N
N

N

HAL

open science

A Service to Customize the Structure of a Geographic
Dataset.
Sandrine Balley, Bénédicte Bucher, Thérese Libourel Rouge

» To cite this version:

Sandrine Balley, Bénédicte Bucher, Thérese Libourel Rouge. A Service to Customize the Structure of
a Geographic Dataset.. OTM’06: On The Move - Workshop SebGIS, Nov 2006, Montpellier (France),

France. pp.1703-1711. lirmm-00134416

HAL Id: lirmm-00134416
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00134416
Submitted on 2 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00134416
https://hal.archives-ouvertes.fr

A service to customize the structure
of a geographic dataset

Sandrine Balley', Bénédicte Bucher!, Thérése Libourel?

! Laboratoire COGIT - IGN, Saint Mandé, France
{sandrine.balley, benedicte.bucher} @ign.fr
2LIRMM - CNRS - Université Montpellier 2, Montpellier, France
libourel@lirmm. fr

Abstract. This paper deals with the usability of vector geographic data struc-
tures. We define usability of a geographic representation as the ability to fit the
user's view, the user application and the user platform, plus the ability to be de-
rived from a data producer dataset and to be maintained in the future if needed.
Specifying the structure of a usable representation and deriving the correspond-
ing data require specific tools and expertness. We propose to assist users in this
process by means of a Web-based system able to assist users in specifying and
performing a dataset restructuration process. The first step is to help users to set
their requirements. To achieve this goal, we propose a graphical interface to
specify differences between an existing data structure and a target data struc-
ture. The second step is to help users to commit these requirements into a trans-
formation process applied to an existing dataset. We propose mechanisms to
plan and execute this process and to check its result. The system relies on
knowledge of existing data structures, platforms grammar rules and typical ap-
plication schemas. The first part of this paper analyses the notion of a data
structure and how to specify it. The second part describes our proposal.

1. Introduction

There is no best way to represent a portion of geographic space in a vector geographic
database. Various users and applications, both of which are growing in number, have
different best-fitted representations of geographic space. As they cannot design and
create their own ‘custom-made’ dataset, users have to acquire them from an institu-
tional data producer, but they wish to be provided with the amount and representation
of information required by their application. For a national data provider such as IGN,
enabling users to specify on the Web real world representations that are relevant to
their application and providing them with the corresponding data is a great stake. By
such a service users would keep benefiting from the data producer services to manage
the dataset (quality checking and update), which is not the case if they adapt the data
by themselves.

This paper introduces a service letting users specify their representation require-
ments starting from a representation proposed by the producer. These specifications

are processed by the system to generate a transformation chain to actually derive the
data. We do not address the whole issue of deriving a best fitted representation but
concentrate on the structural aspects of the representation. Moreover, we insist on set-
ting the path for an easier maintenance of the user dataset.

The first part analyses the notion of a data structure and how to specify it. The second
part presents our proposal to assist users in getting data with a usable structure.

2. How to formally describe a data structure ?

This part analyses what a data structure is and which languages are existing to de-
scribe it. Introduced concepts are summarized on figure 1.

The process of representing the real world in vector databases, i.e. abstracting real
world entities into database objects, has been theoretically described [1] and practi-
cally documented [2]. The results of a representation process are the data, plus the
framework to describe and encode this data. We called this framework the data struc-
ture. As shown in figure 1, designing a geographic data structure implies several
steps: categorization, selection, modeling and implementation choices. These steps
are successively defined below, together with existing solutions to document them.

The categorization step consists in defining categories of objects to be observed in
the real world and somehow represented in the database, like ‘road’, ‘forest’, ‘lake’,
‘building’. This step amounts to defining the ontology (or thesaurus) dedicated to the
application domain of the representation designer.

The selection step consists in deciding which entities of these categories have to be
represented in the database. A selection is usually expressed as filters, like ‘roads that
are dead-ends and that are shorter than 400 meters must not be represented in the da-
tabase’.

The modeling step consists in deciding how to represent selected real world entities
as objects. For instance, roads might be represented by linear objects of the ROAD
class, figuring their centerlines, with indications about their driving sense and admin-
istrative number. These objects must compose a network. The accessed amenities
(such as tollgates and service stations) shall be explicitly attached through the
PROVIDE ACCESS TO relationship. This step amounts to specifying the dataset concep-
tual schema plus some rules for data capture and consistency.

