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Abstract

We exemplify an optimisation criteria for divide-and-conquer algorithms with a
technique called generic competitive graph search. The technique is then applied
to solve two problems arising from biocomputing, so-called Common Connected
Components and Cograph Sandwich. The first problem can be defined as follows:
given two graphs on the same set of n vertices, find the coarsest partition of the
vertex set into subsets which induce connected subgraphs in both input graphs. The
second problem is an instance of sandwich problems: given a partial subgraph G1 of
G2, find a partial subgraph G of G2 that is partial supergraph of G1 (sandwich), and
that is a cograph. For the former problem our generic algorithm not only achieves the
current best known performance on arbitrary graphs and forests, but also improves
by a log n factor when the input is made of planar graphs. However, our complexity
for intervals graphs is slightly lower than a recent result. For the latter problem, we
first study the relationship between the common connected components problem and
the cograph sandwich problem, then, using our competitive graph search paradigm,
we improve the computation of cograph sandwiches from O(n(n+m)) downto O(n+
m log2 n), where n is the number of vertices and m of total edges.

Key words: graph search, divide-and-conquer algorithm, common connected
graph component, sandwich graph problem

1 Introduction

The classical divide-and-conquer algorithmic framework (see e.g. [10,21]) can
be summarised as dividing the input problem into some sub-problems; then
conquering the sub-problems by making recursive calls; and combining the
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sub-solutions into a global solution. The best known examples probably are
standard sorting algorithms and dynamic programming algorithms. Without
specific assumptions, the method helps with designing algorithms running in
quadratic worst case time. Classical optimisation techniques to improve this
bound mostly consist of holding some condition on the recursive computation,
e.g. with merge-sort, median computation [4], and algorithms derived from
the planar separator theorem [20].

Actually, even when no condition is placed on the recursive computation, it
is acquired that cutting down the divide and combine part also improves the
global computing time [1,19]. However, applied examples of this paradigm are
scant up to our knowledge. This paper gives a series of such examples. To this
aim we consider the problem of, given a graph and a list of one representative
vertex per connected component, visiting all connected components but the
largest. We depict how a so-called competitive graph search can solve the prob-
lem in linear time on the size of the visited vertices and edges. Notice that the
size of the largest component might be very close to that of the initial graph.
In this case the competitive graph search records a small time complexity.

Using the competitive graph search, we first give a solution to a problem arisen
from computational biology: given two graphs G1 and G2 on the same ver-
tex set V , find the coarsest partition of V into V1, . . . , Vk such that, for all
1 ≤ i ≤ k, both induced subgraphs G1[Vi] and G2[Vi] are connected [2,16].
Depending on the data structure, our solution can be used for different graph
classes. Its performance equals the best known so far for arbitrary graphs [14]
and forests [11]. For planar graphs, we improve the performance by a log n
factor, namely with an O(n logn) computing time. Our complexity for in-
terval graphs is in O(n + m log n), while a recent result improved this to
O(m + n log n) [12]. Finally, we study the relationship between the common
connected components problem and another class of problems issued from
biocomputing, namely sandwich graph problems [15], and improve the com-
putation of cograph sandwiches from O(n(n + m)) [15] to O(n + m log2 n) as
a corollary of competitive graph searching.

2 Algorithmic Aspects

2.1 Divide and Conquer Paradigm

This paper addresses the following formalism. Let P be a problem on a set S of
data structures, and Size a function from S to R+. H is a divide-and-conquer
algorithm with respect to Size solving P if:
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• there exists a set T ⊆ S of trivial inputs on which H solves P in O(1) time;
• any S ∈ S with Size(S) ≤ 1 is a trivial input, namely S ∈ T ;
• for all S /∈ T , H(S)
· first divides S into some sub-instances S1, . . . , Sk holding Size(Si) > 0 for

all i and holding Size(S1) + . . . + Size(Sk) ≤ Size(S),
· then recurses with H(S1), . . . ,H(Sk),
· and finally combines the results in order to provide the output of H(S).

