, ℓ′′ ∈ L(T), there are only three possible bi-

nary shapes for T |{ℓ, ℓ′, ℓ′′}, denoted, respectively, ℓ|ℓ′ℓ′′, ℓ′|ℓℓ′′ or ℓ′′|ℓℓ′, depend-
ing on their innermost grouping, respectively, {ℓ′, ℓ′′}, {ℓ, ℓ′′} or {ℓ, ℓ′}. These
trees are called rooted triples (or resolved triples). Alternatively T |{ℓ, ℓ′, ℓ′′} can
be a fan (also called unresolved triple), which is the tree in where the root is
directly connected to the three leaves. The fan on the leaves {ℓ, ℓ′, ℓ′′} is denoted
(ℓ, ℓ′, ℓ′′).

We define rt(T), respectively f(T), to be the set of rooted triples, respectively
fans, induced by the leaves of a tree T . We extend these definitions to define

2 DEFINITIONS AND PRELIMINARIES 8

rooted triples and fans of a collection T of rooted trees: rt(T) :=
⋂

Ti∈T
rt(Ti)

and f(T) :=
⋂

Ti∈T
f(Ti).

For example, in Fig. 1:

• rt(T2) = {b|ad, c|ad, e|ad, e|ab, e|ac, e|bd, e|cd, e|bc},

• f(T2) = {(a, b, c), (b, c, d)},

• rt(T) = {e|ab, e|ac, e|bc},

• f(T1) is empty, hence also is f(T).

Given a rooted tree T , note that the lca relationships enable us to know
which rooted triple or fan is induced by T . Hence, given ℓ, ℓ′, ℓ′′ ∈ L(T),

• ℓ|ℓ′ℓ′′ ∈ rt(T) iff lcaT (ℓ′, ℓ′′) is a node strictly below lcaT (ℓ, ℓ′, ℓ′′) and

• (ℓ, ℓ′, ℓ′′) ∈ f(T) iff lcaT (ℓ, ℓ′) = lcaT (ℓ, ℓ′′) = lcaT (ℓ′, ℓ′′).

Note also that a fan is compatible with any rooted triple having the same set
of leaves. However, two different rooted triples on the same set of leaves are
incompatible.

We now recall the translation in terms of triples and fans of the relations
between trees defined in Sect. 2.1:

Lemma 1 Let T be a collection of rooted trees with identical leaf set L and let
T , T ′ be two rooted trees.

(i) T is an agreement subtree of T iff rt(T) ⊆ rt(T) and f(T) ⊆ f(T).

(ii) T is isomorphic to T ′ iff rt(T) = rt(T ′) and f(T) = f(T ′).

(iii) T refines T ′ iff rt(T ′) ⊆ rt(T) and L(T) = L(T ′).

(iv) T is compatible with T iff L(T) ⊆ L and ∀Ti ∈ T , rt(Ti|L(T)) ⊆ rt(T).

Proof. (i) is [15, Lem. 6.6]. (ii) derives from (i) and is the rooted equivalent
of [3, Thm. 2]. By [21, Thm. 1], T |L(T ′) refines T ′ iff rt(T ′) ⊆ rt(T) and
L(T ′) ⊆ L(T). From that we deduce (iii). Let us now prove (iv).

T is compatible with T means that

∀Ti ∈ T T � Ti|L(T)

by (iii), this is equivalent to

∀Ti ∈ T
(

L(Ti|L(T)) = L(T) and rt(Ti|L(T)) ⊆ rt(T)
)

which is equivalent to

L(T) ⊆ L and
(

∀Ti ∈ T rt(Ti|L(T)) ⊆ rt(T)
)

.

2 DEFINITIONS AND PRELIMINARIES 9

2

Lemma 1-(i) means that T is an agreement subtree of T iff any restriction of T
to a set of 3 leaves is an agreement subtree of T . Similarly, Lem. 1-(iv), means
that T is a tree compatible with T iff any restriction of T to a 3-leaf set is a
tree compatible with T .

Definition 7 (Hard and soft conflicts) Let T , T ′ be two rooted trees.

• A hard conflict between T and T ′ is a 3-leaf set {ℓ, ℓ′, ℓ′′} ⊆ L(T)∩L(T ′)
such that ℓ|ℓ′ℓ′′ ∈ rt(T) and ℓ′|ℓℓ′′ ∈ rt(T ′).

• A soft conflict between T and T ′ is a 3-leaf set {ℓ, ℓ′, ℓ′′} ⊆ L(T) ∩ L(T ′)
such that ℓ|ℓ′ℓ′′ ∈ rt(T) and (ℓ, ℓ′, ℓ′′) ∈ f(T ′).

Let T be a collection of rooted trees. A hard, respectively soft, conflict in T is
a hard, respectively soft, conflict between two trees of T .

For example, in Fig. 1:

• T1 and T2 have a hard conflict on {a, c, d} (since d|ac ∈ rt(T1), while
c|ad ∈ rt(T2)) and,

• T1 and T2 have a soft conflict on {a, b, c} (since c|ab ∈ rt(T1), while
(a, b, c) ∈ f(T2)).

The previous definitions together with Lem. 1 have the following straight-
forward consequences:

Proposition 1 ([22, 15, 16, 8]) Let T be a collection of rooted trees on the
same leaf set.

(i) {ℓ, ℓ′, ℓ′′} is a hard or soft conflict in T if and only if there is no agreement
subtree T of T s.t. {ℓ, ℓ′, ℓ′′} ⊆ L(T).

(ii) {ℓ, ℓ′, ℓ′′} is a hard conflict in T if and only if there is no compatible tree
T with T s.t. {ℓ, ℓ′, ℓ′′} ⊆ L(T).

Another well-known alternative description of rooted trees, is as a set of
clusters (see e.g. [23]):

Definition 8 (Clusters) Let T be a rooted tree and v be an internal node of
T , then the set of leaves L(v) is called the cluster of T induced by v. A cluster
is also commonly called a clade in phylogenetics. Let Cl(T) denote the set of
clusters of a tree T , defined as the clusters induced by all internal nodes of T .

For example, in Fig. 1:

• Cl(T1) = {{a, b}, {d, e}, {a, b, c}, {a, b, c, d, e}} and

• Cl(T2) = {{a, d}, {a, b, c, d}, {a, b, c, d, e}}.

2 DEFINITIONS AND PRELIMINARIES 10

Here, we do not need to consider single leaves as clusters, unlike the practise in
[24, 23].

When dealing with unrooted trees, splits or bipartitions play the role that
clusters play for rooted trees. In the unrooted context, there is a well-known
characterization of a minimum refinement of a compatible collection of trees
[25, 20, 23]. Here, we require a version of this result applying to rooted trees.

Lemma 2 (Minimum refinement) Let T = {T1, T2, . . . , Tk} be a collection
of rooted trees on a leaf set L and let T be a rooted tree on L. The three following
assertions are equivalent:

(i) T is a minimum refinement of T (that is any tree T ′ refining T also refines
T),

(ii) Cl(T) = Cl(T1) ∪ Cl(T2) ∪ . . . ∪ Cl(Tk),

(iii) rt(T) = rt(T1) ∪ rt(T2) ∪ . . . ∪ rt(Tk).

Moreover, if T is compatible then there exists a minimum refinement of T .

Proof. See Appendix 6. 2

2.3 Rooting and unrooting collections of trees

Definition 9 Given an unrooted tree U and ℓ ∈ L(U), U−ℓ is the rooted tree on
L(U)−{ℓ} obtained by rooting U at leaf ℓ and then removing ℓ and its incident
edge. Let U be a collection of unrooted trees and ℓ a leaf common to all trees of
U , the collection of rooted trees {U−ℓ : U ∈ U} is denoted U−ℓ.

Conversely, given a rooted tree T and a leaf ℓ /∈ L(T), define T +ℓ as the
unrooted tree on L(T) ∪ {ℓ} obtained by grafting ℓ at the root of T by a new
edge and unrooting the tree. Let T be a collection of rooted trees and a leaf ℓ
not appearing in any tree of T , the collection of unrooted trees {T +ℓ : T ∈ T }
is denoted T +ℓ.

For example, considering the tree U in Fig. 2 and leaf f ∈ L(U), then tree
U−f is the tree T2 in Fig. 1. Reciprocally, considering this tree T2, then tree
T +f

2 is tree U in Fig. 2.
Clearly, the ways of rooting and unrooting trees defined above are symmetric.

More formally:

Lemma 3

(i) Let U be an unrooted tree and ℓ ∈ L(U). Then U =
(

U−ℓ
)+ℓ

.

(ii) Let T be a rooted tree and ℓ /∈ L(T). Then T =
(

T +ℓ
)−ℓ

.