Rather advanced object types can be used in a conceptual schema (e.g. types with
temporal primitives or multiple representations), depending on the used data model.
For example the UML profile based on the OGC General Feature Model [3], the
UML+PVL model used by the Perceptory CASE tool [4] and the MADS model [5]
are extremely rich. As explained below, this is not the case for data schemas at a
lower abstraction level, i.e. logical and physical schemas. That is why conceptual
schemas cannot be derived from logical or physical ones.

Unfortunately, formalized conceptual data schemas are rarely provided to users.
Defined by the data producer, they do not take part in the data transfer. It is notably
the case for OGC WFS and WMS diffusion services.

The implementation step consists in specifying how the objects designed at the
previous step can be represented in a machine-readable form. This step amounts to
defining two data schemas. The first one is a platform-dependant logical schema. It
describes how users actually manipulate data in the used platform, e.g. through tables
and columns. The second one is a physical schema describing how data are stored.
For example, it might be decided that roads are represented in a single file and that
road numbers are encoded by strings up to 10 characters.

Unlike in conceptual schemas, only the object types that are allowed by the used
platform grammar rules can appear in logical and physical schemas. An example
grammar rule of the PostGIS DBMS is that topological primitives are not supported.
Grammar rules have no standalone description, even in platform documentations.
They are implicitly enclosed in data translators (transforming a logical schema into
another) and in CASE tools (deriving a logical schema from a conceptual schema).

‘ Description of a data structure ‘

Y

‘ Ontology or thesaurus ‘ ‘ Data schema ‘ ‘ Other information ‘
[Z% |
‘ Conceptua schema ‘ ‘ Logical schema ‘ ‘ Physical schema ‘

Categorization @ Modeling Implementation

Fig. 1. Design steps to produce a structure to represent a portion of geographic space are dis-
played in the lower part. The upper part represents elements in which this design can be de-
scribed.

ul payloads

The design steps of a data structure and their possible documentation are summa-
rized in figure 1. It can be noticed that the entirety of a data structure can not be ex-
pressed by means of ontologies and data schemas. They appear as ‘other information’
in the figure. This is the case for the selection rules of real world entities, the capture
conditions and the inner consistency rules defined at the modeling step. Most of the
time this information is expressed through natural language statements in data specifi-
cation documents. Different models tend to represent it more formally: among others,
[1] proposes relations between an ontology of real world categories and a data
schema. [6] proposes a spatial extension of the OCL formal language. [7] proposes a
specification model including consistency constraints as an aspect of data quality.

This part has analyzed the notion of a data structure. It is a complex notion whose
facets are unequally and independently described. As a consequence, it is difficult for
a user to understand or to specify it at a glance. Our approach to assist users in speci-
fying a usable data structure and deriving usable data consequently is presented be-
low.

3. Helping users to restructure existing datasets into datasets with a
usable structure

This part describes our proposal to assist users in deriving datasets with a usable
structure in their context. The first difficulty experienced by users in this process is to
identify their requirements concerning the structure of these datasets. This is ad-
dressed in section 3.1. The second difficulty is the very transformation of existing
datasets into usable datasets meeting the requirements. This is addressed in section
3.2.

1- interactively
mEEE H
specify usable
EEll data structure 2- transform,
/9\ clean, ensure |~
3- deliver dataset maintainability
User with a usable Data and
structure .. metadata
Client Application server
Internet

Fig. 2. Proposed data restructuration process.

We propose to handle these difficulties by means of a service helping users to get
on-demand datasets. As shown on figure 2, the user first specifies its requirements on
a graphical interface driven by an existing data structure. Relying on these require-
ments and some internal knowledge of constraints relative to data and data structures,
the system automatically generates a suitable transformation chain. It last delivers us-
able data to the user.

This approach may be compared to existing tools for modeling (CASE tools),
translating (e.g. the Safe Software FME translator), restructuring (e.g. the Safe Soft-
ware FME workbench), or checking (e.g. the Laser Scan Radius studio) geographic
data. Some of these functionalities are also emerging on the Web [8]. These tools are
specialized and powerful, be it to represent platform constraints or to transform data.
However they do not provide any knowledge on data structures constraints, esp. at the
conceptual level, which is the main characteristic of our approach.

