N

N
N

HAL

open science

Mining Historical Data to Build Constraint Viewpoints

Christian Bessiere, Joél Quinqueton, Gilles Raymond

» To cite this version:

Christian Bessiere, Joél Quinqueton, Gilles Raymond. Mining Historical Data to Build Constraint
Viewpoints. ModRef: Constraint Modelling and Reformulation, Sep 2006, Nantes, France.

00134936

HAL Id: lirmm-00134936
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00134936
Submitted on 5 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

lirmm-

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00134936
https://hal.archives-ouvertes.fr

Mining historical data
to build constraint viewpoints

Christian Bessiere, Joél Quinqueton, Gilles Raymond

Université Montpellier 2, LIRMM

Abstract

Constraint programming has shown convincing success in solving real world
problems from the industry and is now widely used on industrial tasks. How-
ever, designing Constraint Networks is limited to experts in this domain, which
constitutes a bottleneck for spreading this approach.

Automated or partially automated constraint network modelling appears a good
solution to overcome this weakness. Promising initial results have been reached
in constraint network learning; however, all of these results take for granted the
variables and the domains of the constraint network to build.

Therefore, we propose here an automated method to generate several different
viewpoints for the problem we seek to model. To do so, we process existing solu-
tions to problems close to the target problem. Our main idea is that a viewpoint
general enough to describe different solutions of close problems will also be able
to describe any solution of the target problem.

As an experimental demonstration we provide viewpoints built with our method
for three different kinds of problems.

1 Introduction

The CSP approach to problem resolution has proved its effectiveness and is now
widely employed in industry on problems with very large numbers of parameters.
Unfortunately, even if the basic notions of constraint networks can be reasonably
easily explained to non-experts, these concepts remain difficult for them to put
into practise on real problems. Modelling is far from being easy and is reserved
to specialists in the domain. This bottleneck needs to quickly disappear for the
CSP approach to keep its users and gain new ones.

In the field of CSP partially automatic modelling a very global approach is pre-
sented in [1]. On the other hand, [2] and [3] are interesting works aimed at
constraint learning. However, these efforts start from known sets of variables
and domains. Nonetheless, determining these sets is complex in practice, and is
crucial in obtaining a efficient constraint network. This is why we propose here
an automatic method to determine these sets, as the initial step of the modelling
process.

We start with a set of historical data. The historical data that we use are solu-
tions to problems close to the target problem, the one we seek to model. From

these data, we extract candidate variables and their domains with which we
can construct viewpoints (constraint networks restricted to variable and domain
sets): each of these viewpoints is able to represent all of these historical solutions.
By hypothesis, the target problem has a lot in common with the close problems
for which we have known solutions. So we propose that these viewpoints are not
only capable of describing the historical solutions but also the solutions of our
target problem.

Clearly, the initially supplied data must conform to certain conditions in order
to justify this proposition: these conditions are explored in this paper. At the
end of the process we obtain a set of potential viewpoints from which we will
have to select the more relevant in order to build efficient constraint models.
This following step in automatic constraint network modelling is not described
in this paper.

Our method has been tested on three very different problems using our tool,
ViewPointDigger.

This approach is fully compatible with the previously cited work in constraint
learning. Combining these complementary techniques should lead to theoretical
progress, which in turn will lead to medium-term progress for practical applica-
tions of CSP in the widest world.

2 Background

In this section, we present a basic revision of the constraint programming for-
malism and we define the vocabulary associated to the historical data that we
will work on.

2.1 CSP formalism

Definition 1 (Constraint network) A constraint network is defined as a triplet
(X,D,C) where:

X ={X1, X, ..., X,,} is a set of variables.
D ={Dx,, Dx,, ..., Dx, } is the set of their domains: each variable X;
takes its values from the domain Dx, .

={C1,C4,...,Cn} is a sequence of constraints on X and D, where a
constraint C; is defined by the sequence var(C;) of variables it involves,
and the relation rel(C;) specifying the allowed tuples on var(C;).