Isomorphism and refinement relations between trees are also conserved by
rooting or unrooting the trees in the same way:

2 DEFINITIONS AND PRELIMINARIES 11

Lemma 4
Let U1, U2 be two unrooted trees s.t. L(U1) ⊆ L(U2) and let ℓ be a leaf appearing
in U1 (and U2):

U−ℓ
1 ⊑ U−ℓ

2 ⇐⇒ U1 ⊑ U2 , (1)

U−ℓ
1 � U−ℓ

2 ⇐⇒ U1 � U2 . (2)

Let T1, T2 be two rooted trees s.t. L(T1) ⊆ L(T2) and let ℓ be a leaf not appearing
in T2 (and T1):

T1 ⊑ T2 ⇐⇒ T +ℓ
1 ⊑ T +ℓ

2 , (3)

T1 � T2 ⇐⇒ T +ℓ
1 � T +ℓ

2 . (4)

Proof. (1) results from the fact that the tree modifications to go from U1, U2 to
U−ℓ

1 , U−ℓ
2 , or reciprocally, preserve the isomorphism between U1 and U2|L(U1).

Concerning (2), U−ℓ
1 � U−ℓ

2 means that U−ℓ
2 can be obtained from U−ℓ

1 by
contracting some edges. Contracting these same edges in the unrooted tree U1

leads to U2, and thus U1 � U2. The converse holds for the same reason.
(3) and (4) follow immediately from (1) and (2) by Lem. 3-(i). 2

For collections of trees, the two previous lemmas have the following conse-
quences that will play a role for solving MAST and MCT on unrooted trees:

Lemma 5

(i) Let T be a collection of rooted trees with identical leaf set L, let ℓ be a
leaf not in L and let T be an agreement subtree of T , respectively a tree
compatible with T . Then, T +ℓ is an agreement subtree of T +ℓ, respectively
a tree compatible with T +ℓ.

(ii) Let U be a collection of unrooted trees with identical leaf set L, let U be
an agreement subtree of U , respectively a tree compatible with U , and let
ℓ ∈ L(U). Then, U−ℓ is an agreement subtree of U−ℓ, respectively a tree
compatible with U−ℓ.

Proof. A direct consequence of Lem. 3 and 4. 2

This induces a relation between the sizes of maximum agreement subtrees,
respectively maximum compatible trees, of collections of unrooted trees and
corresponding collections of rooted trees:

Lemma 6 Let U be a collection of unrooted trees with identical leaf set L, and
let ℓ ∈ L:

(i)
#MAST (U) ≥ #MAST (U−ℓ) + 1 (5)

and equality holds iff ℓ appears in some maximum agreement subtree of U .

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

(ii)
#MCT (U) ≥ #MCT (U−ℓ) + 1 (6)

and equality holds iff ℓ appears in some maximum compatible tree of U .

Proof. (i) Let M := #MAST (U) and Mℓ := #MAST (U−ℓ). Let T :=
MAST (U−ℓ). By Lem. 5-(i), the unrooted tree T +ℓ is an agreement subtree

of the collection
(

U−ℓ
)+ℓ

which is equal to U by Lem. 3. Hence, we have
M ≥ #T +ℓ = Mℓ + 1, i.e. (5).

Suppose ℓ appears in no maximum agreement supertree of U . In this case
T +ℓ cannot be a maximum agreement subtree of U , and thus we have M >
#T +ℓ = Mℓ + 1: inequality (5) is strict.

Conversely, suppose ℓ appears in some maximum agreement subtree U of
U . By Lem. 5-(ii), the rooted tree U−ℓ is an agreement subtree of U−ℓ. Hence,
we have Mℓ ≥ #U−ℓ = M − 1. Together with (5), this yields M = Mℓ + 1:
inequality (5) is an equality.

The proof of (ii) is similar. 2

In the next section, we describe linear time algorithms that will be used
as subroutines in efficient FPT algorithms (see Sect. 4) for MAST and MCT

problems.

3 Linear time algorithms for finding a conflict or

checking isomorphism, respectively compati-

bility of trees

Prop. 1 shows that the identification of conflicts between two input trees is
essential to solve MAST and MCT. This suggests extending the algorithms
of [19], respectively [20] to identify a conflict, in the case of non-isomorphism,
respectively incompatibility. Identifying such conflicts is the basis of an approxi-
mation algorithm [3] and of an FPT algorithm [16] for MAST. Also, [8] improve
ideas of [3] to propose a conflict-based approximation algorithm for MCT.

Concerning the running time, [16] use a subroutine to check the isomorphism
of two rooted trees or otherwise identify a conflict, that runs in O(n log n) time.
[8] describe data structures that enable in time O(n2) to check the compatibility
of two rooted trees or otherwise identify a conflict. In this section, we provide
algorithms with better running time than the ones cited above:

• an O(n) time algorithm to check that two rooted trees are isomorphic or
otherwise identify three leaves on which the trees conflict;

• an O(n) time algorithm to check that two rooted trees are compatible or
otherwise identify three leaves on which the trees conflict. Moreover, in
case of compatibility, the algorithm actually returns a certificate, i.e. a
tree refining the input trees. This certificate is minimum (see Thm. 2).

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

In each case, it is outlined how linear time algorithms follow also for unrooted
trees (Sect. 3.3) and for collections of more than two trees.

3.1 The Check-Isomorphism-or-Find-Conflict algorithm

Let T = {T1, T2} be a collection of two rooted trees with identical leaf set L
of cardinality n. We detail here an algorithm called Check-Isomorphism-

or-Find-Conflict(T) that checks whether T1 and T2 are isomorphic or al-
ternatively identifies a hard or soft conflict. This algorithm is obtained by
modification of the linear time tree isomorphism algorithm proposed by [19] for
leaf-labelled trees and extended by [20] to more general trees. Note that the
algorithm of [19, 20] does not find a conflict when the input trees are not iso-
morphic, but we show here that it can be modified to achieve this goal while
preserving linear time complexity.

The algorithm of [19] implicitly relies on nodes of a tree that have only leaves
as children. Such a node is called a cherry.

Lemma 7 ([19]) Let T1, T2 be two isomorphic trees and let v1 be a cherry in
T1. Then, there is a cherry v2 ∈ T2 s.t. L(v1) = L(v2).

In case of non-isomorphism, the following result states how a conflict can be
identified:

Lemma 8 Let v1 be a cherry in a tree T1, let ℓ ∈ L(v1) and v2 be the parent
node of ℓ in a tree T2. There is a conflict between T1 and T2 involving ℓ whenever
L(v1) 6= L(v2) or v2 is not a cherry. Moreover, knowing v1 and ℓ, such a conflict
can be identified in O(n) time.

Proof. If L(v1) 6= L(v2) then there are two cases:

(i) #
(

L(v1) ∩ L(v2)
)

= 1, i.e. ℓ is the only common leaf of v1 and v2. Then,
L(v1)− L(v2) 6= ∅ and L(v2)− L(v1) 6= ∅. Picking any ℓ′ ∈ L(v1)− L(v2)
and any ℓ′′ ∈ L(v2) − L(v1), the set {ℓ, ℓ′, ℓ′′} is a hard conflict between
T1 and T2 since ℓ′′|ℓ′ℓ ∈ rt(T1) while ℓ′|ℓ′′ℓ ∈ rt(T2).

(ii) #
(

L(v1) ∩ L(v2)
)

> 1. Let ℓ′ 6= ℓ, ℓ′ ∈ L(v1) ∩ L(v2). Since L(v1) 6=
L(v2), we can pick a leaf ℓ′′ in the symmetrical difference L(v1) ⊖ L(v2).
Then {ℓ, ℓ′, ℓ′′} is a conflict. More precisely, if ℓ′′ ∈ L(v1) − L(v2) then
{ℓ, ℓ′, ℓ′′} is a soft conflict because (ℓ, ℓ′, ℓ′′) ∈ f(T1) while ℓ′′|ℓℓ′ ∈ rt(T2).
Otherwise, ℓ′′ ∈ L(v2) − L(v1) and the conflict is soft if lcaT2

(ℓ′, ℓ′′) = v2

(because (ℓ, ℓ′, ℓ′′) ∈ f(T2) while ℓ′′|ℓℓ′ ∈ rt(T1)), and hard otherwise
(because ℓ′′|ℓℓ′ ∈ rt(T1) while ℓ|ℓ′ℓ′′ ∈ rt(T2)).

