
HAL Id: lirmm-00134937
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00134937

Submitted on 8 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategic Constraint Satisfaction Problems
Christian Bessiere, Guillaume Verger

To cite this version:
Christian Bessiere, Guillaume Verger. Strategic Constraint Satisfaction Problems. ModRef 2006 -
5th International Workshop on Constraint Modelling and Reformulation, Sep 2006, Nantes, France.
pp.17-29. �lirmm-00134937�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00134937
https://hal.archives-ouvertes.fr


Strategic Constraint Satisfaction Problems

Christian Bessiere and Guillaume Verger

LIRMM, CNRS/University of Montpellier, France
{bessiere,verger}@lirmm.fr

Abstract. The Quantified constraint satisfaction problem (QCSP) has
been introduced to express situations in which we are not able to de-
cide the value of some of the variables (the universal ones). Despite the
expressiveness of QCSP, many problems, such as two-player games or
motion planning of robots, remain difficult to express. In this paper,
we propose Strategic CSP, an extension of QCSP where universal vari-
ables adapt their domain to be compatible with previous choices. This
new framework permits an easy encoding of many two-player games. We
give examples of such encodings and provide a preliminary experimental
evaluation.

1 Introduction

The constraint satisfaction problem (CSP) consists in finding values for variables
such that a set of constraints are satisfied. This framework is useful to express
and solve many real applications. However, some problems require dealing with
features that are hard to express in the classical CSP framework. Hence, sev-
eral extensions of the basic CSP have been proposed to deal with these various
features. For instance, in the quantified CSP framework [1], variables are either
existentially or universally quantified (whereas in the basic CSP all variables are
existentially quantified). The idea behind universal variables is that they must be
able to take any of their values because they represent uncontrollable parameters
such as meteorological events. QCSP is also presented as fitting well two-player
adversarial games, where we want to find a winning strategy for player 1. In this
case, decisions of player 1 are encoded as existential variables whereas decisions
of player 2 are universal variables (we do not know what move she will perform).
Unfortunately, as soon as there are some rules that constrain future moves de-
pending on past moves, it is difficult for QCSPs to encode such games. The
reason is that a QCSP will look for solutions for any possible move of player 2
while some of them have been made impossible by previous moves. This feature
of building solutions that are consistent only with values remaining possible at
the time we instantiate them would also be useful in some real applications such
as motion planning for robots.

In this paper, we propose Strategic CSPs (SCSPs), a new framework that is
devoted to problems containing variables that must be able to take any of their
values still possible at the time we instantiate them. We show how this framework
permits to easily encode two-player games by providing SCSP models for a few



well-known simple games. We provide experiments in which we show the cost of
finding a winning strategy in a two-player game.

The rest of the paper is organized as follows. In Section 2 we give some
background on CSPs and QCSPs. Section 3 shows the limitations of the QCSP
framework. In Section 4 we present the strategic CSP framework and we provide
a theoretical analysis. Section 5 shows a few examples of game encodings with
this framework. Section 6 contains preliminary experimental results. Section 7
discusses related work. In Section 8 we summarize our contribution and give
some perspectives.

2 Background

A constraint network N = (X, D, C) consists of a finite set of variables X =
{X1, . . . , Xn}, a set of domains D = {D(X1), . . . , D(Xn)}, where the domain
D(Xi) is the finite set of values that variable Xi can take, and a set of constraints
C = {c1, . . . , ce}. Each constraint ck is defined by the ordered set var(ck) of the
variables it involves, and by the set sol(ck) of combinations of values on var(ck)
satisfying it. A solution to a constraint network is an assignment of a value from
its domain to each variable such that every constraint in the network is satisfied.
When only a subset Y ⊆ X of variables are assigned and that all constraints c

with var(c) ⊆ Y are satisfied, we say that the assignment is locally consistent.
A value vi for a variable Xi is consistent with a subset X ′ of the variables iff the
network (X ′ ∪ {Xi}, D′, C ′ ∪ {Xi = vi}) has solutions, where D′ is simply the
set of domains in D of the variables in X ′ and C ′ is the set of the constraints
ck ∈ C such that var(ck) ⊆ X ′ ∪ {Xi}.