Definition 2 (Instance) LetY = {Y7,Y5,...,Ys} be a subset of X. An instance
ey on'Y is a tuple (vi, v, ...,v%) € Dy, X Dy, X ... x Dy,. This instance is partial
if Y # X, complete otherwise (noted e). An instance ey on Y wviolates the
constraint C; iff var(C;) CY and ey [var(C;)] ¢ rel(C;).

Definition 3 (Solution of a constraint network) A complete instance over
the set X of variables is a solution of the constraint network N = (X, D,C) iff it
does not violate any constraint. Otherwise it is a non-solution. Sol(N) denotes
the solutions over N.

Definition 4 (Constraint viewpoint) A constraint viewpoint is defined as a
tuple (X, D). It is the part of a constraint network without the constraint se-
quence.

The notion of constraint viewpoint was informally introduced by Geelan92 [4]
and formalized by Law and Lee [5]. The importance of this concept in the con-
straint network design process has been established in several other works ([6],
[7] and [8]).

2.2 Historical data

The data which we will process is a set of tables each of which is a description
of a solution to a problem P’ close to the target problem P, the one we seek to
model.

Definition 5 (Table) A table T is a relation (Ai, ..., Ay) where the A; are
the attributes of T .

The set of attributes of T is denoted its scheme, a subset of it is denoted a
partial scheme.

Definition 6 (History) A History is a set of tables sharing the same scheme.
We denote h-solutions (historical solutions) the tables that constitute the his-

tory.

Definition 7 (Domain of the attributes) The domain of an attribute is
the set of values occuring in a h-solution, or in a set of h-solutions, for this
attribute.

We denote Dy (A;) the domain of the attribute A; in the h-solution h and Dy (A;)
the domain of A; on the history H.

We extend the notion of domain to a partial scheme as follows:

Let S = {A4, ..., A, } be a partial scheme and h a h-solution, Dy (S) = Dp(A1) x
e X Dh(An)

Definition 8 (Term and partial terms) We denote terms the entities of a
relation and partial terms any subset of values included in a term.

Definition 9 (h-solution) A h-solutions h, to a problem P with a scheme s is
a table with a scheme s. h-Sols(P) is a set a h-solution to the problem P through
the scheme s for which exists a bijection from Sol(P) in h-Sols(P).

Definition 10 (close problems) Two Problems, P and P2, are said close to
each other iff exists a scheme of attributes s for which exists h-Sols(P1) and
h—SOls ('Pg)

Here, we have clearly defined the constraint programming elements we use and
the vocabulary on the data we have to process.

2.3 The school time table an academic case

For a better understanding let’s now see in detail a practical example of history.
We use a simplified weekly school timetable for the years 2000 to 2003. The
target problem here is to compute a valid timetable for the year 2004. There is
one table (h-solution) for each year and each line (term) of a table describes one
lesson through 4 attributes (Time, Subject, Class and Room).

Time describes the day and the hour when the lesson takes place. There are 5
possible days and 4 possible hours.

Subject indicates the kind of lesson. There are 7 subjects: Math, Science, En-
glish, French, Sport, Music and Art.

Class indicates the student group who follows the lesson. There are 4 classes
which are, in growing age order: Class6, Classb, Class4 and Class3.

Room is the place where the lesson is given. There are 4 different places: Room1,
Room 2, RoomTP (for science lessons) and Outside (for sport lessons).