Now consider the case where v2 is not a cherry and assume also that L(v1) =
L(v2) (otherwise the first part of the proof applies). Since v2 is not a cherry,
it has a non-leaf child c. Let ℓ′, ℓ′′ be any two leaves in L(c), then {ℓ, ℓ′, ℓ′′}
is a soft conflict because ℓ|ℓ′ℓ′′ ∈ rt(T2), while (ℓ, ℓ′, ℓ′′) ∈ f(T1) (since L(c) ⊆
L(v2) = L(v1) and v1 is a cherry). Moreover, if T1, T2 conflict, a simple linear

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

time search of the subtrees rooted at v1 and v2 is sufficient to identify three
leaves ℓ, ℓ′, ℓ′′ involved in a conflict, according to the guidelines given above. 2

Sketch of the algorithm.
Lem. 7 suggests examining cherries of a tree in a bottom-up process. Given a
cherry v1 ∈ T1, choose ℓ ∈ L(v1) and let v2 be the parent node of leaf ℓ in T2.
If v2 is not a cherry or if L(v1) 6= L(v2) then Lem. 8 states that three leaves
ℓ, ℓ′, ℓ′′ on which T1 and T2 conflict can be identified in O(n) time. If, however,
v2 is a cherry and L(v1) = L(v2), then the cherries can be eaten in both trees.
This means that leaves hanging from v1 and v2 are deleted, turning v1 and v2

into leaves to which a same label is assigned (the label is arbitrarily chosen in
L(v1) = L(v2)). Note that this modification of the tree can in turn transform
the parent node of v1, respectively v2, in a cherry node.

The processing of cherries in T1 is iterated until the trees are both reduced
to a single leaf with the same label (then we know that the input trees are
isomorphic) or until a conflict is identified (that is also present in the original
trees). For this algorithm to be used as a subroutine of other algorithms in the
paper, we assume that the tree T1 is returned in the case where isomorphism
is detected, and otherwise that the three leaves of the identified conflict are
returned.

Theorem 1 Let T1, T2 be two rooted trees with identical leaf set L of cardinality
n. In time O(n) algorithm Check-Isomorphism-or-Find-Conflict({T1, T2})
either concludes that the trees are isomorphic whenever this is the case, or oth-
erwise identifies a hard or soft conflict between T1, T2.

Proof. Correctness stems from Lemmas 7 and 8, and from the fact that only
identical parts of the trees are eaten. In that case, assigning to v1 and v2 the
same label chosen in L(v1) = L(v2) guarantees that the modified trees will
be isomorphic iff the original trees are isomorphic. Moreover, if {ℓ, ℓ′, ℓ′′} is a
conflict between the modified trees then {ℓ, ℓ′, ℓ′′} is also a conflict in the original
trees.

Concerning the running time, computing and maintaining the list of cherries
in T1 costs O(n) time globally. Given a cherry v1 ∈ T1, finding the corresponding
node v2 ∈ T2 is O(1). Eating v1 and v2 costs a time proportional to the number
of their children, hence O(n) amortized time over the whole process. When non-
isomorphism is detected, identifying a conflict requires O(n) time (cf Lem. 8). 2

Consider now the case of a collection T = {T1, T2, . . . , Tk} of k trees on n
leaves. The problem is still solvable in linear time O(kn): run the above-stated
algorithm successively on all pairs (T1, Ti), where 1 < i ≤ k, until a conflict is
found (and then returned) or all trees are processed (and then the tree T1 is
returned).

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

3.2 The Find-Refinement-or-Conflict algorithm

Let T = {T1, T2} be a collection of two input trees with identical leaf set L of
cardinality n. We detail here an O(n) algorithm, called Find-Refinement-

or-Conflict({T1, T2}), that either identifies a hard conflict between trees of
T or returns a minimum refinement of T .

Similarly to the previous section, this algorithm could be obtained by di-
rect modification of an existing algorithm that decides whether two trees are
compatible [19, 8]. However, the algorithm of [8] maintains O(n2)-sized data
structures (to identify conflicts) when we aim for linear time. Moreover, the
linear time algorithm of [19] performs several passes over the trees (first refining
T1 according to T2, then T2 according to T1, and finally doing an isomorphism
check of the resulting trees). Instead, we present a somewhat different linear
time algorithm performing a single pass over the trees and identifying a conflict
in case of non-compatibility.

Since soft conflicts are allowed by compatibility, a cherry v1 ∈ T1 does not
always correspond to a cherry v2 ∈ T2 with the same leaf set. Given v2 the
parent in T2 of a leaf ℓ ∈ L(v1), cases where L(v1) ⊆ L(v2) or L(v2) ⊆ L(v1) are
now allowed. Moreover, v2 is no longer required to be a cherry1. We use the
following result, which plays for compatibility the same role as Lem. 7 plays for
isomorphism:

Lemma 9 Let {T1, T2} be a compatible collection, v1 a cherry in T1 and v2 :=
lcaT2

(L(v1)). Then there is a subset C of (at least two) children of v2 such that
L(v1) = L(C).

Proof. Let C be the set of children c of v2 s.t. L(c) ∩ L(v1) 6= ∅.
First, let ℓ be any leaf in L(v1). Because v2 is a proper ancestror of ℓ, there

is a child c of v2 on the path from ℓ to v2. Hence, ℓ ∈ L(c) ∩ L(v1), thus c ∈ C
and ℓ ∈ L(c) ⊆ L(C). It follows that L(v1) ⊆ L(C). Now, if C was to contain a
single child of v2, then this child would be a common ancestor of L(v1) and thus
v2 would not be the least common ancestor of L(v1). Thus, we have #C ≥ 2.

Finally, suppose that L(v1) is a proper subset of L(C). Then, there is c ∈ C
s.t. ∃ ℓ ∈ L(c) − L(v1). Consider ℓ′ ∈ L(c) ∩ L(v1), c′ ∈ C s.t. c′ 6= c and
ℓ′′ ∈ L(c′) ∩ L(v1): ℓ′′|ℓℓ′ ∈ rt(T2) while ℓ|ℓ′ℓ′′ ∈ rt(T1). Hence, by Prop. 1-(ii),
{T1, T2} is not compatible which is a contradiction. Therefore, L(v1) = L(C). 2

Sketch of algorithm.
Let T = {T1, T2} be a collection of two input trees with identical leaf set L. The
algorithm gradually prunes parts of T1 and T2, repeatedly eating cherries in T1

and corresponding parts in T2. This process ends when the trees are reduced
to a single leaf or a (hard) conflict is found. At each step, a cherry v1 in T1 is
chosen, and the corresponding node v2 := lcaT2

(L(v1)) identified, as well as the
subset C of v2’s children c such that L(c) ∩ L(v1) 6= ∅. Then either:

1e.g. using parenthetical notation, T1 = (ℓ1, ℓ2, (ℓ3, ℓ4)) and T2 = ((ℓ1, ℓ2), ℓ3, ℓ4), admit
((ℓ1, ℓ2), (ℓ3, ℓ4)) as common refinement.

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

(i) L(v1) = L(C) = L(v2) (i.e. C is the set of all children of v2), then subtrees
S(v1) and S(v2) are pruned;

(ii) L(v1) = L(C) ⊂ L(v2), then subtree S(v1) and the set S of subtrees S(c),
with c ∈ C, are pruned;

(iii) L(v1) 6= L(C), then a conflict involving a leaf ℓ ∈ L(C) − L(v1) and two
leaves ℓ′, ℓ′′ ∈ L(v1) is identified (see proof of Lem. 9) and returned.

Pruning a subtree S(v1), S(v2) or a set S of subtrees means deleting all its nodes
and replacing it (the subtree or the whole set S under v2) by a single leaf. Both
in T1 and T2 this new leaf is given a new label, say ℓ∗ (which changes at every
step).

To build the refinement of T1 and T2, a forest of trees is maintained, initially
containing a leaf-tree for each leaf in L. Unlike T1 and T2, trees of the forest
have labels on their internal nodes. At each step of the algorithm, some trees in
the forest are assembled to mimic subtrees of T1 and T2 that are pruned (cases
(i) and (ii)). Trees to assemble are identified thanks to the label of their root,
which is found at a leaf in the part of T1 and T2 to reproduce. Every such
assembly adds a new cluster of T1 or T2 in the forest. The clusters formed by
trees in the forest are thus all clusters identified by the algorithm in the two
input trees. More precisely, each tree of the forest is a minimum refinement of
a subtree in T1 and the corresponding subtree in T2. As the assembling process
goes on, the number of trees in the forest decreases and each tree contains more
and more leaves, i.e. is a refinement of a larger part of T1 and T2. When only
one tree T remains in the forest, it contains all leaves of T1 and T2 and is a
minimum refinement of the entire T1 and T2 trees.

The pseudo-code Find-Refinement-or-Conflict({T1 , T2}) (see Algorithm 1)
details this process that either identifies a hard conflict between T1 and T2, or
returns a tree minimally refining them.