Given a constraint network N = (X, D, C), the constraint satisfaction prob-
lem (CSP) is the problem of deciding whether there exists an assignment in D

for the variables in X such that all constraints in C are satisfied. In a logical
formulation, we write, “∃X1 . . . ∃Xn, C?”

The quantified extension of the CSP allows some of the variables to be uni-
versally quantified. A quantified constraint network consists of variables X =
{X1, . . . , Xn}, a set of domains D = {D(X1), . . . , D(Xn)}, a quantifier sequence
Φ = (φ1X1, . . . , φnXn), where φi ∈ {∃, ∀}, ∀i ∈ 1..n, and a set of constraints C.
Given a quantified constraint network, the Quantified CSP (QCSP) is the ques-
tion “φ1X1 . . . φnXn, C?”. For instance, if D(X1) = D(X2) = D(X3) = {1, 2}
and C = {X1 6= X2, X2 6= X3}, the QCSP ∃X1∀X2∃X3C is inconsistent be-
cause there does not exist any value for X1 such that any value of X2 satisfies
X1 6= X2. If D(X1) = {1, 2, 3}, ∃X1∀X2∃X3C is satisfiable because if X1 = 3,
for any value of X2 we can find one for X3 such that C is satisfied. (If X2 takes
1, X3 takes 2 and vice-versa.) The QCSP is PSPACE-complete.

3 Limitations of QCSPs

QCSPs are devoted to problems where there is some uncontrollable/unpredictable
event that we cannot decide. Assignments of the ’decision’ variables (those with



the existential quantifier) must be consistent with any value of the unpredictable
variables. For instance, in [2], we must find quantities of water (or fertilizer) to
put on plants such that whatever the amount of rain, the plants finally receive
an adequate amount that permits their growth.

QCSPs are also claimed to be well-adapted to express the problem of the exis-
tence of a winning strategy in two-player games, where two players perform some
actions (or moves) each at his turn, until one of them reaches a “winning state”
(see work by Nightingale [3]). Examples of such games include chess, noughts
and crosses, Connect4, checkers, etc. Constraints permit to describe the allowed
moves a player can perform, existential variables express the decisions taken by
player 1, and universal variables those player 2 could take. Unfortunately, the
fact that a universal variable Xi must be consistent with X1, . . . , Xi−1 whatever
the value it takes in D(Xi) makes very complex the encoding of games where
actions at previous stages rule out possibilities for forthcoming moves (which is
the case for most games).

Take for instance a simple game where there are k tokens on a table, num-
bered 1, 2, ..k. Players alternatively pick a token on the table. The game stops
in a winning state for player 2 as soon as the sum of tokens in the hands of
player 1 is a multiple of 3. Otherwise, player 1 wins when the table is empty.
It could seem natural to encode this game as the following QCSP (k = 5):
∃X1∀X2∃X3∀X4∃X5, C, where D(Xi) = {1..5}∀i, and C = {Xi 6= Xj | i 6=
j}∪{X1mod3 6= 0; (X1+X3)mod3 6= 0; (X1+X3+X5)mod3 6= 0}. However, this
model is trivially inconsistent: given a universal variable Xj , for all i < j, there
exists a value in D(Xj) which is equal to the value Xi has already been assigned
to. We need to express the fact that Xj can take any value/token remaining on
the table (not any initially available token). This problem can be solved by using
conditional constraints the left hand sides of which control if we are in an allowed
state: X1mod3 6= 0, X1 6= X2 ∧ X1 6= X3 ∧ X2 6= X3 → (X1 + X3)mod3 6= 0,
and

∧
∀i,j,i6=j(Xi 6= Xj) → (X1 + X3 + X5)mod3 6= 0, This technique generates

large number of conditional constraints with many arguments in the left hand
side. It is a burden in the modelling phase and it leads to weak propagation in
the solving phase. We can note that Nightingale bypassed this issue by encoding
two-player games as a QCSP containing a single constraint involving all vari-
ables. In his encoding, a tuple satisfies the constraint iff it is a winning strategy
for player 1. This approach can be costly both in time and space.