Let,s see on this example some of the elements we have defined in the previous

Sample history: A school timetable
h-solution 1:year 2000 h-solution 2:Year 2001
Time Subject Class Room Time Subject Class Room
Monday 8h English Class5 [Room1 Monday 8h Math Class3 | Room2
Monday 8h Math Class3 | Room3 Monday 10h| Math Class4 [Room1
Monday 8h Science Class6 | RoomTP Monday 10h| English Class3 | Room2
Monday 10h| Math Class4 | Room1 Monday 14h| French Class5 | Room1
Monday 10h | English Class6 | Room2 Monday 14h| English Class4 | Room2
Monday 14h| Math Class5 | Room1 Monday 16h| English Class5 | Room2
Monday 14h| Science Class3 | Room2 Monday 16h| Sport Class3 | Outside
Monday 14h| English Class4 | Room3 Tuesday 8h English Class5 | Room1
Monday 14h| Sport Class6 | Outside Tuesday 8h Math Class3 | Room2
Monday 16h| French Class3 | Room1 Tuesday 8h Science Class6 [RoomTP
Tuesday 8h English Class4 | Room1 Tuesday 10h| Math Class4 | Room1
Tuesday 8h Math Class6 | Room3 Tuesday 10h | English Class6 | Room2
h-solution 3:Year2002 h-solution 4:Year 2003
Time Subject Class Room Time Subject Class Room

Fig. 1. An example of history

section.
Sample target problem P: "To design a valid timetable for the year 2004"
Sample history H: The school timetables for the year 2000 to 2003

Sample h-solution h: The timetable for the year 2001

Sample attribute of h: 'Subject’

Sample attribute domain: Dagor('Subject’) = {'Maths’, 'Science’, ' English’,
'French’,’ Music, 'Sport'}

Sample partial scheme: {"Time’, Room'}

Sample domain of a partial scheme: Dago1 ({!Time’,” Room'}) = Dagor ("Time’) x
D2001 (IROOTR/)

Sample term: {' Monday 8h', Science’, Class6’,’ Room TP’}

Sample partial term: {'Science’,’ Room TP’}

And we can assure that the timetable design problems for the years 2000 to
2003 (P2000, P2001, P2002, P,003 and P,004) are close to each other because
their solutions can all be expressed through tables with the scheme {/T'ime’,
'Subject’, 'Class’, ' Room’}.

3 The approach

3.1 Main principle and limitations

In this section we describe the formal base we rely on to build viewpoints for
our target problem according to the history.

The history is a set of h-solutions to problems which are close to our target
problem. We can build a viewpoint that can describe every h-solution of the
history: such a viewpoint is said to match the history. It is important to note
that we determine the domains of the viewpoints from the values occuring in
the history: in order for the viewpoints generated to represent every solution of
the target problem, we need the following hypothesis to be true.

Hypothesis 1 (Domain constancy) For each attribute of the h-solutions, any
values present in any h-solution of the target problem must occur at least once
in the history.

We can express this, for any h-solution hp to the target problem, as follows:

V hp €h-Sols(P), a h-solution of the the target problem, ¥V A;, an attribute of
hp, Dhy(Ai) © Du(Ai)

In Fig.2, P,, Py, P. and P, are problems close to the target problem P. h; to
hs are the h-solutions of the history. V P and V P, are two different viewpoints
matching the history. The left part of Fig.2 shows how a viewpoint matching the
history can cover every solution of the target problem.

We cannot be sure that the viewpoint matching the history will be able to
describe any solution of the target problem. This is illustrated in the right part
of Fig.2, which highlights the fact that we need viewpoints general enough to
include the solutions of the target problem. We show in section 3.3 how we se-
lect such general viewpoints. As any other learning technique, our method may
fail for some viewpoints, but since we generate a lot of candidate viewpoints,
a simple validation or refutation process with an expert of the target problem

h-Sol(Pa) h-Sol(VP1) h-Sol(Pa)

h-Sol(Ps)
h-Sol(VP2)

h-Sol(Po) h-50l(Pa)
VP1: Viewpoint matching the History VP2: Viewpoint matching the History
Valid for modelling Constraint Network for P Too specialized for modelling Constraint Network for P

Fig. 2. Viewpoints matching an history (general case)

would eleminate the too specialized viewpoints.

In this section, we have presented our approach and its limitations.

3.2 From partial terms to viewpoints

Our goal now is to build viewpoints matching a given history. To do so we
determine candidate variables according to the history and then select a subset
of them that constitute a viewpoint.

