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Abstract

We exemplify an optimization criterion for divide-and-conquer algorithms with a technique called generic competitive graph
search. The technique is then applied to solve two problems arising from biocomputing, so-called Common Connected Components
and Cograph Sandwich. The first problem can be defined as follows: given two graphs on the same set of n vertices, find the
coarsest partition of the vertex set into subsets which induce connected subgraphs in both input graphs. The second problem is
an instance of sandwich problems: given a partial subgraph G1 of G2, find a partial subgraph G of G2 that is partial supergraph
of G1 (sandwich), and that is a cograph. For the former problem our generic algorithm not only achieves the current best known
performance on arbitrary graphs and forests, but also improves by a log n factor when the input is made of planar graphs. However,
our complexity for intervals graphs is slightly lower than a recent result. For the latter problem, we first study the relationship
between the common connected components problem and the cograph sandwich problem, then, using our competitive graph search
paradigm, we improve the computation of cograph sandwiches from O(n(n +m)) down to O(n +m log2 n), where n is the number
of vertices and m of total edges.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The classical divide-and-conquer algorithmic framework (see e.g. [10,21]) can be summarized as dividing the
input problem into some sub-problems; then conquering the subproblems by making recursive calls; and combining
the sub-solutions into a global solution. The best known examples probably are standard sorting algorithms and
dynamic programming algorithms. Without specific assumptions, the method helps with designing algorithms running
in quadratic worst case time. Classical optimization techniques to improve this bound mostly consist of holding some
condition on the recursive computation, e.g. with merge-sort, median computation [4], and algorithms derived from
the planar separator theorem [20].
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Actually, even when no condition is placed on the recursive computation, it is acquired that cutting down the divide
and combine part also improves the global computing time [1,19]. However, applied examples of this paradigm are
scant in our knowledge. This paper gives a series of such examples. To this aim we consider the problem of, given
a graph and a list of one representative vertex per connected component, visiting all connected components but the
largest. We depict how a so-called competitive graph search can solve the problem in linear time on the size of the
visited vertices and edges. Notice that the size of the largest component might be very close to that of the initial graph.
In this case the competitive graph search records a small time complexity.

Using the competitive graph search, we first give a solution to a problem arisen from computational biology: given
two graphs G1 and G2 on the same vertex set V , find the coarsest partition of V into V1, . . . , Vk such that, for
all 1 ≤ i ≤ k, both induced subgraphs G1[Vi ] and G2[Vi ] are connected [2,16]. Depending on the data structure,
our solution can be used for different graph classes. Its performance equals the best known so far for arbitrary
graphs [14] and forests [11]. For planar graphs, we improve the performance by a log n factor, namely with an
O(n log n) computing time. Our complexity for interval graphs is in O(n + m log n), while a recent result improved
this to O(m + n log n) [12]. Finally, we study the relationship between the common connected components problem
and another class of problems issued from biocomputing, namely sandwich graph problems [15], and improve the
computation of cograph sandwiches from O(n(n + m)) [15] to O(n + m log2 n) as a corollary of competitive graph
searching.

2. Algorithmic aspects

2.1. Divide and conquer paradigm

This paper addresses the following formalism. Let P be a problem on a set S of data structures, and Size a function
from S to R+. H is a divide-and-conquer algorithm with respect to Size solving P if:

• there exists a set T ⊆ S of trivial inputs on which H solves P in O(1) time;

• any S ∈ S with Size(S) ≤ 1 is a trivial input, namely S ∈ T ;

• for all S /∈ T , H(S)

. first divides S into some subinstances S1, . . . , Sk holding Size(Si ) > 0 for all i and holding Size(S1) + · · · +

Size(Sk) ≤ Size(S),
. then recurses with H(S1), . . . ,H(Sk),
. and finally combines the results in order to provide the output of H(S).