Let C(S) be the total computing time of H(S), Div(S) be the time for finding
S1, . . . , Sk, and Com(S) for combining the sub-solutions into the output of
H(S). Then, for all S /∈ T , C(S) = Div(S) +

∑k
i=1 C(Si) + Com(S) straight

from definition. Let n = Size(S). If Div(S) + Com(S) = O(n), then there
is a naive bound C(S) = O(n2) (see e.g. [10,21]). Well-known optimisation
techniques divide S into two subproblems S1 and S2 of equal size. This yields
O(n log n) time algorithms such as Merge sort (see e.g. [10,21]).

Besides, the naive quadratic bound is known to improve as recursive calls
decrease. For instance, most famous algorithms such as the median computa-
tion [4] or algorithms deriving from the planar separator theorem [20] reach
linear worst case time bound by avoiding a fraction of S on recursive calls,
namely by granting Size(S1)+...+Size(Sk)

Size(S)
< 1. The success of such examples might

explain why minimising the divide and combine time Div(S)+Com(S) usually
is disregarded in standard optimisation approaches. In this paper, we address
the case when recursive calls have to be applied on all parts, namely when
Size(S1)+...+Size(Sk)

Size(S)
≤ 1 with the bound reached. As a result of a larger theorem

in [1], minimising Div(S) + Com(S) here becomes fruitful according to an
“avoid the largest” idea. Within our terminology, it could be stated as follows.

Proposition 1 [1] Let H be a divide-and-conquer algorithm, and α be such
that, for all S ∈ S \T , Div(S)+Com(S) ≤ α× (Size(S)−maxk

i=1 Size(Si)),
where S1, . . . , Sk is the partition of S given by H(S). Then, for all input S ∈ S,
H(S) runs at most in α×Size(S) log Size(S) time. This bound is best possible.

Proof: by induction on s = Size(S). If S is not trivial and S1, . . . , Sk are
such that sk = Size(Sk) is greater than any si = Size(Si), then

Div(S) + Com(S) +
k
∑

i=1

C(Si)≤α ×

(

k−1
∑

i=1

si +
k
∑

i=1

si log si

)

≤α ×

(

k−1
∑

i=1

si +
k−1
∑

i=1

si log
s

2
+ sk log s

)

≤α × s log s.

Now, let P and H be such that there exist S0 ∈ T and Sq (q ≥ 1) where
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H divides Sq into two sub-instances that are both identical to Sq−1. Then, H
computes at least in α × Size(Sq) log Size(Sq) time on Sq. 2

Remark: The standard optimisation technique used in Merge sort results in
the same bound. However, the size of the input given to Merge sort is granted
to geometrically decrease (by half) as inductive levels grow, implying that the
induction depth is lesser than log Size(S). On the other hand, our result still
holds even when the induction depth is linear on Size(S).

Though it may be straightforward to avoid the largest part for linear data
structures such as ordered arrays, it is less easy in other cases, for instance
when dealing with graphs. Indeed, the challenge is to avoid some “largest”
graph component without exploring the whole graph. We exemplify the prac-
tical potential of Proposition 1 on graphs with a so-called competitive graph
search technique.

2.2 Competitive Graph Search

Let G = (V, E) be a graph. We define the size of G as its number of vertices
and edges: Size(G) = |V | + |E|. All vertices of a vertex subset A belong to
the induced subgraph G[A]. An edge of G belongs to G[A] if both extremities
of the edge belong to A. Sometimes we refer by abusiveness to the size of a
vertex subset as the size of the subgraph it induces. This section addresses
two problems.

Exploring Connected Components: Let Rep be a list of pointers to one
representative vertex per connected component of G. The first problem con-
sists of, given G and Rep, visiting all connected components of G but the
largest. To this aim, a competitive graph search proceeds as follows. At the
beginning, all components are competitors via their corresponding represen-
tative vertex in Rep. Then, each step of the search visits one new element –
vertex or edge (the “or” is exclusive) – of each competitor. The competitors
for which no new element is found are discarded. This process continues as
long as there are at least two remaining competitors. Obviously the last com-
petitor C is the largest and has not been entirely visited. Indeed, if s′ is the
size of the second largest competitor C ′, then only s′ elements of C have been
visited, which leads to the following result.