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

Algorithm 1: Find-Refinement-or-Conflict({T1 , T2})
Input: Two rooted trees T1, T2 on the same leaf set L.

Result: A hard conflict between T1 and T2, or a tree T on L minimally
refining T1 and T2.

F ← L /* F is a forest of rooted trees (initially leaf-trees) */
Let Ch be the list of cherries in T1

1 while Ch 6= ∅ do
Choose v1 in Ch

2 Let ℓ∗ be a new label, v a new node in F labelled ℓ∗ and let v2 =
lcaT2

(L(v1))
C ← ∅ /* C are the subtrees of v2 to prune because of v1 */

3 P ← L(v1) /* P are leaves leading to identify new subtrees to prune
*/

4 foreach leaf ℓ ∈ L(v1) do
5 if ℓ ∈ P then
6 Let c be the child of v2 s.t. ℓ ∈ L(c)
7 foreach leaf ℓ′′ ∈ L(c) do
8 if ℓ′′ ∈ P then P ← P − {ℓ′′}

else
/* case (iii) in the text */

9 Let ℓ′ be a leaf in L(v1)− L(c)
Let T , respectively T ′, respectively T ′′, be the tree of F
whose root is labelled by ℓ, respectively ℓ′, respectively
ℓ′′

10 ℓ← a leaf of T , ℓ′ ← a leaf of T ′, ℓ′′ ← a leaf of T ′′

return {ℓ, ℓ′, ℓ′′} /* conflict on {ℓ, ℓ′, ℓ′′} */

11 Add to F a tree Tc that is a copy of S(c) then connect Tc

to other trees in F by merging respectively each of its leaves
with the root of the tree having the same label

12 Add an edge in F making Tc a new child subtree of v.
Add c to C

13 Replace S(v1) in T1 by a new leaf labelled ℓ∗ and add its parent to
Ch if it becomes a cherry

14 foreach node c ∈ C do Remove the subtree S(c) from T2

15 if v2 has become a leaf in T2 then /* case (i) in the text */ Label
v2 by ℓ∗

16 else /* case (ii) in the text */ Graft a new leaf labelled ℓ∗ by a new
edge under v2

return a tree T in F /* in fact, there is only one tree left in F at that
stage */

Theorem 2 Let T1, T2 be two rooted trees with identical leaf sets, in time O(n)
algorithm Find-Refinement-or-Conflict({T1 , T2}) either returns a tree T

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

minimally refining T1 and T2 if such a tree exists, or otherwise returns a hard
conflict between T1 and T2.

Proof.
Correctness. (i) First consider the case where the algorithm returns a tree T .
Note that the progressive eating of T1 (line 13) guarantees that each internal
node of the original T1 becomes at some step a cherry v1 in the modified T1.
Moreover, during the processing of v1 at some iteration of loop 1, the updates
of F (lines 2,11,12) guarantee that F contains a tree Tv rooted at v s.t. L(Tv)
is the cluster of the original T1 induced by v1 when the inner loop (initiated at
line 4) ends. Hence, in particular, after processing the root of T1, there is a tree
in F with leaf set L. Note in passing that this is the only tree remaining in F
at that point since the set of leaves of trees in F is always exactly L (this is true
when F is created and after each update of F). Hence, returning the only tree
left in F at the end of the algorithm gives a tree T s.t. L(T) = L.

F is initialized with trees of size one, each one being a leaf labelled by an
element of L, i.e. containing no cluster. Then changes in the forest only consist
in connecting some of its trees, which adds new clusters and never removes
already formed clusters. The assembling of trees continues until they all have
been connected into one tree T that hence contains all clusters formed in F
during execution of the algorithm. We now show that Cl(T) = Cl(T1) ∪ Cl(T2),
i.e. that all clusters of T1 and T2 are formed in F , and only those.

• Clusters of T1: let C1 be a cluster of T1 induced by an internal node
v1 of T1. The gradual eating of cherries of T1 guarantees that v1 is the
considered node at an iteration of loop 1. During this iteration, after the
end of loop 4, F contains a new tree, say Tv, with root v s.t. L(Tv) = L(v1),
i.e. C1 is induced by a tree in F .

• Clusters of T2: each cluster C2 of Cl(T2) is either induced by the node c
in T2 considered on line 6 or induced by a node inside S(c). In both cases,
after the execution of line 11, a copy of C2 has been added in a tree of F .

This shows that every cluster of T1 and T2 is formed in F at some step, i.e. is
present in the tree T output by the algorithm. Moreover, new clusters are only
formed in F due to changes done at line 11 and line 12. These changes in F
respectively involve:

• creating in F a copy of the subtree S(c) of T2, whose leaves are merged
with roots of trees previously in F having respectively the same label.
Each such label either belongs to L or is a label ℓ∗ corresponding to an
internal node v in the original T2. In the latter case, the tree of F with
root labelled by ℓ∗ has L(v) as leaf-set. This guarantees that line 11 adds
in F only clusters present in the original tree T2;

• adding existing trees or newly formed trees as child subtrees of the node
v of F , until it becomes the root of a tree having L(v1) as leaves. Thus,
these executions of line 12 form in F a cluster of T1.

3 LINEAR TIME ALGORITHMS FOR FINDING A CONFLICT OR CHECKING ISOMORPHISM, RESPECTIVEL

Therefore, only clusters present in T1 and T2 are formed in F .
As a result, if the algorithm returns a tree T , this tree is s.t. Cl(T) =

Cl(T1) ∪ Cl(T2). By Lem. 2, this implies that T is a minimum refinement of T1

and T2.
(ii) Finally, consider the case where the algorithm returns a conflict.

The algorithm returns a conflict ℓ, ℓ′, ℓ′′ whenever a leaf ℓ′′ /∈ P , i.e. ℓ′′ /∈ L(v1)
is found in the subtree rooted at a child c of v2 := lcaT2

(L(v1)). But since
L(c) contains both a leaf in ℓ ∈ L(v1) and leaf ℓ′′ /∈ L(v1) then there is no
subset C of v2 children s.t. L(C) = L(v1). Hence, by Lem. 9 there is a conflict
between T1 and T2 in their current state (recall that these trees are gradually
reduced during the algorithm). Indeed, let ℓ′ ∈ L(v1)− L(c) (such a leaf exists
by definition of v2), then ℓ′′|ℓℓ′ ∈ rt(T1) while ℓ′|ℓℓ′′ ∈ rt(T2). Now if {ℓ, ℓ′, ℓ′′}
is a conflict between T1 and T2, the way trees are gradually reduced by the
algorithm on lines 13-16 implies that there is a conflict in the original trees T1

and T2. Such a conflict is returned by the algorithm by replacing ℓ, respectively
ℓ′, ℓ′′ by a leaf of the original subtree it represents (the tree of the forest to
which ℓ, respectively ℓ′, ℓ′′, belongs is a refinement of a subtree of the original
tree T1 and of a subtree of the original tree T2). Thus, if the algorithm returns
a conflict, this is a conflict between the input trees T1 and T2.
Running time. The algorithm is traversing T1, T2 a constant number of times,
spending a constant amount of time at each of the O(n) nodes and edges. Nodes
v2 are identified in O(n) amortized time by exploring a different subtree of T2

each time (or using dynamic data structures proposed by [26]). The list of cher-
ries in T1 is maintained in O(n) globally, sets of subtrees S(c) corresponding
to processed cherries of T1 are identified and removed in O(n) globally. See
Appendix 5 for more details. 2

We now generalize Thm. 2: given a collection T = {T1, T2, . . . , Tk} of k
rooted trees with leaf set L of cardinality n, we want to compute a minimum
refinement of T if T is compatible. Otherwise, a hard conflict between two trees
of T has to be identified.

Note that we can not proceed exactly as done in the previous section for
isomorphism, because the compatibility relation is not transitive. However,
taking minimum refinement of (compatible) trees is an associative operation.
Thus, we can iterate the process described above for two trees in the following
way: choose two trees of T and replace them in T by their minimum refinement
output by the process. Repeat that operation until either a conflict is found or
until T has only one tree left, which is the minimum refinement of the initial
collection. In the first hand, the running time is clearly O(kn) since at most
k−1 pairs of trees with n leaves are considered. On the other hand, Lem. 2-(iii)
ensures that the set

⋃

Ti∈T
rt(Ti) is left unchanged after each iteration of the

algorithm. Hence, if a hard conflict is returned then this hard conflict is present
between two trees of the original collection.

4 FIXED-PARAMETER TRACTABILITY OF MAST AND MCT 20

3.3 Dealing with unrooted trees

Let U be a collection of unrooted trees with identical leaf set L and let ρ ∈ L.
As suggested by [3, 8]:

• all (rooted) trees of the collection U−ρ are isomorphic iff all (unrooted)
tree of U are isomorphic and,

• the collection U−ρ is compatible iff the collection U is compatible.