3.1 What is a usable data structure ?

To define a usable data structure, we greatly rely on [9] description of geographical
data usability: usability is considered as a ternary relationship between users and their
needs, data and their characteristics, applications and their requirements.

We add two aspects to this definition in order to take into account the necessary re-
lationship between the user and the data producer. This is represented on figure 3. In
our work, a usable representation is:

— a representation that can be derived from an existing representation, for instance

from an IGN data product (first requirement on figure 3),

— a representation that fulfills users requirements (second, third and fourth require-

ments on figure 3).

— arepresentation that can be maintained (fifth requirement of figure 3).

(2) User data are
loaded into his platform (1) User data are
derived from the
producer data

g User platform
@ __ 5
% / User application / : _____
data | T A\N

V
/ (5) User data will have to be
(4) The user controls his (3)User data feed maintained, possibly thanks
application, interprets the result. pis application to the producer data.

User
categories

Fig. 3. Usable data representation must fulfill requirements of several processes.

3.2 Assisting users in specifying their requirements for a usable data structure

In our approach, requirements for a usable data structure are not expressed as a
mere structure definition. As detailed hereafter, they are listed after to the five aspects
considered in our definition of data usability (figure 3).

Firstly, a usable dataset must be derivable from some existing data. We propose to
let users specify their structure requirements by stating differences between the
needed structure and existing structures of data products diffused by a data producer
like IGN. In our proposal, a two frame graphical interface (figure 5) provides a view
of an existing data structure at the conceptual level, thanks to an object-oriented class
diagram. This structure is stored in the system as a metadata. A user-defined data
structure is designed by selecting and manipulating elements from the initial one. De-
sign tools are used that provide functionalities such as renaming, splitting a class,
dropping an attribute, etc.

Secondly, in a usable dataset, real world categories that are meaningful to the user
must figure in the data structure. Depending on the producer dataset structure, they
may not be represented by explicit classes in the conceptual schema. For example, in
some IGN database, the ‘bridge’ category does not take part to the conceptual
schema. To fulfill this requirement, we propose to enrich conceptual schemas with de-
rivable implicit object types figuring a-priori meaningful categories. For example, the
service provider could enrich the description of its conceptual schema with the im-
plicit BRIDGE object type that can be derived from LINEAR CONSTRUCT and ROAD
SECTION by means of predefined restructuration operations. Users can also define de-
rived classes: by reading the structure description, they must assess if the required in-
formation is actually enclosed in the dataset. Then they must match implicit and exist-
ing object types by means of the design tools described previously.

Thirdly, a usable dataset must fulfill the requirements of the user application. Re-
quirements on the inputs and outputs of an application are called pre-conditions and
post-conditions. Here are listed the most frequent pre-conditions:

— Definition of the application schema, i.e. the conceptual data schema the most suit-
able for the application. For example, the application schema of any routing appli-
cation is composed of ROAD and NODE object types explicitly linked by a topologic
relationship.

— Platform constraints affecting the physical or logical schema: e.g. ‘the service only
reads GML data files’,

— Information about setting input parameters affecting the process: e.g. ‘setting pa-
rameters (e.g. a threshold, a tolerance value, etc.) can be set to zero for short itiner-
aries’, ‘the used algorithm for route calculation may provide bad results if applied
to very sinuous features’.

All of these pre-conditions cannot appear in application schemas. They are being fur-

ther formalized to promote the discovery and chaining of data processing, especially

those deployed as Web services [10] [11]. For our part, we only want to provide some
general application schema templates (e.g. for route calculation or map making) to
help users express the requirements issued by their application.

Fourthly, a usable dataset must fit the user platform, i.e. it must respect its gram-
mar rules. Just as current CASE tools, we propose to prevent users from dealing with
this technical issue. A first assistance we provide consists in generating suitable logi-
cal data schemas thanks to grammar rules of standard platforms published in our ap-
plication. A second assistance consists in propagating conceptual schema evolutions
to the logical level thanks to the stored links between these schema elements.

Fifthly, a usable dataset must be maintainable. To fulfill this requirement, we pro-
pose to trace transformations and to maintain correspondence links between initial ob-
jects, that are kept by the data producer, and the transformed ones. It enables to replay
the restructuration process, to trace data errors and to propagate potential updates
from the initial dataset to the user one.