Proposition 2 Given a graph G and a list of pointers to one representative
vertex per connected component of G, a competitive graph search visits all
connected components of G but the largest component C in time bounded by
2×(sG−sC) with sG the number of vertices and edges of G, and sC the number
of vertices and edges of G[C].
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Proof: The exact visiting time is (sG − sC) + s′ with s′ the size of the second
largest component. 2

Exploring Induced Subgraphs: Let {V1, . . . , Vk} be a vertex partition of
G, described by k lists, and oracle(v, w) be true if and only if the vertices
v and w belong to the same Vi. The second problem consists of, given G,
{V1, . . . , Vk}, and oracle, visiting all induced subgraphs G[V1], . . . , G[Vk] but
the largest. Here, let Rep be a list of pointers to the first element of each
Vi. We still start with the list Rep representing the competitors V1, . . . , Vk.
Then, each step still tries to visit one new element (vertex or edge) of each
competitor using any standard graph search on the corresponding vertex list
Vi and the adjacency list of G. The hitch is that inter-edges, namely those
in IE = {vw ∈ E | ∃i 6= j s.t. v ∈ Vi and w ∈ Vj}, belong to none of the
competitors. However, thanks to oracle, the search can check at any moment
whether an edge is inter-edge, and avoid going out off the current G[Vi]. To
sum up, for each competitor, each step of the graph search either discovers
a new vertex, or checks the outgoing edges until one edge belonging to that
competitor is found. The remaining of the search behaves like before.

Proposition 3 Given a graph G = (V, E), a partition {V1, . . . , Vk} of V ,
and a function oracle testing whether two vertices belong to the same Vi, a
competitive graph search visits the subgraphs G[V1], . . . , G[Vk] but the largest
in time bounded by 2×(sG−sC)+M with M the number of inter-edges between
the subgraphs, sG the number of vertices and edges of G, and sC the number
of vertices and edges of the largest subgraph.

Proof: The exact visiting time is (sG − sC) + s′ + M ′ with s′ the size of the
second largest subgraph, and M ′ the number of visited inter-edges. 2

To conclude, the main technical difficulty of a competitive graph search is to
manage an entry to each competitor before starting and to maintain this as
an invariant during the recursive process. Notice that this generic competitive
search can be applied to other discrete structures such as directed graphs,
hypergraphs or matroids. Let us examine the paradigm on two graph problems.

3 Common Connected Component Computation

Given two graphs G1 = (V, E1) and G2 = (V, E2), a common connected set
A of (G1, G2) is a vertex subset of V such that both G1[A] and G2[A] are
connected. a common connected component is a common connected set that
is maximal. Fig. 2 presents an example of a tree and a forest whose common
connected sets all are singletons (and so are components). This problem was
introduced in [6] for the study of the genes structure. One graph is obtained by
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Fig. 1. i. G1 not cycle free and (b) violated. ii. G1 not a path and (c) violated.

the distance between genes in the sequence with respect to a given threshold,
the other graph can be any graph on the same set of genes generated by some
chemical reaction. The problem also arises from comparative genomics, e.g.
in the search of gene-teams where G1 and G2 are two graphs defined by two
genomic sequences on the same set of genes [2]. Adjacency between genes is
given by their distance in the sequence with respect to a given threshold. Let
F denotes the family of common connected sets of a given pair of graphs. As
usual when dealing with families of subsets, it is interesting to check under
which conditions the family is equipped with a lattice structure. Let us first
consider the basic properties:

(a) Let A, B ∈ F and A ∩ B 6= ∅ then A ∪ B ∈ F .

(b) Let A, B ∈ F and A ∩ B 6= ∅ then A ∩ B ∈ F .

In fact (a) is obviously true, but (b) does not necessarily hold (see Figure 1).