Some real applications have characteristics that are difficult to express in the
QCSP framework. For instance, in the TWIG robot motion planning project
[4], we want to find a sequence of basic moves for a robot such that the final
state is some expected position. Each move is activated by one of the robot
motors (activating a wheel, a arm, a leg, etc.). The consequence of the move
is checked by some sensors that observe the new position of the robot after
the move. The next move of the robot must be consistent with the observed
position of the robot; that is, for any possible observed position (a value for a
universal variable), the robot must be able to find a new movement that is on
a path to the goal. What these possible observed positions can be? Among all



the initially possible positions, they are the subset of those that are possible
given the position of the robot before the motion action and the type of action
executed. This subset is seldom a singleton value because of some unexpected
external parameters that affect the robot. For instance, the ”jumping 1 meter
ahead” action does not have the same result if the robot is on a flat ground or
on a 10% slope, or with/without a bag on the shoulders. Hence, as in the case
of two-player games, we need an extra feature to express remaining states.

4 The Strategic CSP Framework

To overcome the limitation of QCSPs to express games or any situation where
future contingencies are constrained by previous decisions, we introduce a new
formalism that we call the Strategic CSP.

To be as general as possible, we chose to separate the variables in two different
sets. A first set contains the state variables, that is, those that are used to express
the rules of the game (or the constraints of the world). The second set contains
the quantified variables, that is, those that are decided by player 1 or player 2
(or those for which we can choose the value and those that must be able to take
any of their remaining values).

Definition 1 (Strategic Constraint Network). A Strategic constraint net-
work is composed of:

– a set of state variables X = {X1, . . . , Xn},
– a set of quantified variables Y = {Y1, . . . , Ym},
– a set of domains D = {D(X1), . . . , D(Xn), D(Y1), . . . , D(Ym)}, where the

domain D(Xi) (resp. D(Yi)) is the finite set of values that variable Xi (resp.
Yi) can take,

– a quantifier sequence Φ = (φ1Y1, . . . , φmYm), where φi ∈ {∃, ∀̊} for all i ∈
1..m

– a set of constraints C = {c1, . . . , ce}, where var(ck) ⊆ X ∪Y for all k ∈ 1..e

A variable quantified with ∀̊ (called “universal” by language abuse) must be
able to take any of its values that are still consistent after the assignment of
all the quantified variables preceding it in the sequence. In the following, head
denotes the first element in a sequence, and tail denotes the sequence where
the first element has been removed.

Definition 2 (Strategic CSP). A Strategic CSP (SCSP) (X, Y, D, Φ, C) is
satisfiable iff:

– Y = ∅ and (X, D, C) is a satisfiable CSP, or
– head(Φ) = ∃Yi and there exists a value v ∈ D(Yi) such that (X ∪ {Yi}, Y \

{Yi}, D, tail(Φ), C ∪ {Yi = v}) is satisfiable, or

– head(Φ) = ∀̊Yi and for every value v ∈ D(Yi), if (Yi, v) is consistent with
X, then (X ∪ {Yi}, Y \ {Yi}, D, tail(Φ), C ∪ {Yi = v}) is satisfiable.



X 0

X

0

0X

0

Fig. 1. Tic-tac-toe: The noughts win

Note that deciding which values have to be tried for a universal variable Yi

is NP-hard because it requires testing which values of Yi are consistent with all
state variables and all already instantiated quantified variables. This requires
checking the consistency of the values of Yi in the subnetwork containing all
constraints involving state variables and quantified variables Y1, . . . , Yi. In fact,
we will see later that in all our examples the models are naturally structured in
such a way that the test of consistency of a universal variable is linear. We now
prove that SCSP has the same complexity as QCSP.

Theorem 1 (Complexity). The Strategic CSP is PSPACE-complete.