We use partial terms to generate candidate variables for the viewpoints we intend
to build. To present this step we need to introduce the concept of cover of the
partial terms.

Definition 11 (Cover of a partial term) The cover Cy,(p) of the partial term
p in the h-solution h is the set of terms of h that contain the partial term p.

Definition 12 (Candidate variables associated to a partial term) The can-
didate variables associated to a partial term p occuring in h is a set of variables
Xnp={Xp1,...., Xpr of variables where: |, (p)| = |Ch(p)|

The domain of these variables is the cartesian product of the domains of the
attributes that are not valuated in p, plus the special value €. The € value used

in an solution indicates that this variable should not to be taken into account in

the reading of this solution.

We also need to define a set of variables that covers a whole h-solution.

Partial term covers
Year 2000 Year 2001
Time Subject Class Room Time Subject Class Room
Monday 8h English Class5 | Room1 8h Monday 8h Math Class3 Room2
Monday 8h [Math Class3 [Room3 |—— ——{Monday 10h | Math Class4 | Room1
Monday 8h Science Class6 | RoomTP —— —Monday 10h English Class3 Room2
Monday 10h Math Class4 [Room1 @— Monday 14h French Class5s Room1
Monday 10h | English Class6é |[Room2 |—— Monday14h | English Class4 | Room2
Monday 14h Math Class5 | Room1 Monday 16h English Class5 Room2
Monday 14h | Science Class3 | Room2 Monday 16h| Sport Class3 |Outside
Monday 14h | English Class4 | Room3 Tuesday 8h English Class5 [Room1
Monday 14h| sSport Class6 | Outside Tuesday 8h [Math Class3 | Room2
Monday 16h| French Class3 | Room1 Tuesday 8h [Science | Class6 [RoomTP
Tuesday 8h | English | Class4 [Room1 Tuesday 10h [Math Class4 | Room1
Tuesday 8h | Math Class6 | Room3 Tuesday 10h[English | Class6 [Room2
Year 2002 Year 2003
[Time] subject | class | Room |- ———— ———— - time [subject | class [Room |
| T P U e — ____ I T - -1 -

Fig. 3. Partial term cover on a history

Definition 13 (Covering group on a h-solution) Let P, be a set of partial
terms occuring in h, Py is a covering group on h iff:

U Ch(p) =h

pEPH

Now, with these elements we are able to describe any h-solution from a covering
group, as presented in the following theorems.

Theorem 1 (Building a viewpoint matching a h-solution) The set of can-
didate variables associated to the partial terms of any covering group on a h-
history h can be instanciated to represent h.

Proof 1 Let P, be a covering group on a h-solution h.

Let Xp, and Dp, be the sets of candidate variables and their domains built from
the partial terms of Py.

It comes from the definition of a covering group that there exists an application
f such as:

h NN Xy, where &), C Xp,
t L Xpi, wherep C t

According to the definition of the candidate variables:
t L Xpi = e DX,,), t=pUv.

So there exists an instance of X}, that exactly maps h. And the remaining vari-
ables of Xp, can be set to the ¢ value so they will not be taken into account in
the interpretation of the instance. This is why we can affirm that a viewpoint
constituted from a covering group on h does match h.

Theorem 2 (Building a viewpoint matching a history) The set of candi-
date variables associated to the partial terms of a set of covering groups, one per
h-solution h of a history H, can be instanciated to represent any h of H.

Proof 2 Let Py = {P,,...,Pn,} be a set of covering groups, one on each h-
solution h, in a history H.

Let Xp,, and Dp,, be the sets of candidate variables and their domains built from
the partial terms of Py .

Vh € H,3P, € Py, where Py, is a covering group on h

It comes from Theorem 1 that Xp,, can be instanciated to represent any h in H.
So if the viewpoint (Xp, ,Dp,,) matches any h in H, it matches H.