Moreover, if {ℓ, ℓ′, ℓ′′} is a hard or soft conflict, respectively a hard conflict,
between two trees T1, T2 ∈ U−ρ, then the trees T +ρ

1 , T +ρ
2 which both belong

to U are such that T +ρ
1 |{ρ, ℓ, ℓ′, ℓ′′} and T +ρ

2 |{ρ, ℓ, ℓ′, ℓ′′} are not isomorphic,
respectively

{

T +ρ
1 |{ρ, ℓ, ℓ′, ℓ′′}, T +ρ

2 |{ρ, ℓ, ℓ′, ℓ′′}
}

is not compatible. Thus, using
the algorithms presented in this section on U−ρ, it is possible to check in linear
time whether all trees in U are isomorphic or compatible, and otherwise to
identify a quartet of conflicting leaves.

4 Fixed-Parameter Tractability of MAST and MCT

The previous section considered the problem of deciding whether trees of an
input collection conflict on the relative location of leaves, i.e. taxa. In most
practical cases, the answer is positive and one can then aim at producing a con-
sensus of the input trees by removing a minimum set of conflicting leaves, that
is solving the MAST and MCT problems. The present section proposes exact
algorithms to solve these problems. They use as subroutines the algorithms
presented in the previous section.

The MAST and MCT problems are both NP-hard in general. However,
different algorithms have been proposed for MAST with a running time that
is exponential only on a given parameter, for instance the degree. [16] showed
that a parameterized version of MAST is fixed-parameter tractable (FPT).
More formally, a problem is FPT whenever it can be solved by an algorithm
with O(f(p)Nα) running time, where p is the parameter, N is the size of the
input, α is a constant (independant of both p and N) and f is an arbitrary func-
tion, though usually exponential [16]. The interest in designing fixed-parameter
algorithms is that for some practical instances, the value of the parameter is
known to be small. Hence, the exponential term hidden in the function f is
not penalizing that much the running time, which means that the problem is
tractable for that kind of instances.

We first consider the fixed-parameter tractability of MAST and MCT on
rooted trees. The parameterized version of MAST considered in [16, 17] is the
following search problem:

Name: Parameterized Rooted Maximum Agreement SubTree (PRMAST)
Input: A collection T = {T1, T2, . . . , Tk} of k rooted trees with identical leaf
set L of cardinality n.
Parameter: an integer p ≥ 0.

4 FIXED-PARAMETER TRACTABILITY OF MAST AND MCT 21

Task: Find an agreement subtree T of T s.t. #T ≥ n− p, if such a tree exists.

Similarly, we define

Name: Parameterized Rooted Maximum Compatible Tree problem
(PRMCT)
Input: A collection T = {T1, T2, . . . , Tk} of k rooted trees with identical leaf
set L of cardinality n.
Parameter: an integer p ≥ 0.
Task: Find a tree T compatible with T s.t. #T ≥ n− p, if such a tree exists.

On practical data, the value of p is likely to be reasonnably small. Indeed,
source trees are now usually inferred from lenghty molecular sequences and
through more and more accurate inference methods. Thus, trees inferred on a
same set of taxa and given as input to PRMAST and PRMCT are unlikely
to differ on the location of a large number of taxa. Moreover, confidence values
enable to detect and collapse edges with unsufficient statistical support, which
incidentally reduces the number of conflicts between the source trees.

Links between MAST, respectively MCT, and the Hitting Set problem
[3, 15, 16, 17], respectively [8], have suggested two ways to solve the former:
Section 4.1 describes a recursive method sketched in [16], whose complexity is
slightly improved here. Then, Sect. 4.2 describes a method explicitly solving
3-Hitting Set as a subproblem [16, 17]. These two methods lead to FPT
algorithms having complementary running times. Indeed, which approach is
the fastest depends on the particular values taken by p and n. Both meth-
ods were originally introduced for solving PRMAST. They also apply to solve
PRMCT as shown below. Moreover, Sect. 4.3 shows that the two methods can
be extended to deal with unrooted trees.

4.1 Recursive FPT algorithms

Starting from the remark that if any two trees of a collection have a conflict, then
the leaves involved in the conflict do not appear in any agreement subtree of the
whole collection (Prop. 1-(i)), a recursive algorithm for finding an agreement
subtree of an initial collection T of k rooted trees is the following [16]: identify
a conflict {ℓ, ℓ′, ℓ′′} between two input trees, then try alternatively to remove
one of ℓ, ℓ′, ℓ′′ from all trees of T and iterate on the three possible restricted
collections until a collection of isomorphic trees is obtained or until p leaves have
been removed. Hence, to solve PRMAST, we need a subroutine that checks
that k trees are isomorphic or otherwise returns a hard or soft conflict between
two of these trees. Algorithm Check-Isomorphism-or-Find-Conflict of
Sect. 3.1 can be used for this purpose. We call Recursive-Mast the resulting
recursive algorithm solving PRMAST.

To solve PRMCT, a similar algorithm can be used. It needs a subroutine
that returns a minimum refinement of a collection of k trees when such a tree ex-
ists, or otherwise returns a hard conflict between two trees of the collection. The

4 FIXED-PARAMETER TRACTABILITY OF MAST AND MCT 22

linear-time algorithm Find-Refinement-or-Conflict of Sect. 3.2 can be used
for this purpose. We call Recursive-Mct this algorithm solving PRMCT.
Note that the only difference between Recursive-Mast and Recursive-Mct

is that the former issues calls to Check-Isomorphism-or-Find-Conflict,
while the latter issues calls to Find-Refinement-or-Conflict. The pseudo-
code for Recursive-Mct is given in Algorithm 2.

Algorithm 2: Recursive-Mct(T , p)

Input: A collection T = {T1, T2, . . . , Tk} of k rooted trees with identical
leaf set L and an integer p ≥ 0.

Result: A tree T compatible with T s.t. #T ≥ #L − p if such a tree
exists or, otherwise, the empty tree ∅.

res← Find-Refinement-or-Conflict(T)
if res is a tree T then return T /* this tree is compatible with T */
/* Otherwise res is a set of three leaves that is a conflict in T */
if p > 0 then

foreach leaf ℓ ∈ res do
17 T ←Recursive-Mct

(

T |(L− {ℓ}), p− 1
)

18 if T 6= ∅ then return T

19 return ∅

Theorem 3

(i) Algorithm Recursive-Mast solves the PRMAST problem in O(3pkn)
time.

(ii) Algorithm Recursive-Mct solves the PRMCT problem in O(3pkn) time.

Proof.
Correctness. We give the proof of (ii), the proof of (i) is similar.
We proceed by induction on p. If p = 0, then the result of Recursive-Mct is
the result of the algorithm Find-Refinement-or-Conflict, which is correct.

If p > 0, and T is compatible, then Find-Refinement-or-Conflict re-
turns a minimum refinement of T , i.e. a tree of size #L ≥ #L−p and compatible
with T , which is correct.

If p > 0 and T is not compatible, then the result res of the algorithm Find-

Refinement-or-Conflict is a hard conflict {ℓ, ℓ′, ℓ′′} between two trees of
T .

By Prop. 1-(ii), this implies that there is no tree compatible with T includ-
ing all leaves of res. This means that there is a tree of size at least #L − p
and compatible with T iff there is a tree of size at least #L− p and compatible
with T |(L − {ℓ}), T |(L − {ℓ′}) or T |(L − {ℓ′′}). On line 17 of the algorithm
Recursive-Mct, are issued recursive calls on the three collections, whose re-
spective leaf sets are all of cardinality #L−1. By induction, each of these calls,
taking as input a collection with leaf set L̃ ∈ {L − {ℓ}, L − {ℓ′}, L − {ℓ′′}

}

,

4 FIXED-PARAMETER TRACTABILITY OF MAST AND MCT 23

returns a tree of size at least #L̃ − (p− 1) = #L − p and compatible with the
considered collection iff such a tree exists. There are two cases:

• the three recursive calls return an empty tree, which then means that
there is no tree of size at least #L−p and compatible with T and justifies
returning an empty tree on line 19;

• one of the three recursive calls returns a tree T of size at least #L−p and
compatible with the considered collection. Returning this tree on line 18
as a solution to (T , p) is correct.