In this section we have presented the main lines of our proposal to assist users in
specifying requirements for a usable data structure. Users only express ‘applicative’
requirements. They are provided with existing conceptual schemas and some typical
usable application schemas. Requirements on the logical and physical facets of data
structures are automatically inferred by the system.

3.3 Assisting users in performing the transformation process

This section describes how our system assists users in performing the transforma-
tion process to derive a dataset compliant with the requirements specified above.

Structure
transformation
L Rename
Val?able 1 < feature type
variable n...
Transformation
parameterize() <H [[|
execute() Conceptual | | Logical Physical Data
schema schema schema transfo.
transfo. transfo. transfo.

Fig. 4. The internal transformation model and an example of structure transformation
(shaded class).

Applying schema transformations

As seen in the section before, users apply design tools that manipulate elements from
an existing conceptual schema to specify their required structure. Our internal trans-
formation model is shown on figure 4. Each design tool, e.g. ‘rename feature type’, is
associated to a class extending the ‘Structure transformation’ class. A ‘structure trans-
formation’ is an elementary step of a transformation process. It affects the whole data
structure. It is composed of a ‘conceptual transformation’ (renaming a class of the
conceptual schema), a ‘logical transformation’ (renaming a table), a ‘physical trans-
formation’ (renaming a file) and a ‘data transformation’ (not affecting data in our ex-
ample). Any ‘Transformation’ class has specific variables (e.g. ‘oldName’ and ‘new-
Name’ for ‘rename feature type’). It also has two methods : a parameterization
method to allocate values to variables, and an execution method to execute the trans-
formation.

Applying a design tool automatically triggers the creation of an instance of the un-
derlying structure transformation class. The system automatically invokes the parame-
terization method of this structure transformation. This applies and propagates vari-
ables assessment from the conceptual level to the lower levels. This propagation relies

on stored links between schema elements, and on an internal knowledge of used plat-
form grammar rules. The system then invokes the execution method of the ‘concep-
tual transformation’ to transform the conceptual schema visualised by the user. The
other transformation instances are inserted into a transformation plan for a later exe-
cution.

Planning and tracing the restructuration process

When the user commits all his requirements and asks for the compliant data deriva-
tion, the system goes through its transformation plan and invokes the execution meth-
ods of successive transformations. Correspondences between the initial and trans-
formed objects identifiers are stored.

During this transformation process, the system launches some additional expert
mechanisms. As a matter of fact, the transformation process may lead to violate some
general integrity rules (e.g., the existence of an association is conditioned by the exis-
tence of its member classes) or some specific ones stated in the data structure descrip-
tion (e.g., the road network is sectioned according to changes in the road attributes
values). They trigger the parameterization of other transformations (e.g., some ROAD
SECTION instances must be aggregated after the deletion of an attribute whose value
was causing their separation).

3.4 Implementation

A prototype of our application has been implemented whithin the GeOxygene open

Java framework!. In GeOxygene, spatial data classes extending the OGC concept of

Feature are mapped to a relational database via an object-relational bridge. In the cur-

rent prototype, GeOxygene is also considered as the default user platform.
The description we propose for data structures is based on:

— the ISO 19109 General Feature Model, based on Feature Types, for the conceptual
or application schemas,

— the “Class” and “Field” classes for describing the logical data schema in the Java
platform

— the “Table”, “Column” and “Key” classes for describing the logical schema in the
relational storage platform

The user interacts with the system through a client implemented as a Java Web
Start application. This client displays a conceptual schema in a UML-like form based
on the JGraph library. It interacts with our server through Web Services.

! http://oxygene-project.sourceforge net/

& Dataset Builder o [=] 5]

Fichier

* [~ [plefelel=]a] [a]n] [s]a[a] [Elm)| [«[=][2]e e[[«]a] [a]e] [s]a]s] (@@
{vola ag commnicatinn | -m.
T — S - i)

isla noeud routier | :
i + vocation]
|+ nombre de chaussées !