Proof. We reduce QCSP (which is PSPACE-complete) to SCSP. Let (Y, D, Φ, C)
be a QCSP. We build a set of variables Y c containing a copy Y c

i of Yi for each
Yi ∈ Y . We define the quantifier sequence Φc = (φc

1Y
c
1 φc

2Y
c
2 . . . ∃Y1∃Y2 . . .) where

φc
i = ∃ if φi = ∃ and φc

i = ∀̊ if φi = ∀. Note that all variables in Y are existentially
quantified in Φc. (There are no state variables.) The set C ′ of constraints contains
all constraints of C on Y as in the QCSP and constraints Y c

i = Yi for all i. The
SCSP (∅, Y c ∪ Y, D, Φc, C ′) is satisfiable iff the QCSP is satisfiable. Since SCSP
is in PSPACE we are done. ut

5 Examples

5.1 Tic-tac-toe (noughts and crosses)

Tic-tac-toe, also called noughts and crosses and many other names, is a game
between two players, O and X, who alternate in marking the cells in a 3x3
board. A player wins by getting three of her own marks in a horizontal, vertical
or diagonal row. The game ends in a draw if the board is filled completely without
any player winning.

A natural question that arises in such games is: ’is there a winning strategy
for player 1?’ (that is, is it possible that player 1 wins if player 2 plays perfectly).
We show this question can be encoded in a strategic CSP that is satisfiable iff
such a strategy exists.



We build the constraint network on two kinds of variables. The first kind of
variables (state variables) represent the board and will support the constraints
expressing the rules of the game. The second kind of variables (quantified vari-
ables) represent the decisions taken by the players, and is linked to the first kind
of variables by channelling constraints that guarantee the coherence of the values
taken by all variables.

Model 1 The strategic CSP of Tic-tac-toe contains state variables and quan-
tified variables. The set of state variables contains 9 board-variables and 8 flag-
variables that represent the cells on the board and the winning states. They
will support constraints expressing the rules of the game (what kind of moves
are allowed and what is a winning state). The board-variables are X1.1, . . . , X3.3,
where Xi.j takes as value the number of the player (1 or 2) who put a mark on the
cell of coordinates i.j, or 0 if not marked; that is, D(Xi.j) = {0, 1, 2}, ∀i, j ∈ 1..3.
The flag-variables Fr.1, Fr.2, Fr.3, Fc.1, Fc.2, Fc.3, Fd.1, Fd.2 give the status of their
associated row (Fr,i), column (Fc,i), or diagonal (Fd,i): Variable F∗.i takes 1 if the
line is won by player 1, 2 if it is won by player 2, 0 otherwise; D(F∗.i) = {0, 1, 2}.
The set of quantified variables contains 9 player-variables P1, . . . , P9 that repre-
sent the decisions of the players, 4 stopping-variables Stop1, Stop3, Stop5, Stop7

that will permit to stop the game as soon as player 1 has won, and a final-state
variable F to decide if player 1 won. Variable Pi takes as value the coordinate
of the cell marked at turn i (this is a decision by player 1 if i is odd, by player 2
otherwise). If the game has finished before step i, Pi takes the dummy value 0.
That is, D(Pi) = {0, 1.1, . . . , 3.3}, ∀i ∈ 1..9. Boolean variable Stopi (i is odd)
takes value 1 iff player 1 won at move i or earlier; D(Stopi) = {0, 1}.

The following constraints ensure that variables take values as described above.
We post the channelling constraints that say that Xv takes as value the number
of the player who marked it (0 if not marked):

Pi = v → Xv = ((i − 1)mod2) + 1, ∀i ∈ 1..9, v ∈ 1.1..3.3

Constraint Full(X, Y, Z, G) is true iff (X = Y = Z = k) ↔ (G = k), k ∈ 1, 2.
That is, the three board-variables X, Y, Z are all filled by player k iff the flag-
variable G is k. We post Full on each row, column, and diagonal to guarantee
that the flag of a given line correctly indicates if there is a winner on this line:

Full(Xi.1, Xi.2, Xi.3, Fr.i), ∀i ∈ 1..3, /* rows */

Full(X1.j , X2.j , X3.j , Fc.j), ∀j ∈ 1..3, /* columns */

Full(X1.1, X2.2, X3.3, Fd.1), and

Full(X1.3, X2.2, X3.1, Fd.2) /* diagonals */

We post the constraints that guarantee that player 1 is the winner (at least one
line is won by player 1, and no line is won by player 2):

max(F∗.i) = F ∧ F = 1



Note that if we had directly posted the constraint max(F∗.i) = 1, it would
prune value 2 from all F∗.i because F∗.i are state variables. Hence, constraints
Full(X, Y, Z, F∗.i) would prevent player 2 from filling a cell on a line that would
make her the winner, and the SCSP would be satisfiable even if there is no
winning strategy for player 1. With F being a quantified variable, constraint
max(F∗.i) = F is not used to test consistency of universal variables as long as
variable F is not instantiated (see Definition 2). Thus, nothing prevents player 2
from winning a line. In this case, the failure comes from the impossibility to
instantiate F with value 1. Furthermore, we must avoid player 2 wins a line
after player 1 already won. For that, we post stopping constraints. They permit
player 1 to stop the game as soon as he won. They also prevent player 2 from
passing her turn.

Stopi = 1 ↔ Pi+1 = 0, ∀i ∈ {1, 3, 5, 7}

Stopi = 1 ↔ Pi+2 = 0, ∀i ∈ {1, 3, 5, 7}

Stopi = 1 → Stopi+2 = 1, ∀i ∈ {1, 3, 5}

Once the network is specified as above, the strategic CSP ({X1.1, . . . , X3.3,

F∗.i, . . .}, {P1, Stop1, P2, P3, Stop3, . . . , P9, F}, (∃P1, ∃Stop1, ∀̊P2, ∃P3, ∃Stop3, . . . ,

∃P9, ∃F ), C) is satisfiable iff there exists a winning strategy for player 1. We see
that once all F∗.i are instantiated, it imposes a single value for F , and the in-
stantiation is consistent iff that value for F is 1. Variables Stopi are existential
because this is player 1 who decides when to stop.

Model 2 We propose a second model which emphasizes the fact that universal
variables do not need to have remaining consistent values once this is their turn
to be instantiated. An existential variable without any consistent value means a
failure whereas a universal variable without any consistent value means a winning
branch.

We transform model 1 the following way: Player-variables Pi do not have the
dummy value 0 in their domain: D(Pi) = {1.1, . . . , 3.3}. We remove all Stopi

variables and the stopping constraints. We add the constraint

not-both-1-and-2(Fr.1, Fr.2, Fr.3, Fc.1,

Fc.2, Fc.3, Fd.1, Fd.2)

which holds iff values 1 and 2 do not both appear in the variables F∗.i.
The strategic CSP ({X1.1, . . . , X3.3, F∗.i, . . .}, {P1, P2, P3, . . . , P9, F}, (∃P1,

∀̊P2, ∃P3, . . . , ∃P9, ∃F ), C) is satisfiable iff there exists a winning strategy for
player 1.

This model can seem a bit surprising. First, it does not contain stopping
variables and constraints. These variables and constraints were necessary to en-
sure that a player does not pass his turn or stops the game before the end. In
model 2, the Pi do not contain value 0. So, they are obliged to take a value



which is a regular move. Once one of the players, say k, has won a line, the
corresponding F∗.i is set to k, and the constraint not-both-1-and-2(F∗.i) guar-
antees that none of the other moves is winning for the other player. If k = 2,
this can lead to branches where player 1 cannot play, which is a failure in that
branch (and this is what we want since player 2 won). If k = 1, this can lead
to branches where player 2 cannot play (all its values are inconsistent with con-
straint not-both-1-and-2(F∗.i)), which is a successful branch (and this is what
we want since player 1 won).

Discussion We have observed in Section 4 that testing which values of the
universal variables remain consistent is NP-hard. However, in some cases, the
subnetwork involving state variables and already instantiated quantified vari-
ables can fit a polynomial class (tree-structured networks for instance).