Running time. The recursive calls in the algorithms Recursive-Mct form a
search tree of depth at most p (p is decreased by one at each recursive call until
it reaches 0) whose nodes have degree bounded by 3 (0 to 3 recursive calls are
issued at each execution of the pseudo-code). Hence, the search tree explored
contains at most O(3p) nodes. Moreover, by results of Sect. 3 each node is
processed in O(nk) because it requires a single call to Find-Refinement-or-

Conflict (restricting T to L− {ℓ} only costs O(k)). 2

For PRMAST, this improves on the complexity of [16] by a log n factor.
Concerning PRMCT, this is the first time that the problem is shown to be
FPT. The burden of the complexity depends only on the level of disagreement
between the input trees. When considering a collection of trees disagreeing on
few species, we obtain an efficient algorithm, whatever the size, number and
degree of the input trees.

4.2 Algorithms resorting explicitly to 3-Hitting Set

4.2.1 The Hitting Set problem

Let C be a collection of subsets of a ground set L. A hitting set of C is a set
H s.t. for all X ∈ C, H ∩X is non-empty. The corresponding search problem
is:
Name: Hitting Set

Input: A collection C of subsets of a finite ground set L and an integer p ≥ 0.

Task: Find a hitting set H of C s.t. #H ≤ p, if such a set exists.
Hitting Set is an alternate formulation of Set Cover. It is NP-complete
[27] and W[2]-complete for parameter p [28, Prop. 10].

The d-Hitting Set problem (where d is a fixed positive integer) is the
restriction of Hitting Set to instances where sets in C have cardinality d. The
d-Hitting Set problem is known to be fixed-parameter tractable, the best
current algorithm running in O(cp + #C) time where c = d− 1 + O(d−1) [29].

The particular cases where d = 2 and d = 3 have been extensively considered.
The 2-Hitting Set problem can be seen as an alternate formulation of the
Vertex Cover problem, for which there is very efficient FPT algorithms (see
[30] and references therein). For 3-Hitting Set, [29] give an algorithm running
in O(2.27p + #C) time, which is more efficient than the algorithm for general d.

4 FIXED-PARAMETER TRACTABILITY OF MAST AND MCT 24

4.2.2 Reducing PRMCT and PRMAST to 3-Hitting Set

PRMCT and PRMAST can be solved by reduction to 3-Hitting Set:

Proposition 2 Let T be a collection of rooted trees with identical leaf set L
and let H ⊆ L.

(i) Let C be the set of hard and soft conflicts in T : H is a hitting set of C iff
there is an agreement subtree of T with leaf set L−H.

(ii) Let C be the set of hard conflicts in T : H is a hitting set of C iff there is
a tree compatible with T with leaf set L−H.

Proof.
(i) If H is a hitting set of C then for every hard or soft conflict on three

leaves in T , at least one of these leaves is removed in L−H . Thus, all trees in
T |(L−H) induce the same triple and fan sets, i.e. by Lem. 1-(ii) are isomorphic.
These isomorphic trees on L −H are agreement subtrees of T . Conversely, let
T be an agreement subtree of T with leaf set L−H . Let X ∈ C, we have X ⊆ L
and X 6⊆ L −H by Prop. 1-(i). This implies X ∩H 6= ∅, hence H is a hitting
set of C.

(ii) If H hits all hard conflicts between trees of T , then trees in T |(L −H)
have no hard conflict. Thus, by Prop. 1-(ii), T |(L−H) is compatible, i.e. there
is a tree with leaf set L−H that is compatible with T . Conversely, let T be a
tree compatible with T having leaf set L−H , the same reasoning as the second
part of the proof of (i) applies thanks to Prop. 1-(ii) to show that H is a hitting
set of C. 2

Proposition 2-(i) is implicitly used in [17] and Prop. 2-(ii) in [8].

Theorem 4 PRMAST and PRMCT problems can be solved in O(2.27p+kn3)
time.

Proof. Knowing the rooted triples and fans induced by a tree can be done in
O(n3) [24]. Hence, knowing the set C of hard and soft conflicts (respectively
only hard conflicts) between the k input trees requires O(kn3) time. Using C as
input, the FPT algorithm of [29] either gives a hitting set H of size at most p
or concludes that no such set exists, in O(2.27p +#C) time, where #C = O(n3).
In the latter case, Prop. 2-(i), respectively Prop. 2-(ii), implies that there is
no feasible solution to PRMAST, respectively PRMCT. This conclusion is
reached in O(2.27p + kn3) time.

To solve PRMAST, when the algorithm of [29] returns a hitting set H of C,
then choose any tree Ti ∈ T and return Ti|(L−H). This tree, of at least n− p
size, is computed in time O(n) and is a solution for PRMAST, as induced by
Prop. 2-(i). To solve PRMCT from a hitting set H returned by the algorithm
of [29], compute the collection T |(L−H). Prop. 2-(ii) guarantees that there is
a tree compatible with T that has L−H as leaf set, i.e. that has at least n− p

4 FIXED-PARAMETER TRACTABILITY OF MAST AND MCT 25

leaves. Algorithm Find-Refinement-or-Conflict (described at the end of
Sect. 3.2) produces such a tree in O(kn) time. Thus, the most computational
intensive steps to obtain a solution to PRMCT are computing C and obtaining
H , i.e. PRMCT can be solved in O(2.27p + kn3) time. 2

The fact that PRMAST can be solved in O(2.27p + kn3) time is already
stated in [17].

4.3 Unrooted trees

We now consider variant of the problem PRMAST, respectively PRMCT, that
takes a collection of unrooted trees as input. We call PUMAST, respectively
PUMCT, the resulting problem (U is for Unrooted). Suppose given an algo-
rithm Find-Rooted-Tree that solves PRMAST, respectively PRMCT(e.g.,
see Sect. 4.1 and Sect 4.2). For each collection T of rooted trees with identical
leaf set L and for each integer p ≥ 0, Find-Rooted-Tree(T , p) returns

• the empty tree if #MAST (T) < #L − p, respectively if #MCT (T) <
#L− p,

• an agreement subtree of, respectively a tree compatible with, T of size at
least #L − p otherwise.

Results of Sect. 2.3 suggest that PUMAST, respectively PUMCT, on a
collection U of unrooted trees can be solved by n runs of Find-Rooted-Tree,
one call for each U−ℓ (ℓ ∈ L). This procedure would add an n factor to the
complexity for the rooted case. However, Algorithm 3 below solves PUMAST,
respectively PUMCT, with at most p + 1 calls to Find-Rooted-Tree.

Algorithm 3: Find-Unrooted-Tree(U , p)

Input: A collection U of unrooted trees with identical leaf set L and an
integer p ≥ 0.

Result: a solution to PUMAST, respectively PUMCT, if one exists,
the empty tree ∅ otherwise.

Choose arbitrarily L′ ⊆ L s.t. #L′ = p + 1
foreach ℓ ∈ L′ do

Tℓ ← Find-Rooted-Tree(U−ℓ, p)

if Tℓ 6= ∅ then return
(

Tℓ

)+ℓ

return ∅

We now prove the correctness of this algorithm:

Proposition 3 Given a collection U of unrooted trees with identical leaf set L
and an integer p ≥ 0, algorithm Find-Unrooted-Tree returns an unrooted
agreement subtree of U , respectively an unrooted tree compatible with U , of size
at least #L− p iff such a tree exists.

4 FIXED-PARAMETER TRACTABILITY OF MAST AND MCT 26

Proof. Assume that Find-Rooted-Tree solves the PRMAST. We show that
Find-Unrooted-Tree solves PUMAST (the proof for PRMCT / PUMCT

is similar).
Below, in a) we show that if #MAST (U) < #L−p then Find-Unrooted-

Tree(U , p) returns the empty tree. In b) we show that if #MAST (U) ≥ #L−p
then Find-Unrooted-Tree(U , p) returns a tree of size at least #L− p that is
an agreement subtree of U .

Suppose #MAST (U) < #L− p Then, for any ℓ ∈ L, by Lem. 6-(i), we have

#MAST (U−ℓ) + 1 ≤ #MAST (U) < #L− p ,

i.e. #MAST (U−ℓ) < (#L−1)−p. Since U−ℓ is a collection of rooted trees with
leaf set L − {ℓ} of cardinality #L − 1, the tree Tℓ returned by Find-Rooted-

Tree (U−ℓ, p) is the empty tree for all ℓ ∈ L′. Hence Find-Unrooted-Tree

returns the empty tree.