Let C(S) be the total computing time of H(S), Div(S) be the time for finding S1, . . . , Sk , and Com(S) for
combining the subsolutions into the output of H(S). Then, for all S /∈ T , C(S) = Div(S) +

∑k
i=1 C(Si ) + Com(S)

straight from definition. Let n = Size(S). If Div(S) + Com(S) = O(n), then there is a naive bound C(S) = O(n2)

(see e.g. [10,21]). Well-known optimization techniques divide S into two subproblems S1 and S2 of equal size. This
yields O(n log n) time algorithms such as Merge sort (see e.g. [10,21]).

Besides, the naive quadratic bound is known to improve as recursive calls decrease. For instance, most famous
algorithms such as the median computation [4] or algorithms deriving from the planar separator theorem [20] reach
linear worst case time bound by avoiding a fraction of S on recursive calls, namely by granting Size(S1)+···+Size(Sk )

Size(S)
< 1.

The success of such examples might explain why minimizing the divide and combine time Div(S) + Com(S) usually
is disregarded in standard optimization approaches. In this paper, we address the case when recursive calls have to be
applied on all parts, namely when Size(S1)+···+Size(Sk )

Size(S)
≤ 1 with the bound reached. As a result of a larger theorem in [1],

minimizing Div(S)+ Com(S) here becomes fruitful according to an “avoid the largest” idea. Within our terminology,
it could be stated as follows:

Proposition 1 ([1]). Let H be a divide-and-conquer algorithm, and α be such that, for all S ∈ S \ T , Div(S) +

Com(S) ≤ α × (Size(S) − maxk
i=1 Size(Si )), where S1, . . . , Sk is the partition of S given by H(S). Then, for all input

S ∈ S, H(S) runs at most in α × Size(S) log Size(S) time. This bound is best possible.
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Proof. By induction on s = Size(S). If S is not trivial and S1, . . . , Sk are such that sk = Size(Sk) is greater than any
si = Size(Si ), then

Div(S) + Com(S) +

k∑
i=1

C(Si ) ≤ α ×

(
k−1∑
i=1

si +

k∑
i=1

si log si

)

≤ α ×

(
k−1∑
i=1

si +

k−1∑
i=1

si log
s

2
+ sk log s

)
≤ α × s log s.

Now, let P and H be such that there exist S0 ∈ T and Sq (q ≥ 1) where H divides Sq into two subinstances that are
both identical to Sq−1. Then, H computes at least in α × Size(Sq) log Size(Sq) time on Sq . �

Remark. The standard optimization technique used in Merge sort results in the same bound. However, the size of the
input given to Merge sort is granted to geometrically decrease (by half) as inductive levels grow, implying that the
induction depth is lesser than log Size(S). On the other hand, our result still holds even when the induction depth is
linear on Size(S).

Though it may be straightforward to avoid the largest part for linear data structures such as ordered arrays, it is
less easy in other cases, for instance when dealing with graphs. Indeed, the challenge is to avoid some “largest” graph
component without exploring the whole graph. We exemplify the practical potential of Proposition 1 on graphs with
a so-called competitive graph search technique.

2.2. Competitive graph search

Let G = (V, E) be a graph. We define the size of G as its number of vertices and edges: Size(G) = |V | + |E |. All
vertices of a vertex subset A belong to the induced subgraph G[A]. An edge of G belongs to G[A] if both extremities
of the edge belong to A. Sometimes we refer by abusiveness to the size of a vertex subset as the size of the subgraph
it induces. This section addresses two problems.
Exploring Connected Components: Let Rep be a list of pointers to one representative vertex per connected
component of G. The first problem consists of, given G and Rep, visiting all connected components of G but the
largest. To this aim, a competitive graph search proceeds as follows. At the beginning, all components are competitors
via their corresponding representative vertex in Rep. Then, each step of the search visits one new element – vertex or
edge (the “or” is exclusive) – of each competitor. The competitors for which no new element is found are discarded.
This process continues as long as there are at least two remaining competitors. Obviously the last competitor C is
the largest and has not been entirely visited. Indeed, if s′ is the size of the second largest competitor C ′, then only s′

elements of C have been visited, which leads to the following result.