We have demonstrated here that finding a covering group on each h in H leads
to a viewpoint that matches the history. Let’s now see how to select general
enough covering groups, whose viewpoints will represent the solutions of the
target problem.

3.3 From constant partial terms to constant viewpoints

The number of covering groups for each h-solution is very large and the number
of unions of theses covering groups is far larger. Among the viewpoints derived
from these unions, we focus on those which assure a minimum geralization level.

Remark: For the simplicity of this article’s remaining explanations all the
h-solutions of our history have the same number of terms. This is not always
true but this does not invalidate our approach and we will describe further on
how to handle such cases.

We focus on viewpoints that match the history and have the same covering

group on each h-solution. Such viewpoints describe all the h-solutions with the
same variables: we can say they are general to the whole history and we can
expect that they are sufficiently general to allow the description of our target
problem solutions as well.
To build such viewpoints, we need to find partial terms that occur a constant
number of times in every h-solution of the history. If we can build constant groups
with such terms, they will cover each h-solutions in the history. Let’s now see in
detail how to find these constant groups.

Definition 14 (Constant partial term) A partial term p is said constant on
a history H iff: Vhi,h;y € H, Cp,(p) # 0 and |Ch,(p)| = |Ch, ()]

Definition 15 (Constant group) A constant group is a set of partial terms
covering every h-solution of the history and whose every element is a constant
partial term.

A constant group may still contain a lot of variables. In order to provide a us-
able viewpoint, we need to reduce the number of variables. Because each term
of a h-solution is semantically atomic, the minimum number of variables we can
reach is the number of terms in one h-solution.

Note that the covers of the minimal constant group constitute, for each h-
solution, a partition of it.

Definition 16 (Minimal constant group) A minimal constant group Py on
a history H is minimal iff:

Vhe H, Y |Cu(p)| = |n|
pEPy

Note that for any history where all the h-solutions have the same number of
terms, there exists one minimal constant group. This group, Py g, is built from
the partial term {(}. Because {0} is included in all terms, we have |X| = |h| for
every h of H. So, the minimal constant group Py ¢ allows to build a viewpoint
that we call the root viewpoint.

The root viewpoint:
Xp = Xop,15 Xo,|n|
VXp; € Xp,D(Xy ;) = D(Ao)x...x D(Ay,), where { Ao, ..., Ay, } is the scheme of H.

As we can see, the domain of the variables of the root viewpoint is far too
large to be efficiently solved with constraint programming. Moreover, it is really
hard to put constraints on such a viewpoint in order to construct a constraint
network that models the target problem.

Therefore, we must seek constant minimal viewpoints with more specialized
variables and domains of smaller size. The bigger a partial term is, the more
specialized the candidate variables built from it will be, and the smaller the size
of their domains will be. This specialization is possible because the viewpoints
integrate the cardinality constraints that are expressed in the history through
the constancy of certain partial terms.

For the rest of the explanations, let’s focus on a particular subset of the minimal
constant groups: the homogeneous constant groups.

Definition 17 (Homogeneous constant group) A constant group Py on a
history H in which every partial term is associated to the same partial scheme
s is said homogeneous.

Note that the covers of a homogeneous constant group constitute a partition of
h because two partial terms of such a group cannot belong to the same term. A
homogeneous constant group is therefore always minimal.

Remark: h-solutions with different sizes
In order to simplify the explanation we have chosen to ignore the case of histories
where two distinct h-solutions don’t have the same number of terms. To manage

these histories, we add special terms to the smaller h-solutions until all the h-
solutions have the same size. These special terms contain only € values, which can
be interpreted as any value of the corresponding domain. With this modification,
our viewpoint modeling approach leads to satisfying results. At the instanciation,
we only have to set some of our viewpoint’s variables to the € value. Therefore
we can ensure that the generated viewpoints match the history.