Lemma 1 If G1 and G2 are forests then F satisfies (b).

Proof: Let us consider two vertices a, b ∈ A ∩ B. By definition there exist a
chain from a to b in G1[A], and a chain from a to b in G1[B]. Since G1 is a
forest this chain is necessarily unique and therefore included in A ∩ B. 2

As defined in [9], weak partitive families satisfy (a), (b) and the following:

(c) Let A, B ∈ F that overlap, then A \ B, B \ A ∈ F .

Lemma 2 If G1, G2 are forests of chains, then F satisfies (c).

Proof: Let us consider x, y ∈ A\B. If x, y are not connected in G1[A\B], then
the unique chain joining x and y goes through a vertex z in G1[A ∩B]. Since
it exists at least a vertex t ∈ B \ A, then the connected set of G1 containing
x, y, z, t is not chain, a contradiction. 2

Noticed that if G1 and G2 only are supposed to be forests, then (c) might
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Fig. 2. i. A sequence (Gq)q>1 = ((Gq
1, G

q
2))q>1 of instances for which our common

connected component computation runs in Θ(n log n). ii. Details of G4. Notice that
all common connected sets/components of this sequence are and only are singletons.

be violated (e.g. in Figure 1). However, in case of forests of chains, F is a
weak partitive family. Then, a theorem in [9] implies the existence of a unique
decomposition tree for the family F . Using this tree, recursiveness can easily be
conducted on each common connected set. This corresponds to a well-studied
case and the computation of the decomposition tree can be done in O(|V |) by
adding some slight modifications to the computation of common intervals of
two permutations [23] (here the two chains can be seen as two permutations).
Another equivalent version of this problem is the computation of the modular
decomposition tree of a permutation graph and we can use algorithms from
[3,7] which also run in O(|V |). Let us now address the general case and consider
an algorithm scheme based on the following simple partitioning lemma.

Lemma 3 [14] Let us suppose that there is no edge between X and V \ X
in one graph among G1 = (V, E1) and G2 = (V, E2). Then, the common
connected components of (G1, G2) are those of (G1[X], G2[X]) plus those of
(G1[V \ X], G2[V \ X]).

Firstly, one can suppose w.l.o.g. that E1 ∩ E2 = ∅ by recursively merging
together vertices x and y if (x, y) ∈ E1 ∩ E2 [14]. Besides, if none of G1

and G2 is connected, a preliminary standard graph search can build the sub-
instances (G1[X], G2[X]) for all connected components X of G1. Lemma 3
states that computing the common connected components of (G1, G2) results
in computing those of the latter sub-instances. Hence, we suppose w.l.o.g. G1

connected. Finally, another preliminary graph search can compute a list of
one representative vertex per connected component of G2 before launching
our main recursive algorithm.

Concisely, the main algorithm addresses the problem of finding the common
connected components of two graphs G1 = (V, E1) and G2 = (V, E2), given
along with a list Rep such that E1 ∩ E2 = ∅, G1 is connected, and Rep has
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exactly one representative vertex per connected component of G2. It proceeds
as follows.

• If k = |Rep| = 1 then return V .
• Otherwise, let V1, . . . , Vk be the connected components of G2. Then, for

all 1 ≤ i ≤ k, we compute G1[Vi], G2[Vi], and a list Repi containing one
representative vertex per connected component of G1[Vi].

• By inverting G1 and G2, we make recursive calls on (G2[Vi], G1[Vi], Repi)
and return all results.

The correctness follows from Lemma 3. Obviously, the above operations can
be done using standard graph searches, which would yield a naive O(n(n+m))
solution. However, we can benefit from competitive graph searches to improve
the bound. Let s(G) = Size(G) = |V | + |E| for any graph G = (V, E),
s1

i = s(G1[Vi]), s2
i = s(G2[Vi]), and si = s1

i + s2
i . Let the “sum of all but the

max” sami∈Isi be a shortcut for
∑

i∈I si − maxi∈I si.