How is it in model 1 of Tic-tac-toe? The constraints involving state variables
Xi.j are the channelling constraints, the Full constraints, and the max(F∗.i) = F

constraint. If Pi is the universal variable to instantiate, all channelling con-
straints involving Pj , j < i, are unary constraints because Pj has already been
instantiated. So, intractability cannot come from them. Full constraints are
functional from the Xi.j to F∗.i, which means that any combination of values for
the Xi.j belongs to a satisfying tuple. The only other constraint involving F∗.i

is max(F∗.i) = F , which will be considered only when instantiating the quanti-
fied variable F , which is after all universal variables Pi. Thus, arc consistency is
enough to guarantee that a value for a universal variable is consistent with state
variables and previous instantiations of quantified variables.

How is it in model 2? Here, in addition to the constraints in model 1, there
is the not-both-1-and-2 constraint on the F∗.i. This last constraint cannot
force different F∗.i to take different non null values. Hence, two Full constraints
overlapping on some Xi.j do not constrain it more than the most restrictive Full
constraint alone. Thus, as in model 1, arc consistency is sufficient.

Interestingly, in our two models, consistency for values of universal variables
is easy to check. This is not surprising because constraints involving state vari-
ables are either channelling constraints or constraints expressing the rules of
the game. The former are functional and the latter cannot be complex to verify
because the rules of a game must be easy to follow by human players.

5.2 Connect 4

We now show that a more complex game like Connect4 can be encoded with the
same principle.

Connect4 (see Fig 2) is a two-player game that is played on a vertical board
with 6 rows and 7 columns. The players have 21 discs each, distinguished by
color. The players take turns in dropping discs in one of the non-full columns.
The disc then occupies the lowest unoccupied cell on that column. A player
wins by placing four of their own discs consecutively in a line (row, column or
diagonal), which ends the game. The game ends in a draw if the board is filled
completely without any player winning.



�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


�����
�����
�����

�����
�����
�����

��
��
��

�����
�����
�����

�����
�����
�����

�����
�����
�����

Fig. 2. Connect4: The blacks win

A Model We use the same technique as in the second model of Tic-tac-toe,
except that we need to keep the ordering of the moves of each player because a
disc placed recently cannot be placed below an older one in the same column.
The strategic CSP of Connect4 contains state variables and quantified variables.
The set of state variables contains 42 board-variables X1.1, . . . , X6.7, where Xi.j

represents the cell on the ith row, jth column and takes as value the rank at
which a disc was put in that cell. That is, D(Xi.j) = {1..42}, ∀i, j. There are
also flag-variables Fk1

, Fk2
. . ., one for each sequence of four cells on the same

line. Fki
will give the status of their associated line; that is, 1 if the line is won

by player 1, 2 if it is won by player 2, 0 otherwise; D(Fki
) = {0, 1, 2}. The set of

quantified variables contains 42 player-variables P1, . . . , P42 that represent the
decisions of the players. Variable Pi takes as value the coordinate of the cell filled
at turn i (this is a decision by player 1 if i is odd, by player 2 otherwise). That
is, D(Pi) = {1.1, . . . , 6.7}, ∀i ∈ 1..42.

The following constraints ensure that variables take values as described above.
We post the channelling constraints that say that Xv takes as value the rank

at which it is marked (0 if not marked):

Pi = v ↔ Xv = i, ∀i ∈ 1..42, v ∈ 1.1..6.7

We post constraints that guarantee that a recent disc is not put below an
older one:

Xi+1.j > Xi.j , ∀i, j

We define a constraint that detects a winner on a line of four cells: Line(W, X, Y, Z, G)
holds iff:

– W, X, Y, Z are all even and G = 2, or
– W, X, Y, Z are all odd and G = 1, or
– W, X, Y, Z do not all have the same parity and G = 0.

We post this constraint on all lines of four consecutive cells:

Line(Xi.j , . . . , Xi.j+3, Fki
) ∧ . . .