Proposition 2. Given a graph G and a list of pointers to one representative vertex per connected component of G,
a competitive graph search visits all connected components of G but the largest component C in time bounded by
2 × (sG − sC ) with sG the number of vertices and edges of G, and sC the number of vertices and edges of G[C].

Proof. The exact visiting time is (sG − sC ) + s′ with s′ the size of the second largest component. �

Exploring Induced Subgraphs: Let {V1, . . . , Vk} be a vertex partition of G, described by k lists, and oracle(v, w)

be true if and only if the vertices v and w belong to the same Vi . The second problem consists of, given G,
{V1, . . . , Vk}, and oracle, visiting all induced subgraphs G[V1], . . . , G[Vk] but the largest. Here, let Rep be a list
of pointers to the first element of each Vi . We still start with the list Rep representing the competitors V1, . . . , Vk .
Then, each step still tries to visit one new element (vertex or edge) of each competitor using any standard graph
search on the corresponding vertex list Vi and the adjacency list of G. The hitch is that inter-edges, namely those in
I E = {vw ∈ E | ∃i 6= j s.t. v ∈ Vi and w ∈ V j }, belong to none of the competitors. However, thanks to oracle, the
search can check at any moment whether an edge is inter-edge, and avoid going out off the current G[Vi ]. To sum up,
for each competitor, each step of the graph search either discovers a new vertex, or checks the outgoing edges until
one edge belonging to that competitor is found. The remaining of the search behaves like before.
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doi:10.1016/j.tcs.2007.10.048



ARTICLE  IN  PRESS
4 B.-M. Bui-Xuan et al. / Theoretical Computer Science ( ) –

Fig. 1. i. G1 not cycle free and (b) violated. ii. G1 not a path and (c) violated.

Proposition 3. Given a graph G = (V, E), a partition {V1, . . . , Vk} of V , and a function oracle testing whether
two vertices belong to the same Vi , a competitive graph search visits the subgraphs G[V1], . . . , G[Vk] but the largest
in time bounded by 2 × (sG − sC ) + M with M the number of inter-edges between the subgraphs, sG the number of
vertices and edges of G, and sC the number of vertices and edges of the largest subgraph.

Proof. The exact visiting time is (sG − sC ) + s′
+ M ′ with s′ the size of the second largest subgraph, and M ′ the

number of visited inter-edges. �

To conclude, the main technical difficulty of a competitive graph search is to manage an entry to each competitor
before starting and to maintain this as an invariant during the recursive process. Notice that this generic competitive
search can be applied to other discrete structures such as directed graphs, hypergraphs or matroids. Let us examine
the paradigm on two graph problems.

3. Common connected component computation

Given two graphs G1 = (V, E1) and G2 = (V, E2), a common connected set A of (G1, G2) is a vertex subset of
V such that both G1[A] and G2[A] are connected. a common connected component is a common connected set that
is maximal. Fig. 2 presents an example of a tree and a forest whose common connected sets all are singletons (and
so are components). This problem was introduced in [6] for the study of the genes structure. One graph is obtained
by the distance between genes in the sequence with respect to a given threshold, the other graph can be any graph on
the same set of genes generated by some chemical reaction. The problem also arises from comparative genomics, e.g.
in the search of gene-teams where G1 and G2 are two graphs defined by two genomic sequences on the same set of
genes [2]. Adjacency between genes is given by their distance in the sequence with respect to a given threshold. Let
F denotes the family of common connected sets of a given pair of graphs. As usual when dealing with families of
subsets, it is interesting to check under which conditions the family is equipped with a lattice structure. Let us first
consider the basic properties:

(a) Let A, B ∈ F and A ∩ B 6= ∅ then A ∪ B ∈ F .
(b) Let A, B ∈ F and A ∩ B 6= ∅ then A ∩ B ∈ F .
In fact (a) is obviously true, but (b) does not necessarily hold (see Fig. 1).

Lemma 1. If G1 and G2 are forests then F satisfies (b).