Lemma 4 If s1
i , s

2
i are positive and si = s1

i + s2
i for all i ∈ I, then:

sami∈I sp
i ≤ sami∈I si, with p ∈ {1, 2}.

Proof: Let i0 and i1 be such that si0 = maxi∈I si and si1 = maxi∈I s1
i . Obvi-

ously, s1
i0
≤ s1

i1
≤ si1 . Besides,

∑

i∈I\{i0,i1} s1
i ≤

∑

i∈I\{i0,i1} si. Adding the two
inequalities allows to conclude. 2

As already mentioned a competitive graph search on the connected components
of G2 computes all G2[Vi] except for G2[Vi2 ] with s2

i2
= max1≤i≤k s2

i , as well
as all Vi, except for Vi2 . During the search, we label the vertices in Vi (i 6= i2)
so that they can be distinguished afterwards. Those in Vi2 keep their old
label so that they also come as a distinct kth class. We define oracle which
tests whether two vertices have same labels. By removing from G2 vertices
and edges of the k − 1 computed graphs, we compute G2[Vi2 ]. Likewise, by
removing from V vertices of the other Vi, we compute Vi2 . The operations so
far run in O(sam1≤i≤ks

2
i ) time.

Using the computed V1, . . . , Vk and the function oracle, a competitive graph
search on the induced subgraphs of G1 computes all G1[Vi] except for G1[Vi1 ]
with s1

i1
= max1≤i≤k s1

i . Let IE contain all inter-edges in G1 between the
subgraphs G1[Vi]. By removing from G1 vertices and edges of G1[Vi] (i 6=
i1), plus the inter-edges in IE, we compute G1[Vi1 ]. These operations take
O(|IE| + sam1≤i≤ks

1
i ) time.

As G1[Vi] (i 6= i1) are of size small enough, we simply compute Repi (i 6= i1)
thanks to standard searches on those graphs (such as the breath-first graph
search). This latter step takes O(sam1≤i≤ks

1
i ) time. From Lemma 4 all oper-

ations so far run in O(|IE| + sam1≤i≤ksi). Finally, we assume that Repi1 is
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computed by some routine R, and result in the following main theorem.

Routine R: Given a connected graph G1 = (V, E1) and a vertex partition
V1, . . . , Vk, the routine R computes a list Repi1 containing one representative
vertex per connected component of G1[Vi1 ], where G[Vi1 ] is the largest among
G[V1], . . . , G[Vk].

Main theorem Given a routine R as defined above, the common connected
components of two graphs G1 = (V, E1) and G2 = (V, E2) can be computed in
O(n + m log n + tR) time, where n = |V |, m = |E1| + |E2|, and tR stands for
the global computing time (through recursions) of the routine R.

Proof: The preliminary operations for computing Rep and for rendering E1∩
E2 6= ∅ and G1 connected run in O(n + m). Now, our main algorithm follows
the divide-and-conquer paradigm. Therein, the combine time of each step is
O(1). Moreover, except for the “|IE|” terms due to inter-edges and the cost of
calls to the routine R, the divide time fulfills requirements of Proposition 1.
According to this, we split the global complexity analysis of the main algorithm
into three parts. The first counts the “|IE|” terms, the second the total cost of
R, and the third the remaining. Let G′

1 = (V ′, E ′
1) and G′

2 = (V ′, E ′
2) be the

input graphs given to the main algorithm. Let n′ = |V ′| and m′ = |E ′
1|+ |E ′

2|.
Then, the “|IE|” part is in O(m′) = O(m) since an edge can be “inter-
edge” only once throughout the running of the main algorithm. The second
part was denoted by tR. From Proposition 1, the third complexity part is in
O((n′+m′) log(n′+m′)) = O(m log n) because m′ ≤ m ≤ n2, and G′

1 connected
implies n′ = O(m′). Whence, the whole running is in O(n + m log n + tR). 2

Implementation of routine R: The idea of computing Repi1 is the fol-
lowing. Let OG be the outgoing vertices in G1 from G1[∪i6=i1Vi] to G1[Vi1 ],
namely OG = {y ∈ Vi1 | ∃x /∈ Vi1 s.t. (x, y) ∈ E1}. Since G1 is connected,
Repi1 ⊆ OG. Computing OG only takes O(|IE|+ sam1≤i≤ks

1
i ) time. Our idea

is to filter OG efficiently until we obtain Repi1 .