∧ Line(Xi.j , . . . , Xi+3.j , Fkl
) ∧ . . .

We add the constraint

not-both-1-and-2(Fk1
, Fk2

, . . .)

We post the constraints that guarantee that player 1 is the winner (at least one
line is won by player 1, and no line is won by player 2):

max(F∗.i) = F ∧ F = 1

Once the network is specified as above, the strategic CSP ({X1.1, . . . , X6.7,

Fk1
, . . .}, {P1, P2, P3, . . . , P42, F}, (∃P1, ∀̊P2, ∃P3, . . . , ∀̊P42, ∃F ), C) is satisfiable

iff there exists a winning strategy for player 1.
In addition to the constraints similar to those in model 2 of Tic-tac-toe, this

model contains constraints ’>’ on state variables. These constraints being linear,
arc consistency is sufficient to check consistency of values of universal variables.

6 Experimental Evaluation

We provide very preliminary experiments that show that the SCSP framework
is a promising approach for solving two-player games. We used a very brute-
force algorithm, which is merely a classical CP toolkit (Choco [5]) in which
we postpone propagation of constraints that contain quantified variables until
all their quantified variables are instantiated, and we force extending universal
variables to solutions for all their remaining values. All our experiments were
run on a 1.6GHz PC with 128Mb of memory.

We tested the SCSP framework on the two games presented in Section 5.
For Tic-tac-toe, we experimented on the two models proposed in Section 5.1 to
see what type of model (with or without stopping variables) is more efficient
and to see if our approach is practicable. We obtained 5.74 sec. for model 1
and 2.05 sec. for model 2. This shows that the simpler model (without stopping
variables) is the faster. These results can be compared to those obtained in [3],
where Nightingale also tested on two different models. One of them was solved
in 26.20 sec. and the other in 13.78 sec. on a PC twice as fast as ours (3GHz
with 1Gb of memory).

Concerning Connect4, the classical instance presented in Section 5.2 (6 ×
7 board with lines of length 4) is far too difficult. We tested various sizes of
the board as presented in [6] for their experimentation of QBF encodings of
Connect4: square boards of sizes k × k, k ∈ 2..9 where players try to put 2,
3 or 4 discs on the same line. Table 1 reports results obtained by Gent and
Rowley on their QBF encoding and results obtained with our SCSP model of
Section 5.2. Their computer was slightly faster than ours (1.7GHz) with the
same memory. We can see in Table 1 that SCSP is almost always faster with
the notable exception of the (5, 5, 4) instance. It would be worth seeing if it is
confirmed on other instances, like (5, 5, 5), but Gent and Rowley’s paper contains



Table 1. Results of Gent’s QBF encoding (left) and our SCSP encoding (right). Square
boards of width and height k, requiring c discs in a line to win. Cutoff at 3600 sec.

QBF Instance SCSP
Time(s) #vars #clauses k c Solution Time(s) #vars #constraints

0.00 238 631 2 2 T 0.00 15 27
0.03 1,117 3,330 3 2 T 0.06 39 110
4.23 8,374 27,384 5 2 T 0.23 123 720

22.80 17,314 57,891 6 2 T 0.45 183 1,439
137.59 32,043 108,838 7 2 T 1.72 255 2,602

0.07 901 2,610 3 3 F 0.20 27 98
8.10 2,880 9,381 4 3 T 1.83 57 295

451.41 7,174 24,984 5 3 T 98.04 99 696
- 15,154 55,011 6 3 - - 153 1,409

3.08 2,432 7,461 4 4 F 3.89 43 281
703.92 6,174 21,384 5 4 F - 79 676

- 13,282 49,539 6 4 - - 127 1,383

only those reported here. Finally, we can note that the encoding is extremely
simpler in SCSP than in QBF: In [6], the description of the Connect4 model
takes 11 pages whereas we needed less than a column.