Proof. Let us consider two vertices a, b ∈ A ∩ B. By definition there exist a chain from a to b in G1[A], and a chain
from a to b in G1[B]. Since G1 is a forest this chain is necessarily unique and therefore included in A ∩ B. �

As defined in [9], weak partitive families satisfy (a), (b) and the following:
(c) Let A, B ∈ F that overlap, then A \ B, B \ A ∈ F .

Lemma 2. If G1, G2 are forests of chains, then F satisfies (c).

Proof. Let us consider x, y ∈ A \ B. If x, y are not connected in G1[A \ B], then the unique chain joining x and
y goes through a vertex z in G1[A ∩ B]. Since it exists at least a vertex t ∈ B \ A, then the connected set of G1
containing x, y, z, t is not a chain, a contradiction. �

Please cite this article in press as: B.-M. Bui-Xuan, et al., Competitive graph searches, Theoretical Computer Science (2007),
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Fig. 2. i. A sequence (Gq )q>1 = ((Gq
1 , Gq

2 ))q>1 of instances for which our common connected component computation runs in Θ(n log n). ii.
Details of G4. Notice that all common connected sets/components of this sequence are and only are singletons.

Noticed that if G1 and G2 only are supposed to be forests, then (c) might be violated (e.g. in Fig. 1). However,
in case of forests of chains, F is a weak partitive family. Then, a theorem in [9] implies the existence of a unique
decomposition tree for the family F . Using this tree, recursiveness can easily be conducted on each common connected
set. This corresponds to a well-studied case and the computation of the decomposition tree can be done in O(|V |)

by adding some slight modifications to the computation of common intervals of two permutations [23] (here the two
chains can be seen as two permutations). Another equivalent version of this problem is the computation of the modular
decomposition tree of a permutation graph and we can use algorithms from [3,7] which also run in O(|V |). Let us
now address the general case and consider an algorithm scheme based on the following simple partitioning lemma.

Lemma 3 ([14]). Let us suppose that there is no edge between X and V \ X in one graph among G1 = (V, E1)

and G2 = (V, E2). Then, the common connected components of (G1, G2) are those of (G1[X ], G2[X ]) plus those of
(G1[V \ X ], G2[V \ X ]).

Firstly, one can suppose w.l.o.g. that E1 ∩ E2 = ∅ by recursively merging together vertices x and y if
(x, y) ∈ E1 ∩ E2 [14]. Besides, if none of G1 and G2 is connected, a preliminary standard graph search can build the
subinstances (G1[X ], G2[X ]) for all connected components X of G1. Lemma 3 states that computing the common
connected components of (G1, G2) results in computing those of the latter subinstances. Hence, we suppose w.l.o.g.
G1 connected. Finally, another preliminary graph search can compute a list of one representative vertex per connected
component of G2 before launching our main recursive algorithm.

Concisely, the main algorithm addresses the problem of finding the common connected components of two graphs
G1 = (V, E1) and G2 = (V, E2), given along with a list Rep such that E1 ∩ E2 = ∅, G1 is connected, and Rep has
exactly one representative vertex per connected component of G2. It proceeds as follows:

• If k = |Rep| = 1 then return V .
• Otherwise, let V1, . . . , Vk be the connected components of G2. Then, for all 1 ≤ i ≤ k, we compute G1[Vi ],

G2[Vi ], and a list Repi containing one representative vertex per connected component of G1[Vi ].
• By inverting G1 and G2, we make recursive calls on (G2[Vi ], G1[Vi ], Repi ) and return all results.

The correctness follows from Lemma 3. Obviously, the above operations can be done using standard graph
searches, which would yield a naive O(n(n + m)) solution. However, we can benefit from competitive graph searches
to improve the bound. Let s(G) = Size(G) = |V | + |E | for any graph G = (V, E), s1

i = s(G1[Vi ]), s2
i = s(G2[Vi ]),

and si = s1
i + s2

i . Let the “sum of all but the max” sami∈I si be a shortcut for
∑

i∈I si − maxi∈I si .