Tool boxes B1 and B2: To this aim, we will use two tool boxes. The first tool
box B1 computes a spanning-forest of a given graph G, and for each vertex in
G a pointer to the identifier of the spanning tree it belongs to. Given a graph
G and one such spanning-forest representation of G, plus an edge e in G, the
second tool box B2 computes the spanning-forest representation of G \ {e},
and update the pointers to spanning tree identifiers.

Thanks to B1, right before launching the main recursive algorithm of the
common connected component problem, we compute the spanning-forest rep-
resentations of the two input graphs. At each recursive step we use the oracle
function to compute the inter-edge set IE in O(|IE|+sam1≤i≤ks

1
i ) time. Using

B2 we delete all edges of IE of the corresponding spanning-forest representa-
tion. Then, each vertex in OG has a pointer to the identifier of its spanning
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tree in the current G1. We then sort those identifiers using standard sorting.
Finally we scan the sorted identifiers and only keep one vertex of OG per
identifier, which will form the list Repi1 .

Sorting the identifiers would take O(|OG| log |OG|) = O(|IE| log |IE|) =
O(|IE| logm) time. The sum of all the |IE| terms throughout the compu-
tation is bounded by m. Hence, except for the cost of calls to B1 and B2, the
complexity still is in O(n + m log n).

Forests: If the input graphs given to the main algorithm are forests, they form
their own spanning forests. The only thing to be cared off is keeping a pointer
for each vertex to the identifier of the spanning tree it belongs to. This, for
B1 can be done easily in O(n+ m) time. For B2, let the edge to be deleted be
e = (x, y). We only need to update the identifiers of the spanning tree that has
contained e before the deletion. The deletion of the edge e will split the old
spanning tree into two parts, x and y could be seen as representatives for each
of both part. Then, a competitive graph search will update the identifier of the
smaller part in time proportional to the size of the smaller one, and the task of
B2 is complete. The complexity of B2 thus is O(m log m) from Proposition 1.
Finally, m = O(n) in case of forests. We conclude that tR = O(n log n).

Corollary 1 The common connected components of forests can be computed
in O(n logn) time.

Non-forest cases: For arbitrary graphs, we benefit from results of [18] on
the so-called ET-tree data structure [17]. Let m′ be the number of edges in
the two graphs given as input to the main algorithm, and n′ be the number of
their vertices. Then, the cost for B1 in this case is in O((n′ + m′) log2 n′) [18],
or O(m′ log2 n′) as m′ is higher than n′ (one of the two graphs is connected).
Finally, the cost for B2 in this case is in O(log2 n′) per operation [18]. As
before, we note that an edge can be “inter-edge” only once during the whole
computation, thus the total cost for calls to B2 is in O(m′ log2 n′). Hence, tR =
O(n+m log2 n). Likewise, we use results on edge-ordered dynamic tree [13] for
planar graphs. The corresponding B1 and B2 respectively run in O(m′ log n′)
and O(log n′), and the total running time of both tool boxes is O(m′ log n′).
Notice that the number of edges in a planar graph is bounded by three times
the number of vertices, and tR = O(n log n). For interval graphs, the same
idea can be done using clique-path representation [16] for an O(m′) B1, an
O(log n′) B2, and a total tR = O(n + m log n) running time.

Corollary 2 One can compute the common connected components of arbi-
trary graphs in O(n+m log2 n) time; of planar graphs in O(n log n) time; and
of interval graphs in O(n + m log n) time.