7 Related Work

In [3], Nightingale used QCSPs to encode two-player games. He avoided the
limitation of QCSPs by encoding the game in a single constraint. The complexity
is thus completely embedded in the constraint, which makes its propagation
expensive. Walsh proposed the Stochastic CSP framework to express problems
where there is some uncertainty on the value that a given variable can take
[7]. Each uncontrollable variable is associated with a probability distribution
on its values. Though being more expressive than QCSP, Stochastic CSP still
cannot conveniently express the notion of remaining values for an uncontrollable
variable. Outside the constraint reasoning area, minimax techniques have been
used for a long time to solve two-player games. They can be efficient when
the space of search is too large to be explored exhaustively and when a good
evaluation function is available to compare different situations. However, such
techniques do not use propagation of inconsistencies as constraint reasoning
permits to do. Finally, Quantified Boolean Formulae (QBF) have been used
to encode two-player games. The issue of remaining values is solved by complex
encodings involving additional ’indicator’ variables and clauses detecting ’illegal’
moves. For instance, in [6], an encoding for the Connect4 is proposed. As seen
in Section 6, this encoding is extremely complex and often not as efficient as a
SCSP formulation solved with a brute-force algorithm. In [8], the weakness of
QBF for solving two-player games is pointed out. New encodings are proposed
that permit to detect illegal moves as early as possible and a new QBF solver
is proposed, that efficiently handles the indicator variables. We can emphasize



here the fact that SCSPs do not need to take care of such optimized encodings
since illegal moves are not considered at all.

8 Conclusion and Perspectives

We have shown that there exist problems, such as two-player games, for which we
need to express that some variables must be able to take any of their values still
available at the time they are instantiated. None of the existing CSP frameworks
permit to express this easily. We have proposed the Strategic CSP to tackle this
issue. We have shown that Strategic CSPs allow neat encodings of classical two-
player games. We provided an initial experimental evaluation that confirms that
SCSP is not only a simple framework for expressing problems, but also a way to
solve them efficiently compared to other approaches. As for efficiency, we need to
carefully study the characteristics of SCSPs to propose efficient algorithms. Our
experiments used a standard CSP solver in which constraints involving quan-
tified variables are simply delayed until their last quantified variable is to be
instantiated. This could easily be improved by writing propagators that prop-
agate constraints from state variables to quantified ones but not the opposite.
Finally, we will use SCSPs in the TWIG robot motion planning project.

Acknowledgements

We want to thank Frederic Koriche, Bruno Zanuttini and all the members of the
Coconut group for useful comments and discussions.

References

1. Bordeaux, L., Montfroy, E.: Beyond NP: Arc-consistency for quantified constraints.
In: Proceedings CP’02, Ithaca NY (2002) 371–386

2. Fargier, H., Martin-Clouiare, J.L.R., Rellier, J.: Uncertainty and flexibility in con-
straint satisfaction: a case study and an application to agricultural planning. In:
Proceedings of the workshop on Constraint Satisfaction Issues Raised by Practical
Applications, Amsterdam, The Netherlands (1994) 21–29

3. Nightingale, P.: Consistency for quantified constraint satisfaction problems. Tech-
nical Report CPPod-11-2005, CPPod (2005) short version in Proceedings CP’05,
pages 792-796.

4. Paulin, M., Bourreau, E., Dartnell, C., Krut, S.: Modélisation et planification
d’actions élémentaires robotiques par apprentissage de réseaux de contraintes. In:
Proceedings JFPC’06, Nimes, France (2006) 405–414

5. Choco: A Java library for constraint satisfaction problems, constraint programming
and explanation-based constraint solving. URL: http://choco-solver.net (2005)

6. Gent, I., Rowley, A.: Encoding Connect-4 using quantified boolean formulae. In:
Proc. 2nd International Workshop on Modelling and Reformulating Constraint Sat-
isfaction Problems, Kinsale, Ireland (2003) 78–93

7. Walsh, T.: Stochastic constraint programming. In: Proceedings ECAI’02, Lyons,
France (2002) 111–115



8. Ansotegui, C., Gomes, C., Selman, B.: The Achilles’ heel of QBF, Pittsburgh PA
(2005) 275–281