4 Algorithm

4.1 Pruning techniques

As we have seen, the first step of the viewpoint building is to find constant
partial terms. In order to do so we study the partial terms occuring in our his-
tory in growing size order. The lattice of inclusion between the schemes (Fig.4),
which contains the partial term inclusion lattices, gives us a way to avoid useless
searches by exploiting the following partial term inclusion property.

Property 1 According to the definition of the cover of a partial term:
Vh € H,p' Cp = Cp(p) C Cr(p')

So if Ih € H,|Ch(p')| =0

|Cr(p)| =0 (i.e p cannot be constant).

Therefore we check partial terms in growing size order, eliminating the ones
that cannot be constant according to Property 1.
The algortihm 1, Extraction of constant partial terms, presents this method.

4.2 Algorithmic complexity

Let’s now determine the worst-case complexity of this algorithm.

At each level of the scheme inclusion lattice, we merge partial terms associated
to different schemes. We have a attributes in H so there are a levels in the lattice.
There are at most |h| different partial terms associated to each pattern and at

most (Z) schemes in a given level of the lattice.
2

So the worst case complexity of our algorithm is:
O(a.(4).1?) = 0((%)) = O(a)

The worst-case complexity is far from the average complexity because it does
not take the pruning into account. Moreover, in the most extreme case, all the
h-solutions contain exactly the same terms, all different from each other. This is
obviously not a realistic case.

Because we maintain information on previous partial terms during the algorithm
execution, the space complexity is of the same order as the time complexity. And
the space complexity is reduced by the pruning in the same extent as the time
complexity.

*
Time Sub;’ect Class Room
t1 s <l r1
t2 52 2 r2
t3 53 3
T-S T-C T-R S-C S-R C-R
t1s7 t2s3 t1r2 t2r2 s1cl slc2 STr1 s1r2 cirl c2r2
1261 1352 tle2 t3r2 s2¢3 s2r2 32
T-S-C T-S-R T-C-R S-C-R
t1s1c2 t1s1r2 t1c2r2 ;;5;:;
t3s2r2 g
s2c3r2: Usefull partial term T-S-C-R
s2¢3r2: Constant partial term tiste2r2

Fig. 4. Scheme inclusion lattice

5 Experimentations

We applied our technique for extracting constraint homogeneous viewpoints on
three typical problems: the 5-queen problem, the sudoku and a simplified school
timetable design. We found several constant homogeneous viewpoints for each
problem. In the following result presentations, we ignore the root viewpoint
which is always present and of very little interest for us.

5.1 5-queen problem

Here, the history is constituted of 8 valid solutions to the 5-queen problem. The
h-solutions are 5-row tables, each of which indicates the column and row indexes
of one of the queens.

Results
Our tool produces two viewpoints.
ViewPoint 1 : Partial scheme = Line; |X| =5, |[D| =5
--- X_Linel --- D:Column --- |D|=5
--- X_Line2 --- D:Column --- |D|=5
--- X_Line3 --- D:Column --- |D|=5

-—-- X_Line4 --- D:Column --- |D|=5

Données: H an history containing k h-solution h;, 71 the set of partial terms of

size 1 taken from the history
Reésultat: Every constant partial term on H

begin
P «—— ¢ /* Usefull partial terms */
Pest < ¢ /* Constant partial terms */
for each p in T1 do
minCov «— Min(|Cr(p)|, h € H)
maxCov «— Max(|Cr(p)|, h € H)
Cu(p) «— Cry(p) U ... U Ch, (p)
if minCov > 0 then

P+—— PUp

if mazCov = minCov then

|_ Pcst — Pcstup

for i from 1 to |A|-1 do
for each (p1, p2) from P where |p1| =i and |p2| =i do
if (Jjpr1 Upz2| =i+1) and (p1 U p2 ¢ P) then
p<— p1Up2