Lemma 4. If s1
i , s2

i are positive and si = s1
i + s2

i for all i ∈ I , then:

sam
i∈I

s p
i ≤ sam

i∈I
si , with p ∈ {1, 2}.
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Proof. Let i0 and i1 be such that si0 = maxi∈I si and si1 = maxi∈I s1
i . Obviously, s1

i0
≤ s1

i1
≤ si1 . Besides,∑

i∈I\{i0,i1}
s1

i ≤
∑

i∈I\{i0,i1}
si . Adding the two inequalities allows to conclude. �

As already mentioned a competitive graph search on the connected components of G2 computes all G2[Vi ] except
for G2[Vi2 ] with s2

i2
= max1≤i≤k s2

i , as well as all Vi , except for Vi2 . During the search, we label the vertices in Vi
(i 6= i2) so that they can be distinguished afterwards. Those in Vi2 keep their old label so that they also come as a
distinct kth class. We define oracle which tests whether two vertices have same labels. By removing from G2 vertices
and edges of the k − 1 computed graphs, we compute G2[Vi2 ]. Likewise, by removing from V vertices of the other
Vi , we compute Vi2 . The operations so far run in O(sam1≤i≤k s2

i ) time.
Using the computed V1, . . . , Vk and the function oracle, a competitive graph search on the induced subgraphs of

G1 computes all G1[Vi ] except for G1[Vi1 ] with s1
i1

= max1≤i≤k s1
i . Let I E contain all inter-edges in G1 between

the subgraphs G1[Vi ]. By removing from G1 vertices and edges of G1[Vi ] (i 6= i1), plus the inter-edges in I E , we
compute G1[Vi1 ]. These operations take O(|I E | + sam1≤i≤k s1

i ) time.
As G1[Vi ] (i 6= i1) are of size small enough, we simply compute Repi (i 6= i1) thanks to standard searches on

those graphs (such as the breadth-first graph search). This latter step takes O(sam1≤i≤k s1
i ) time. From Lemma 4 all

operations so far run in O(|I E | + sam1≤i≤k si ). Finally, we assume that Repi1
is computed by some routine R, and

result in the following main theorem.
Routine R: Given a connected graph G1 = (V, E1) and a vertex partition V1, . . . , Vk , the routine R computes a list
Repi1

containing one representative vertex per connected component of G1[Vi1 ], where G[Vi1 ] is the largest among
G[V1], . . . , G[Vk].

Main Theorem. Given a routine R as defined above, the common connected components of two graphs G1 =

(V, E1) and G2 = (V, E2) can be computed in O(n + m log n + tR) time, where n = |V |, m = |E1| + |E2|,
and tR stands for the global computing time (through recursions) of the routine R.

Proof. The preliminary operations for computing Rep and for rendering E1 ∩ E2 6= ∅ and G1 connected run in
O(n + m). Now, our main algorithm follows the divide-and-conquer paradigm. Therein, the combine time of each
step is O(1). Moreover, except for the “|I E |” terms due to inter-edges and the cost of calls to the routine R, the
divide time fulfils requirements of Proposition 1. According to this, we split the global complexity analysis of the
main algorithm into three parts. The first counts the “|I E |” terms, the second the total cost of R, and the third the
remaining. Let G ′

1 = (V ′, E ′

1) and G ′

2 = (V ′, E ′

2) be the input graphs given to the main algorithm. Let n′
= |V ′

| and
m′

= |E ′

1| + |E ′

2|. Then, the “|I E |” part is in O(m′) = O(m) since an edge can be “inter-edge” only once throughout
the running of the main algorithm. The second part was denoted by tR. From Proposition 1, the third complexity part
is in O((n′

+m′) log(n′
+m′)) = O(m log n) because m′

≤ m ≤ n2, and G ′

1 connected implies n′
= O(m′). Whence,

the whole running is in O(n + m log n + tR). �

Implementation of routine R: The idea of computing Repi1
is the following. Let OG be the outgoing vertices in

G1 from G1[∪i 6=i1 Vi ] to G1[Vi1 ], namely OG = {y ∈ Vi1 | ∃x /∈ Vi1 s.t. (x, y) ∈ E1}. Since G1 is connected,
Repi1

⊆ OG. Computing OG only takes O(|I E | + sam1≤i≤ks1
i ) time. Our idea is to filter OG efficiently until we

obtain Repi1
.