Our algorithm turns out to be a generic algorithm for all the related graph
classes. As a consequence, mixing different classes is allowed, and yields the
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best so far this paper conjecture

forests of trees O(n log n) [11] O(n log n) O(n)

interval graphs O(m + n log n) [12] O(n + m log n) O(n + m)

unit interval graphs O(n log ∆ log n) [2] O(n∆log n) O(n + m) = O(n∆)

planar graphs O(n log2 n) [14] O(n log n) O(n)

permutation graphs O(n log n + m log2 n) [14] O(n + m log2 n) O(n + m)

arbitrary graphs O(n log n + m log2 n) [14] O(n + m log2 n) O(n + m log n)

Fig. 3. Common connected component computation time, with n the number of
vertices, m the total number of edges, and ∆ the maximum vertex degree.

computing time equals to the upper one. For instance, the common connected
computing time for a planar graph G1 and an interval graph G2 is in O(n +
m log n).

4 Application to sandwich cographs

We now address the graph sandwich problems defined by Golumbic, Kaplan,
and Shamir (1995) [15]:

Input: G1 = (V, E1) and G2 = (V, E2) two undirected graphs such that
E1 ⊆ E2 and Π be a graph property.

Results: a sandwich graph G = (V, E) satisfying property Π and such that
E1 ⊆ E ⊆ E2.

Edges of E1 are forced, those of E2 optional, and those of E3 = E2 forbidden.
Unfortunately most cases are NP-complete, e.g. with Π: G being compara-
bility, chordal, strongly chordal, etc. Only few polynomial cases are known,
among which cographs [15], and sandwich homogeneous set (i.e. module) [5,8].
Therefore it is a natural question to ask for efficient algorithms for these poly-
nomial cases.

The following result exhibits a strong relationship between the cograph sand-
wich problem and common connected components. Let us recall that the class
of cographs is the smallest class of graphs containing the one vertex graph
and closed under series and parallel composition. Therefore any cograph can
be seen as a modular decomposition tree without prime nodes. Equivalently
cographs can be defined as the class of graphs excluding P4 as induced sub-
graph [22], where P4 denotes the path of length 4.

Theorem 1 Let G1 = (V, E1) be a graph of required edges, and G2 = (V, E2)
with E1 ⊆ E2 be a graph of possible edges. The dual graph G3 = G2 of G2 is
defined as the graph of forbidden edges. Then, there exists a sandwich G =
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(V, E) between G1 and G2 (meaning E1 ⊆ E ⊆ E2) which is a cograph if and
only if the common connected components of G1 and G3 are singletons.

Proof: Suppose there is a cograph G = (V, E) with E1 ⊆ E ⊆ E2. G can
not be both connected and co-connected, since the root of the modular de-
composition tree of G is not a prime node. Let V1, . . . , Vk be the partition of
V into connected components of: G if it is not connected, G otherwise. That
E1 ⊆ E ⊆ E2 implies there is no inter-edges between the vertex subsets Vi

in one graph among G1 and G3. Then, using the partitioning Lemma 3, the
common connected components of G1 and G3 exactly are the union of those of
G1[Vi] and G3[Vi] for all i. Obviously, G[Vi] is a sandwich of G1[Vi] and G2[Vi].
Furthermore, G[Vi] is a cograph, otherwise it would contain an induced P4,
and so would G. Hence, an inductive argument on the vertex subsets Vi will
allow to conclude that all common connected components of G1 and G3 are
singletons.
Conversely, suppose that all common connected components of G1 and G3 are
singletons. We build a graph G = (V, E) as follows. If |V | = 1, E = ∅. Oth-
erwise, the instance can be divided into two cases. If G1 is not connected, let
V1, . . . , Vk be its connected components. We define E such that any pair (x, y)
satisfying x ∈ Vi, y ∈ Vj , and i 6= j implies (x, y) /∈ E. If G1 is connected, then
necessarily G3 is not connected (otherwise V is a common connected compo-
nent). Let V1, . . . , Vk be the connected components of G3. We define E such
that any pair (x, y) satisfying x ∈ Vi, y ∈ Vj, and i 6= j implies (x, y) ∈ E.
In both cases (G1 not connected or G3 not connected), the definition of E
within each Vi follows inductively on V1, . . . , Vk. The fact that all common
connected components of G1 and G3 are singletons guarantees that, for all
pairs (x, y) ∈ V 2 with x 6= y, we have chosen whether (x, y) belongs to E
without contradictory definitions. Hence, G is well-defined. Then, using stan-
dard cograph characterisations, G can be proved to be a cograph. (We actually
have built the decomposition tree of the cograph.) One can also verify that G
is a sandwich between G1 and G3 by its construction. 2