Min
minCov «— h € H|Cr(p1) N Cr(p2)|

Max
maxCov «— h € H|Cr(p1) N Cr(p2)|
Cu(p) < (Chy(p1) N Chy(p2)) U ... U (Chy(p1) N Chy (p2))
if minCov > 0 then
P—— PUp
if mazCov = minCov then
|_ Pcst%Pcst Up

return P.g;

end
Algorithm 1: Extraction of constant partial terms

-—— X_Line5 --- D:Column --- |D|=5

ViewPoint 2 : Partial scheme = Column; |X| = 5, |D| =5
-—- X_Columnl --- D:Line --- |D|=5

-—— X_Column5 --- D:Line --- |D|=b

The first viewpoint is constituted of 5 variables: one for the queen in the first
line, one for the queen in the second line, and so on. The domain of every variable
is the set of integers from 1 to 5, this number indicates the column where the

queen is.

The second viewpoint is the exact symetric of the first, with one variable for

each column’s queen. The values indicate the the line where the queen is.

These two viewpoints integrate respectively the facts that there is always exactly

one queen on each line and one queen on each column.

5.2 Sudoku

We start here from ten valid, already filled sudoku grids. To each cell of a grid
is associated a term that gives the line index, the column index and the value of
the cell.

Results

ViewPoint 1 : Partial pattern = Col; |X| = 81, |D| = 81

-—- X_Col1_1 --- D:Line/Val --- |D|=81
-—- X_Col1_2 --- D:Line/Val --- |D|=81
-—— X_Co0l9_9 --- D:Line/Val --- |D|=81

ViewPoint 2 : Partial pattern = Line; |X| = 81, [D| = 811

--—- X_Linel_1 --- D:Col/Val --- |D|=81
--—- X_Linel_2 --- D:Col/Val --- |D|=81
-—- X_Line9_9 --- D:Col/Val --- |D|=81

ViewPoint 3 : Partial pattern = Val; |X| = 81, |D| = 81

-—- X_Col1_1 --- D:Line/Col --- |D|=81
-—- X_Vall_2 --- D:Line/Col --- |D|=81
--- X_Val9_9 --- D:Line/Col --- |D|=81

These first 3 viewpoints are respectively based on the fact that there are exactly
9 values occuring exactly 9 times in each h-solution, 9 column indexes present 9
times and 9 line indexes present 9 times.

ViewPoint 4 : Partial pattern = Line-Col; |X| = 81, [D| =9
--- X_Linel1-Coll --- D:Val --- |D|=9
-—— X_Linel1-Col2 --- D:Val --- |D|=9
--- X_Line9-Col9 --- D:Val --- |D|=9

ViewPoint 5 : Partial pattern = Line-Val; |X| = 81, [D| = 9
--- X_Linel-Vall --- D:Col --- |D|=9
--- X_Linel-Val2 --- D:Col --- |D|=9
-—- X_Line9-Val9 --- D:Col --- |D|=9

ViewPoint 6 : Partial pattern = Col-Val; [X| = 81, [D| =9
--- X_Col1-Vall --- D:Line --- |D|=9
--- X_Col1-Val2 --- D:Line --- |D|=9

--- X_Co0l19-Val9 --- D:Line --- |D|=9

The viewpoint 4 is based on the fact that there is only one value from 1 to 9 for
one cell of the grid.

The viewpoint 5 is based on the fact that every line must be filled with, for each
cell, one different value from 1 to 9.

The viewpoint 6 is based on the fact that every column must be filled with, for
each cell, one different value from 1 to 9.

These three viewpoints are interesting because they express some aspects of the
sudoku problem’s structure. The viewpoint 4 gives us fondamental information
on how to fill the grid. The viewpoints 5 and 6 integrate the ’all diff’ constraint
existing respectively on column values and line values.

5.3 School timetable

From our four-year history of school timetable, presented in section 2.3, we au-
tomatically discovered 3 viewpoints.