Suppose #MAST (U) ≥ #L − p The size of L′ guarantees that at least one
leaf ℓM in L′ is in a maximum agreement subtree of U . By Lem. 6-(i) we have

#MAST (U−ℓM) + 1 = #MAST (U) ≥ #L − p ,

i.e. #MAST (U−ℓM) ≥ (#L − 1) − p. Hence, TℓM is an agreement subtree
of U−ℓM s.t. #TℓM ≥ (#L − 1) − p. This guarantees that at least a call to
Find-Rooted-Tree returns a non-empty tree, hence that Find-Unrooted-

Tree(U , p) returns an non-empty tree. Let ℓ be the first leaf of L′ s.t. Tℓ 6= ∅.
Then, by Lems. 3 and 5-(i),

(

Tℓ

)+ℓ
is an agreement subtree of

(

U−ℓ
)+ℓ

= U
and is of size #Tℓ + 1. Thus #

(

Tℓ

)+ℓ ≥ #L− p. 2

Using the algorithms of the previous section (for the rooted case) as subrou-
tines in the algorithm Find-Unrooted-Tree, enables us to state a running
time in which PUMAST and PUMCT can be solved.

Theorem 5 Given a collection U = {U1, U2, . . . , Uk} of k unrooted trees on
an identical set of n leaves, PUMAST and PUMCT can be solved in time
O

(

(p + 1)×min{3pkn, 2.27p + kn3}
)

.

Proof. Use the algorithm Find-Unrooted-Tree, where choosing L′ requires

O(n) time and obtaining
(

Tℓ

)+ℓ
from a tree Tℓ requires O(1). Then, the only

other thing to do is to perform at most p+1 calls to Find-Rooted-Tree. Using
the algorithms of Sect. 4.1 and 4.2 to instantiate the calls to Find-Rooted-

Tree gives the claimed result by Thms. 3 and 4. 2

REFERENCES 27

4.4 Remarks for solving related problems

The computational problems considered above can be seen as generalizations
of the well-known Tree Isomorphism and Tree Compatibility problems.
The latter is of particular interest in phylogenetics and is deciding whether a
collection of rooted input trees with identical leaf sets is compatible [25]. Tree

Compatibility for rooted trees is identical to the restriction of PRMCT to
instances for which p = 0. Algorithm Recursive-Mct solves this particular
problem in linear time (Thm. 3 with p = 0). The Tree Compatibility problem
for unrooted trees is identical to the PUMCT problem with p = 0 and is then
solved in linear time also (Thm. 5). Linear algorithms are obtained in a similar
way for the Tree Isomorphism problem on rooted or unrooted trees, which
are particular cases of PRMAST and PUMAST respectively.

Hence, the general algorithms proposed in this paper allow to solve Tree

Isomorphism and Tree Compatibility in the same running time as dedicated
algorithms [19, 20].

References

[1] M. A. Steel and T. J. Warnow, “Kaikoura tree theorems: Computing
the maximum agreement subtree,” Information Processing Letters, vol. 48,
no. 2, pp. 77–82, 1993.

[2] M. Farach, T. M. Przytycka, and M. Thorup, “On the agreement of many
trees,” Information Processing Letters, vol. 55, no. 6, pp. 297–301, 1995.

[3] A. Amir and D. Keselman, “Maximum agreement subtree in a set of evo-
lutionary trees: metrics and efficient algorithm,” SIAM Journal on Com-
puting, vol. 26, no. 6, pp. 1656–1669, 1997.

[4] A. Gupta and N. Nishimura, “Finding largest subtrees and smallest su-
pertrees,” Algorithmica, vol. 21, no. 2, pp. 183–210, 1998.

[5] M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting, “An even faster
and more unifying algorithm for comparing trees via unbalanced bipartite
matchings,” Journal of Algorithms, vol. 40, no. 2, pp. 212–233, 2001.

[6] R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup,
“An O(n log n) algorithm for the Maximum Agreement SubTree problem
for binary trees,” SIAM Journal on Computing, vol. 30, no. 5, pp. 1385–
1404, 2001.

[7] D. Swofford, G. Olsen, P. Wadell, and D. Hillis, “Phylogenetic inference,”
in Molecular systematics (2nd edition), D. Hillis, D. Moritz, and B. Mable,
Eds. USA: Sunderland, 1996, pp. 407–514.

[8] G. Ganapathy and T. J. Warnow, “Approximating the complement of the
maximum compatible subset of leaves of k trees,” in Proceedings of the 5th

REFERENCES 28

International Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX’02), 2002, pp. 122–134.

[9] V. Berry and F. Nicolas, “Maximum agreement and compatible su-
pertrees,” in Proceedings of CPM, ser. LNCS, S. C. Sahinalp, S. Muthukr-
ishnan, and U. Dogrusoz, Eds., vol. 3109, 2004, pp. 205–219.

[10] J. Jansson, J. H.-K. Ng, K. Sadakane, and W.-K. Sung, “Rooted maximum
agreement supertrees,” in Proceedings of the 6th Latin American Sympo-
sium on Theoretical Informatics (LATIN), 2004, (in press).

[11] A. M. Hamel and M. A. Steel, “Finding a maximum compatible tree is NP-
hard for sequences and trees,” Applied Mathematics Letters, vol. 9, no. 2,
pp. 55–59, 1996.

[12] G. Ganapathysaravanabavan and T. J. Warnow, “Finding a maximum com-
patible tree for a bounded number of trees with bounded degree is solvable
in polynomial time,” in Proceedings of the 1st International Workshop on
Algorithms in Bioinformatics (WABI’01), O. Gascuel and B. M. E. Moret,
Eds., 2001, pp. 156–163.

[13] J. Hein, T. Jiang, L. Wang, and K. Zhang, “On the complexity of comparing
evolutionary trees,” Discrete Applied Mathematics, vol. 71, no. 1–3, pp.
153–169, 1996.

[14] M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting, “A decomposition
theorem for maximum weight bipartite matchings with applications to evo-
lutionary trees,” in Proceedings of the 7th Annual European Symposium on
Algorithms (ESA’99), 1999, pp. 438–449.

[15] D. Bryant, “Building trees, hunting for trees and comparing trees: theory
and method in phylogenetic analysis,” Ph.D. dissertation, University of
Canterbury, Department of Mathemathics, 1997.

[16] R. G. Downey, M. R. Fellows, and U. Stege, “Computational tractability:
The view from mars,” Bulletin of the European Association for Theoretical
Computer Science, vol. 69, pp. 73–97, 1999.

[17] J. Alber, J. Gramm, and R. Niedermeier, “Faster exact algorithms for hard
problems: a parameterized point of view,” Discrete Mathematics, vol. 229,
no. 1–3, pp. 3–27, 2001.

[18] V. Berry, S. Guillemot, F. Nicolas, and C. Paul, “On the approxima-
tion of computing evolutionary trees,” in Proceedings of the 11th Inter-
national Computing and Combinatorics Conference (COCOON’05), ser.
LNCS, L. Wang, Ed., 2005.

[19] D. Gusfield, “Efficient algorithms for inferring evolutionary trees,” Net-
works, vol. 21, pp. 19–28, 1991.

REFERENCES 29

[20] T. J. Warnow, “Tree compatibility and inferring evolutionary history,”
Journal of Algorithms, vol. 16, no. 3, pp. 388–407, 1994.

[21] D. Bryant and M. A. Steel, “Extension operations on sets of leaf-labelled
trees,” Advances in Applied Mathematics, vol. 16, no. 4, pp. 425–453, 1995.

[22] G. F. Eastabrook, C. S. Johnson, and F. R. McMorris, “An algebraic anal-
ysis of cladistic characters,” Discrete Mathematics, vol. 16, pp. 141–147,
1976.

[23] C. Semple and M. Steel, Phylogenetics, ser. Oxford Lecture Series in Math-
ematics and its Applications. Oxford University Press, 2003, vol. 24.

[24] D. Bryant and V. Berry, “A structured family of clustering and tree con-
struction methods,” Advances in Applied Mathematics, vol. 27, no. 4, pp.
705–732, 2001.

[25] G. F. Eastabrook and F. R. McMorris, “When is one estimate of evolu-
tionary relationships a refinement of another?” Journal of Mathematical
Biology, vol. 10, pp. 367–373, 1980.

[26] R. Cole and R. Hariharan, “Dynamic LCA queries on trees,” in Pro-
ceedings of 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’99), 1999, pp. 235 – 244.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. Cambridge, Massachusetts: M.I.T. Press, 2001.

[28] U. Feige, M. M. Halldórsson, and G. Kortsarz, “Approximating the domatic
number,” in Proceedings of the 32nd Annual A.C.M. Symposium on Theory
of Computing (STOC’00), 2000, pp. 134–143.

[29] R. Niedermeier and P. Rossmanith, “An efficient fixed parameter algorithm
for 3-Hitting Set,” Journal of Discrete Algorithms, vol. 1, no. 1, pp. 89–102,
2003.

[30] R. G. Downey, “Parameterized complexity for the skeptic,” in Proceed-
ings of the 18th IEEE Conference on Computational Complexity (CCC’03),
2003, pp. 147–168, invited paper.