Tool boxes B1 and B2: To this aim, we will use two tool boxes. The first tool box B1 computes a spanning-forest
of a given graph G, and for each vertex in G a pointer to the identifier of the spanning tree it belongs to. Given a
graph G and one such spanning-forest representation of G, plus an edge e in G, the second tool box B2 computes the
spanning-forest representation of G \ {e}, and update the pointers to spanning tree identifiers.

Thanks to B1, right before launching the main recursive algorithm of the common connected component problem,
we compute the spanning-forest representations of the two input graphs. At each recursive step we use the oracle
function to compute the inter-edge set I E in O(|I E | + sam1≤i≤k s1

i ) time. Using B2 we delete all edges of I E of the
corresponding spanning-forest representation. Then, each vertex in OG has a pointer to the identifier of its spanning
tree in the current G1. We then sort those identifiers using standard sorting. Finally we scan the sorted identifiers and
only keep one vertex of OG per identifier, which will form the list Repi1

.
Sorting the identifiers would take O(|OG| log |OG|) = O(|I E | log |I E |) = O(|I E | log m) time. The sum of all

the |I E | terms throughout the computation is bounded by m. Hence, except for the cost of calls to B1 and B2, the
complexity still is in O(n + m log n).

Please cite this article in press as: B.-M. Bui-Xuan, et al., Competitive graph searches, Theoretical Computer Science (2007),
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Forests: If the input graphs given to the main algorithm are forests, they form their own spanning forests. The only
thing to be cared about is keeping a pointer for each vertex to the identifier of the spanning tree it belongs to. This, for
B1 can be done easily in O(n + m) time. For B2, let the edge to be deleted be e = (x, y). We only need to update the
identifiers of the spanning tree that has contained e before the deletion. The deletion of the edge e will split the old
spanning tree into two parts, x and y could be seen as representatives for each of both part. Then, a competitive graph
search will update the identifier of the smaller part in time proportional to the size of the smaller one, and the task of
B2 is complete. The complexity of B2 thus is O(m log m) from Proposition 1. Finally, m = O(n) in case of forests.
We conclude that tR = O(n log n).

Corollary 1. The common connected components of forests can be computed in O(n log n) time.

Nonforest cases: For arbitrary graphs, we benefit from results of [18] on the so-called ET-tree data structure [17].
Let m′ be the number of edges in the two graphs given as input to the main algorithm, and n′ be the number of their
vertices. Then, the cost for B1 in this case is in O((n′

+ m′) log2 n′) [18], or O(m′ log2 n′) as m′ is higher than n′ (one
of the two graphs is connected). Finally, the cost for B2 in this case is in O(log2 n′) per operation [18]. As before,
we note that an edge can be “inter-edge” only once during the whole computation, thus the total cost for calls to B2
is in O(m′ log2 n′). Hence, tR = O(n + m log2 n). Likewise, we use results on edge-ordered dynamic tree [13] for
planar graphs. The corresponding B1 and B2 respectively run in O(m′ log n′) and O(log n′), and the total running
time of both tool boxes is O(m′ log n′). Notice that the number of edges in a planar graph is bounded by three times
the number of vertices, and tR = O(n log n). For interval graphs, the same idea can be effected using clique-path
representation [16] for an O(m′) B1, an O(log n′) B2, and a total tR = O(n + m log n) running time.

Corollary 2. We can compute the common connected components of arbitrary graphs in O(n + m log2 n) time;
of planar graphs in O(n log n) time; and of interval graphs in O(n + m log n) time.