Results

ViewPoint 1 : Partial pattern = Class; |X| = 46, |D| = 882

--- X_Class3_1 --- D:Time/Room/Subject --- |D|=882
--- X_Class3_2 --- D:Time/Room/Subject --- |D|=882
--- X_Class6_9 --- D:Time/Room/Subject --- |D|=882

This viewpoint is based on the fact that each class had the same number of
courses during the past four years. So we have 13 lessons for Class 3, 12 for
Class 4, 12 for Class 5 and 9 for Class 6. This viewpoint is valid but not usable
because the domain of each variable is too large.

ViewPoint 2 : Partial pattern = Subject; |X| = 46, |D| = 504

-—— X_Math_1 --- D:Time/Room/Class --- |D|=504
-—— X_Math_2 --- D:Time/Room/Class --- |D|=504
-—— X_Math_12 --- D:Time/Room/Class --- |D|=504
--- X_Musique_1 --- D:Time/Room/Class --- |D|=504
--- X_Musique_2 --- D:Time/Room/Class --- |D|=504

This viewpoint takes advantage of the constant number of lessons on a specific
subject to associate a variable to each different lesson on a subject.

We have here an interesting viewpoint but the domain size is still too big to
build an efficient constraint network with it.

ViewPoint 3 : Partial pattern = Class-Subject; |X| = 46, |D| = 126
--- X_Class3-Science_1 --- D:Time/Room --- |D|=126
--- X_Class3-Science_2 --- D:Time/Room --- |D|=126
--- X_Class3-Science_3 --- D:Time/Room --- |D|=126

--- X_Class3-Sport --- D:Time/Room --- |D|=126
--- X_Class3-English_1 --- D:Time/Room --- |D|=126

--- X_Class6-Art --- D:Time/Room --- |D|=126

The viewpoint building process has finally discovered that each class had the
same number of lessons in a specific subject in the past four years. This last
viewpoint associates a variable to each lesson of a specific class on a specific sub-
ject. This model looks quite interesting for building a usable constraint network.

These experimental results validate our method by providing several usable
viewpoints for each problem. A relevant selection among these automatically
generated viewpoints is the next step of our work.

6 Conclusions

In this paper, we have proposed the very first step of a method to get rid of the
bottleneck of modelling in the CSP approach to Problem Solving.

This automatic modelling is based on a set of historical data which describe
solutions to problems close to our target problem. We have focused the first
step of this modelling on the determination of the variables and their domains,
producing constraint viewpoints which are able to describe all of the target
problem solutions.

To do so, we have looked for viewpoints that can represent any of the solutions of
the history. We have then selected among them the viewpoints general enough to
represent any solution to problems of the same kind (such as the target problem).
Using our tool, which can easily build a particular subset of these viewpoints,
we have produced viewpoints for three different simple problems.

Our method can be combined with Machine Learning approaches which learn
constraints from examples, once the variables and the domains are given. We
are now investigating in this direction.

References

1. Alan M. Frisch, Christopher Jefferson, Bernadette Martinez Hernandez, and Ian
Miguel. The rules of constraint modelling. In IJCAI pages 109-116, 2005.

2. Remi Coletta, Christian Bessiére, Barry O’Sullivan, Eugene C. Freuder, Sarah
O’Connell, and Joél Quinqueton. Semi-automatic modeling by constraint acqui-
sition. In CP, pages 812-816, 2003.

3. Christian Bessiére, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A sat-
based version space algorithm for acquiring constraint satisfaction problems. In
ECML, pages 23-34, 2005.

4. P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In ECAI pages 31-35, 1992.

5. Yat Chiu Law and Jimmy Ho-Man Lee. Model induction: A new source of csp model
redundancy. In AAAI/TAAI pages 54—, 2002.

6. B. M. W. Cheng, Kenneth M. F. Choi, Jimmy Ho-Man Lee, and J. C. K. Wu.
Increasing constraint propagation by redundant modeling: an experience report.
Constraints, 4(2):167-192, 1999.

7. Barbara M. Smith. Dual models of permutation problems. In CP, pages 615-619,
2001.

8. Toby Walsh. Permutation problems and channelling constraints. In LPAR, pages
377-391, 2001.