The above proof is constructive: if all common connected components of G1

and G3 are singletons, an algorithm is depicted to compute a cograph that
is sandwich of G1 and G2. Therein, each step divides the graph into sub-
graphs induced by some V1, . . . , Vk, then decides whether edges between the
Vi exist, and finally recurses in the subgraphs. This actually follows a divide-
and-conquer scheme, with a O(1) combining time. Moreover, deciding the
adjacency between the Vi results in labelling the corresponding node in the
modular decomposition tree with series or parallel, which can be done in O(1)
time. Finally, identifying the subgraphs induced by the Vi can be cared off
by a competitive graph searching. Hence, when a sandwich cograph exists, we
can build one such in O(n + m log n) time, where n denotes the number of
vertices, and m the number of edges of G1 and G3.
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Corollary 3 The sandwich cograph problem can be solved by a robust – in the
sense of certifying – algorithm in O(n+m log2 n) time, where n is the number
of involved vertices, and m the number of forced edges and forbidden edges.

Proof: We first compute in O(n+m log2 n) time the common connected com-
ponents of the graph G1 of forced edges and the graph G3 of forbidden edges.
Suppose that all common connected components of G1 and G3 are singletons.
Then, a sandwich cograph can be build in O(n + m log n) as depicted in the
proof of Theorem 1. We now suppose that there is some common connected
component C that is not a singleton. Then, any sandwich G of G1 and G2 ver-
ify that G[C] is both connected and co-connected (G[C] is partial supergraph
of G1[C] and G[C] is partial supergraph of G3). We deduce that G[C] is not a
cograph and must contain and P4, and so must G. Thus, C is our certificate
to state that no sandwich of G1 and G2 can be a cograph. In this case, one
can verify in linear time that both G1[C] and G3[C] are connected and deduce
that every sandwich of G1 and G2 must contain a P4. 2

The above result improves the O(n(n + m)) complexity of the algorithm pro-
posed in [15]. However, we think that:

Conjecture: There exists a linear time algorithm to solve the sandwich co-
graph problem.

Such an algorithm would imply a linear characterisation of the totally degener-
ate case of the common connected component problem, when all components
are singletons. Similarly the P4-structure of common connected components
is worth being further studied as shows the following proposition, which is
highly related to Theorem 1, and states that common connected components
must contain many P4’s.

Proposition 4 Let C be a common connected component of G1 = (V, E1)
and G2 = (V, E2) with E1 ∩E2 = ∅, then both G1[C] and G2[C] contain a P4.

Proof: Consider the root of the modular decomposition tree of G1[C]. It can-
not be a parallel node since G1[C] is connected, nor it can be a series node
since E1 ∩E2 = ∅ and G2[C] is connected. Therefore it is a prime node. Hence
G1[C] is not a cograph and must contain a P4. Similar argument holds for
G2[C]. 2

5 Conclusion and Perspectives

This paper gives a generic common connected components computation, which
also exemplifies an infrequent divide-and-conquer optimisation scheme. Since
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divide-and-conquer is a very basic method, our algorithm is simply structured
while holding some efficient performances (Fig. 3). We also improve the com-
putation of cograph sandwiches as a corollary of this algorithm.

In general, as soon as some dynamic data structure satisfying our requirements
on the tool boxes B1 and B2 (see page 9) is provided, our general algorithmic
scheme will apply. We hope that this technique could be helpful to solve other
problems, e.g. with common strongly connected components, and be extended
to probabilistic algorithms on problems of very large size.
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