Our algorithm turns out to be a generic algorithm for all the related graph classes. As a consequence, mixing
different classes is allowed, and yields the computing time equals to the upper one. For instance, the common
connected computing time for a planar graph G1 and an interval graph G2 is in O(n + m log n).

4. Application to sandwich cographs

We now address the graph sandwich problems defined by Golumbic, Kaplan and Shamir (1995) [15]:
Input: G1 = (V, E1) and G2 = (V, E2) two undirected graphs such that E1 ⊆ E2 and Π be a graph property.
Results: a sandwich graph G = (V, E) satisfying property Π and such that E1 ⊆ E ⊆ E2.
Edges of E1 are forced, those of E2 optional, and those of E3 = E2 forbidden. Unfortunately most cases are NP-

complete, e.g. with Π : G being comparability, chordal, strongly chordal, etc. Only few polynomial cases are known,
among which cographs [15], and sandwich homogeneous set (i.e. module) [5,8]. Therefore it is a natural question to
ask for efficient algorithms for these polynomial cases.

The following result exhibits a strong relationship between the cograph sandwich problem and common connected
components. Let us recall that the class of cographs is the smallest class of graphs containing the one vertex graph
and closed under series and parallel composition. Therefore any cograph can be seen as a modular decomposition
tree without prime nodes. Equivalently cographs can be defined as the class of graphs excluding P4 as induced
subgraph [22], where P4 denotes the path of length 4.

Theorem 1. Let G1 = (V, E1) be a graph of required edges, and G2 = (V, E2) with E1 ⊆ E2 be a graph of possible
edges. The dual graph G3 = G2 of G2 is defined as the graph of forbidden edges. Then, there exists a sandwich
G = (V, E) between G1 and G2 (meaning E1 ⊆ E ⊆ E2) which is a cograph if and only if the common connected
components of G1 and G3 are singletons.

Proof. Suppose there is a cograph G = (V, E) with E1 ⊆ E ⊆ E2. G cannot be both connected and coconnected,
since the root of the modular decomposition tree of G is not a prime node. Let V1, . . . , Vk be the partition of V into
connected components of: G if it is not connected, G otherwise. That E1 ⊆ E ⊆ E2 implies there is no inter-edge
between the vertex subsets Vi in one graph among G1 and G3. Then, using the partitioning Lemma 3, the common
connected components of G1 and G3 exactly are the union of those of G1[Vi ] and G3[Vi ] for all i . Obviously, G[Vi ]
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is a sandwich of G1[Vi ] and G2[Vi ]. Furthermore, G[Vi ] is a cograph, otherwise it would contain an induced P4, and
so would G. Hence, an inductive argument on the vertex subsets Vi will allow to conclude that all common connected
components of G1 and G3 are singletons.
Conversely, suppose that all common connected components of G1 and G3 are singletons. We build a graph
G = (V, E) as follows. If |V | = 1, E = ∅. Otherwise, the instance can be divided into two cases. If G1 is not
connected, let V1, . . . , Vk be its connected components. We define E such that any pair (x, y) satisfying x ∈ Vi ,
y ∈ V j , and i 6= j implies (x, y) /∈ E . If G1 is connected, then necessarily G3 is not connected (otherwise V
is a common connected component). Let V1, . . . , Vk be the connected components of G3. We define E such that
any pair (x, y) satisfying x ∈ Vi , y ∈ V j , and i 6= j implies (x, y) ∈ E . In both cases (G1 not connected or
G3 not connected), the definition of E within each Vi follows inductively on V1, . . . , Vk . The fact that all common
connected components of G1 and G3 are singletons guarantees that, for all pairs (x, y) ∈ V 2 with x 6= y, we have
chosen whether (x, y) belongs to E without contradictory definitions. Hence, G is well-defined. Then, using standard
cograph characterizations, G can be proved to be a cograph. (We actually have built the decomposition tree of the
cograph.) One can also verify that G is a sandwich between G1 and G3 by its construction. �

The above proof is constructive: if all common connected components of G1 and G3 are singletons, an algorithm
is depicted to compute a cograph that is a sandwich of G1 and G2. Therein, each step divides the graph into subgraphs
induced by some V1, . . . , Vk , then decides whether edges between the Vi exist, and finally recurses in the subgraphs.
This actually follows a divide-and-conquer scheme, with a O(1) combining time. Moreover, deciding the adjacency
between the Vi results in labelling the corresponding node in the modular decomposition tree with series or parallel,
which can be done in O(1) time. Finally, identifying the subgraphs induced by the Vi can be taken care of by a
competitive graph searching. Hence, when a sandwich cograph exists, we can build one such in O(n + m log n) time,
where n denotes the number of vertices, and m the number of edges of G1 and G3.

Corollary 3. The sandwich cograph problem can be solved by a robust – in the sense of certifying – algorithm in
O(n + m log2 n) time, where n is the number of involved vertices, and m the number of forced edges and forbidden
edges.

Proof. We first compute in O(n +m log2 n) time the common connected components of the graph G1 of forced edges
and the graph G3 of forbidden edges. Suppose that all common connected components of G1 and G3 are singletons.
Then, a sandwich cograph can be build in O(n +m log n) as depicted in the proof of Theorem 1. We now suppose that
there is some common connected component C that is not a singleton. Then, any sandwich G of G1 and G2 verify
that G[C] is both connected and co-connected (G[C] is partial supergraph of G1[C] and G[C] is partial supergraph
of G3). We deduce that G[C] is not a cograph and must contain and P4, and so must G. Thus, C is our certificate to
state that no sandwich of G1 and G2 can be a cograph. In this case, one can verify in linear time that both G1[C] and
G3[C] are connected and deduce that every sandwich of G1 and G2 must contain a P4. �

The above result improves the O(n(n + m)) complexity of the algorithm proposed in [15]. However, we think that

Conjecture. There exists a linear time algorithm to solve the sandwich cograph problem.

Such an algorithm would imply a linear characterization of the totally degenerate case of the common
connected component problem, when all components are singletons. Similarly the P4-structure of common connected
components is worth being further studied as shows the following proposition, which is highly related to Theorem 1,
and states that common connected components must contain many P4’s.

Proposition 4. Let C be a common connected component of G1 = (V, E1) and G2 = (V, E2) with E1 ∩ E2 = ∅,
then both G1[C] and G2[C] contain a P4.

Proof. Consider the root of the modular decomposition tree of G1[C]. It cannot be a parallel node since G1[C] is
connected, nor can it be a series node since E1 ∩ E2 = ∅ and G2[C] is connected. Therefore it is a prime node. Hence
G1[C] is not a cograph and must contain a P4. Similar argument holds for G2[C]. �
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best so far this paper conjecture

forests of trees O(n log n) [11] O(n log n) O(n)

interval graphs O(m + n log n) [12] O(n + m log n) O(n + m)

unit interval graphs O(n log∆ log n) [2] O(n∆ log n) O(n + m) = O(n∆)

planar graphs O(n log2 n) [14] O(n log n) O(n)

permutation graphs O(n log n + m log2 n) [14] O(n + m log2 n) O(n + m)

arbitrary graphs O(n log n + m log2 n) [14] O(n + m log2 n) O(n + m log n)

Fig. 3. Common connected component computation time, with n the number of vertices, m the total number of edges, and ∆ the maximum vertex
degree.

5. Conclusion and perspectives

This paper gives a generic common connected components computation, which also exemplifies an infrequent
divide-and-conquer optimization scheme. Since divide-and-conquer is a very basic method, our algorithm is simply
structured while holding some efficient performances (Fig. 3). We also improve the computation of cograph
sandwiches as a corollary of this algorithm.

In general, as soon as some dynamic data structure satisfying our requirements on the tool boxes B1 and B2
(see Section 3) is provided, our general algorithmic scheme will apply. We hope that this technique could be
helpful in solving other problems, e.g. with common strongly connected components, and be extended to probabilistic
algorithms on problems of a very large size.
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