'+ nombre total de i
+ état physiqy Explorer
Load features

+ classement administrati
+ uépartement gestionnaire

o relation topelogigrie arcinoeud final
+_numéro

Rename

Drop
Aggregate features
Spiitinta...

une route est composée de trongans de route

trongon e route

+ accés
+ appartenance au réseau vert
+ date prévue de mise en service
+ nombre de chaussées

Equipement routier

+ nature
quipement routier + toponyme en narme JEC

permet d'%\::éder a

+ nature
+_toponyme en norme JEC

\Schéma de données initial Votre schéma de données

Save diagram Create dataset

Fig. 5. The user interface: the user data structure (on the right) is specified based on ele-
ments selected from an existing data structure (on the left). Design tools are proposed in a con-
textual menu. An implicit object type is displayed as a transparent class on the left.

System evaluation

No user test has been carried out so far. An evaluation session is planned within the
COGIT lab with a pre-defined use-case : the restructuration of a dataset for a map-
making purpose. Of course, the COGIT users are more comfortable with geographic
data structures than the users targeted by our system. A real condition evaluation is
necessary to assess the usability of our system.

Conclusion and perspectives

In this paper, the usability of a geographic representation is defined as its ability to
suit the user’s view, to fit into the user platform and application, to be derivable from
an existing dataset and to be maintainable.

We propose to assist users in acquiring geographic data with a usable structure on
the Web. Our approach aims to spare users from technical considerations and to let
them focus on the application level. Starting from an existing data structure, a target
data structure is interactively specified at the conceptual level. A complete transfor-
mation plan, including logical schema restructuration and data cleaning operations, is
automatically designed by the system. This plan is executed on the initial data before
they are sent to the user. The restructuration plan is stored, as well as links between
initial and restructured datasets.

The main drawback of our system is that it requires formal descriptions of data
structures, including an explicit mapping between schema elements at different ab-
straction levels. This issue is easily tackled in our case as the GeOxygene platform
manages a data dictionary, a Java API and related tables in the same time thanks to

mapping files. However, to reuse our approach on datasets that are not stored in Ge-
Oxygene, a solution must be found to acquire and manage such extensive metadata.

Our approach also requires the description of platform grammar rules and well
known application schemas. Further work [Abd-el-Kader, 2006] should explore the
mechanisms to acquire these descriptions.

References

[1] Gesbert, N.: Formalisation of Geographical Database Specifications. In: Proceedings of the
ADBIS Conference on Advances in Databases and Information Systems (2004) 202-211.

[2] Environmental Systems Research Institute, Inc.: Modeling our World, the ESRI guide to
geodatabase design. ISBN 1-879102-62-5 (1999)

[3] ISO TC21: ISO 19109 Geographic Information - Rules for Application Schema (Interna-
tional standard)(2005)

[4] Bédard, Y., Visual modelling of spatial databases: Towards spatial PVL and UML. Geo-
matica, 53(2) (1999) 169-186

[5] Parent, C., Spaccapietra, S., Zimanyi, E.: Conceptual modeling for traditional and spatio-
temporal applications. The MADS approach. Springer Verlag (2006)

[6] Pinet, F., Kang, M.A, Vigier, F.: Spatial Constraint Modelling with a GIS Extension of
UML and OCL: Application to Agricultural Information Systems. In: Proceedings of the
Metainformatics International Symposium (2004)

[7] Friis-Christensen, A., Christensen, J.V, Jensen, C.S : A Framework for Conceptual Model-
ing of Geographic Data Quality. In: P. Fisher (ed.): Proceeding of the 11" international
Symposium on Spatial Data Handling (2004) 605-616

[8] Leite, F.L., De Sousa, A.G., De Souza Baptista, C., Nunes, C.P, Da Silva, E.R, De Almeida,
D.R, De Paiva, A.C: Migratool: Towards a Web-Based Spatial Database Migration Tool. In:
Proceedings of the 16th DEXA conference (2005) 480-48.

[9] Josselin, D.: Spatial data exploratory analysis and usability. Data Science Journal (Spatial
Data Usability Section), 2(26) (2003)

[10] Abd-el-Kader, Y., Bucher, B.: Cataloguing GI Functions provided by NonWeb Services
Software Resources Within IGN. In Proceedings of the 9th AGILE International Conference
on Geographic Information Science, appendum (2006)

[11] Lemmens, R., Granell, C., Wytzisk, A., de By, R., Gould, M., van Oosterom, P.: Semantic
and syntactic service descriptions at work in geo-service chaining,. In: Proceedings of the 9™
AGILE Conference on Geographic Information Science (2006) 51-61