Acknowledgement

The authors thank C. Paul and J. Cassaigne for careful readings of the manuscript
and help in simplifying some proofs. The authors are also grateful to anonymous
reviewers for their valuable comments.

5 DETAILS ON THE IMPLEMENTATION OF FIND-REFINEMENT-OR-CONFLICT ON TWO TREES

Appendices

5 Details on the implementation of Find-Refinement-

or-Conflict on two trees

The O(n) running time of the algorithm is shown here in detail by a successive
examination of data structures and operations they support:

• Trees T1 and T2 are stored by usual pointers.

Each edge of T1 is processed once, when its higher node is the cherry v1

processed by the main loop. Its higher node is either a cherry at start, or
becomes a cherry because of the repeated process of replacing cherries of
T1 by a new leaf each.

Edges of T2 are each examined a constant number of times: when consid-
ering a node v2, the edges of each subtree S(c) containing leaves in L(v1)
will be considered once when traversing S(c) (line 7), plus once for some
of them, when c has to be identified (line 6: edges of the path from leaf ℓ
to the first ascendant c that is a child of v2). In case of conflict, edges of a
subtree can be traversed another time to identify a leaf ℓ′ (line 9) before
stopping the algorithm. Finding such a leaf is the reason why subtrees
S(c) are not readily removed from T2 when processed (hence the reason
for list C).

When all leaves of L(v1) have been processed successfully, each edge of
a subtree S(c) has been traversed twice and is traversed a final time to
make a copy of the subtree in F (line 11), before being removed (line 14).

• Forest F consists of a set of nodes arranged in a set of non-overlapping
trees that are subtrees of the final output tree on n leaves. Thus, at any
step, the forest contains O(n) nodes. Assembling some trees in F (line 14)
involves identifying nodes with labels corresponding to leaves in a subtree
of S(v2) and connecting them according to the topology of this subtree
of T2. For this purpose, an additional array can be easily maintained to
find each required node of F in O(1). Creating a new node v in F with
a given label (line 2) is done O(n) times and costs O(1) each time. In
case of conflict, at most three different trees of F , i.e. O(n) nodes, are
traversed (line 10) to find leaves of L (i.e. leaves of trees in F).

• List C is a simple linked list of root nodes of child subtrees of v2 to be
removed from T2 after all leaves of P have been processed. Each element
is added in O(1) and removed in O(1) when the list is emptied (line 14).
Removing each subtree from the list of child subtrees of v2 is performed
in O(1) when coding its children as a bidirectional linked list.

6 PROOF OF LEMMA 2 31

• The list of leaves P is managed as an array of 2n − 1 bits: one for each
of the n original labels of leaves, plus one for each of the n − 1 new
labels (assigned to a cherry node that becomes a leaf when pruning its
child nodes. Initially, all entries are zeroed, indicating the absence of any
leaf in P . When considering leaves L(v1) of a cherry v1 ∈ T1, only bits
corresponding to these labels are set (line 3). Then leaves put in P (line 3)
are successively taken until none remains (loop line 4). This is done by
listing the children of v1 (they are all leaves).

Testing whether a leaf ℓ′′ is in P (line 8) is just checking whether the
corresponding bit is set at 1. On the same line, removing the leaf from
P is just setting this bit at 0. Note that after the last iteration of the
loop line 4, P has returned to its initial state, i.e. all the bits that were
set at 1 have been turned back to 0. Thus, using P to handle leaves of
a cherry v1 during an iteration of the main while loop (line 1) costs a
time proportional to #L(v1). After this iteration, the leaves L(v1) are
removed from the tree, hence the amortized cost for maintaining P during
the whole algorithm is O(n).

• For lca queries, we can use the dynamic structure of [26], initialized in
O(n) which enables us to obtain the lca of any two nodes in O(1) worst
case time and supports insertion/deletions of leaves in O(1). Globally,
O(n) lca queries issue from line 2: queries issue from set of leaf labels
L(v1) taken from a cherry in v1 ∈ T1 and concern nodes in v2 ∈ T2. To
identify v2 := lcaT2

(L(v1)), we need #L(v1) − 1 queries. But then these
leaves are removed from the trees and v1 becomes a leaf, that will be
implied in a cherry at a latter step (if no conflict arises), thus giving rise
to one lca query in turn. Thus, each node of T1 will be used in at most one
lca query, so the algorithm performs O(n) lca queries, each in O(1). The
data structure maintaining lca relationships also has to be updated during
the algorithm, but this requires O(n) insertions and deletions of leaves,
hence O(n) globally: the number of leaves inserted (line 15) is bounded by
the number of processed cherries v1 ∈ T1, so is O(n). Removing a subtree
from T2 (line 14) costs a number of leaf deletions proportional to the
number of its nodes (performing a postorder traversal). There are O(n)
nodes initially in T2 and O(n) will be added (line 15), thus O(n) deletions
are performed, each costing O(1). Hence, deletions will cost O(n) time to
update the lca structure. Note that an alternative to using the dynamic
data structure to identify lcas is to perform careful traversal of parts of
T2.

6 Proof of Lemma 2

To prove the lemma we first need two remarks and a preliminary claim. The
first remark precises the link between clusters and contractions of edges in a
tree.

6 PROOF OF LEMMA 2 32

Remark 1 Let T be a rooted tree and let v be an internal non-root node of T .
Contracting the edge of T between v and its parent gives a tree with Cl(T) −
{L(v)} as set of clusters.

The next remark precises the link between clusters and rooted triples of a tree.

Remark 2 Let T be a rooted tree and let ℓ, ℓ′, ℓ′′ be three distinct leaves of T :
ℓ|ℓ′ℓ′′ ∈ rt(T) iff there is an internal node v in T s.t. ℓ /∈ L(v) and {ℓ′, ℓ′′} ⊆
L(v).

Lemma 10 ([25]) Let T and T ′ be two trees on the same set of leaves. T
refines T ′ iff Cl(T ′) ⊆ Cl(T).

Proof. If T refines T ′ then, Rem. 1 implies Cl(T ′) ⊆ Cl(T). Conversely, assume
Cl(T ′) ⊆ Cl(T). Then, we have rt(T ′) ⊆ rt(T) by Rem. 2. Thus, by Lem. 1-(iii),
T refines T ′. 2

Proof of Lemma 2:
(i) ⇒ (ii). Assume that T is the minimum refinement of T . For all Ti ∈ T , T
refines Ti and, thus, by Lem. 10 Cl(Ti) is a subset of Cl(T). Hence, we have

Cl(T1) ∪ Cl(T2) ∪ . . . ∪ Cl(Tk) ⊆ Cl(T) . (7)

By contradiction, assume that this inclusion is proper.
Then there is an internal node v of T s.t. for all Ti ∈ T , L(v) /∈ Cl(Ti).

Since L is a cluster of all Ti’s, v is not the root of T .
Let T ′ be the tree obtained from T by contracting the edge between v and

its parent. For all Ti ∈ T , Rem. 1 yields

Cl(T ′) = Cl(T) \ {L(v)} ⊇ Cl(Ti)

and thus, T ′ refines T . Since T ′ has less edges than T , T ′ can not refine T .
Therefore, T is not a minimum refinement of T . Hence, we have shown that
inclusion (7) is an equality.
(ii) ⇒ (iii) is easily deduced from Rem. 2.
(iii) ⇒ (i). Assume that rt(T) = rt(T1) ∪ rt(T2) ∪ . . . ∪ rt(Tk).

For all Ti ∈ T , rt(Ti) is a subset of rt(T) and thus, by Lem. 1-(iii), T refines
Ti. Hence, T refines T .

Moreover, let T ′ be a tree on L refining T . For all Ti ∈ T , T ′ refines Ti and,
thus, we have rt(Ti) ⊆ rt(T ′). From that we deduce rt(T) = rt(T1) ∪ rt(T2) ∪
. . .∪rt(Tk) ⊆ rt(T ′): T ′ refines T from Lem. 1-(iii). Hence, we have shown that
T is a minimum refinement of T .
Finally, we have to prove the existence of a minimum refinement whenever T is
compatible. Suppose that T is compatible and let T ′ be a tree refining T . By
Lem. 10, we have Cl(Ti) ⊆ Cl(T ′) for all Ti ∈ T and thus

Cl(T1) ∪ Cl(T2) ∪ . . . ∪ Cl(Tk) ⊆ Cl(T ′) .

6 PROOF OF LEMMA 2 33

Moreover, we can modify T ′ to remove clusters in

Cl(T ′)−
(

Cl(T1) ∪ Cl(T2) ∪ . . . ∪ Cl(Tk)
)

by contracting corresponding edges according to Rem. 1. Thus, we obtain a tree
T satisfying Lem. 2-(ii), i.e. T is a minimum refinement of T . 2

