R. Agrawal, R. J. Bayardo, J. , and R. Srikant, Athena: Mining-Based Interactive Management of Text Databases, Proc. of the 7rd Int. Conf. on Extending Database Technology, pp.365-379, 2000.
DOI : 10.1007/3-540-46439-5_25

R. Agrawal and R. Srikant, Fast Algorithms for Mining Generalized Association Rules, Proc. 20th Int. Conf. Very Large Data Bases, pp.487-499, 1994.

R. Agrawal and R. Srikant, Mining sequential patterns, Proceedings of the Eleventh International Conference on Data Engineering, pp.3-14, 1995.
DOI : 10.1109/ICDE.1995.380415

K. Ali, S. Manganaris, and R. Srikant, Partial Classification Using Association Rules, Proc. of the 3rd Int. Conf. on Knowledge Discovery and Data Mining, pp.115-118, 1997.

M. Antonie and O. Zaiane, Text document categorization by term association, 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp.19-26, 2002.
DOI : 10.1109/ICDM.2002.1183881

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, Sequential Pattern Mining Using Bitmaps, Proc. of the 8th Int. Conf. on Knowledge Discovery and Data Mining, 2002.

E. Baralis, S. Chiusano, and P. Garza, On support thresholds in associative classification, Proceedings of the 2004 ACM symposium on Applied computing , SAC '04, pp.553-558, 2004.
DOI : 10.1145/967900.968016

E. Baralis and P. Garza, Majority Classification by Means of Association Rules, Proc. of the 7th European Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD'03), pp.35-46, 2003.
DOI : 10.1007/978-3-540-39804-2_6

P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning, vol.2, issue.4, pp.261-283, 1989.
DOI : 10.1007/BF00116835

W. Cohen, Fast Effective Rule Induction, Proc. of the 12th Int. Conf. on Machine Learning, (ICML'95), pp.115-123, 1995.
DOI : 10.1016/B978-1-55860-377-6.50023-2

B. Cremilleux and J. F. Boulicaut, Simplest rules characterizing classes generated by delta-free sets, Proc. of the 22nd BCS SGAI Int. Conf. on Knowledge Based Systems and Applied Artificial Intelligence, pp.33-46, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00324763

G. Dong, X. Zhang, L. Wong, and J. Li, CAEP: Classification by Aggregating Emerging Patterns, Proc. of the 2nd Int. Conf. on Discovery ScienceDS'99), pp.30-42, 1999.
DOI : 10.1007/3-540-46846-3_4

M. Iwayama and T. Tokunaga, Cluster-based text categorization, Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '95, pp.273-281, 1995.
DOI : 10.1145/215206.215371

S. Jaillet, A. Laurent, M. Teisseire, and J. Chauché, Order and Mess in text categorization: Why using sequential patterns to classify, Proc. of 3rd Workshop on Mining Temporal and Sequential Data, in conjunction with The 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108887

D. Janssens, G. Wets, T. Brijs, K. Vanhoof, and G. Chen, Adapting the CBA algorithm by means of intensity of implication, Proc. of the 1st Int. Conf. on Fuzzy Information Processing Theories and Applications, pp.397-403, 2003.
DOI : 10.1016/j.ins.2004.03.022

T. Joachims, Text categorization with Support Vector Machines: Learning with many relevant features, Proc. of ECML- 98, 10th European Conf. on Machine Learning, pp.137-142, 1998.
DOI : 10.1007/BFb0026683

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Lent, R. Agrawal, and R. Srikant, it Discovering Trends in Text Databases, Proc. of the 3rd Int. Conf. on Knowledge Discovery and Data Mining, pp.227-230, 1997.

S. Jaillet, Sequential patterns for text categorization
URL : https://hal.archives-ouvertes.fr/lirmm-00135010

W. Li, J. Han, and J. Pei, CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules, Proc. of the 2001 IEEE Int. Conf. on Data Mining (ICDM'01), pp.369-376, 2001.

Y. Li and A. Jain, Classification of Text Documents, The Computer Journal, vol.41, issue.8, pp.537-546, 1998.
DOI : 10.1093/comjnl/41.8.537

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Liu, W. Hsu, and Y. Ma, Integrating Classification and Association Rule Mining, Proc . of the 4th Int. Conf. on Knowledge Discovery and Data Mining (KDD'98), pp.80-86, 1998.

B. Liu, Y. Ma, and C. Wong, Improving an Association Rule Based Classifier, Proc. of the 4th European Conf. on Principles of Data Mining and Knowledge Discovery (PKDD'00), pp.504-509, 2000.
DOI : 10.1007/3-540-45372-5_58

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Liu, Y. Ma, and C. Wong, Classification Using Association Rules: Weaknesses and Enhancements, in: Data Mining for Scientific Application and Engineering Applications, 2001.
DOI : 10.1007/978-1-4615-1733-7_30

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Maron, Automatic Indexing: An Experimental Inquiry, Journal of the ACM, vol.8, issue.3, pp.404-417, 1961.
DOI : 10.1145/321075.321084

F. Masseglia, P. Poncelet, and M. Teisseire, Incremental mining of sequential patterns in large databases, Data & Knowledge Engineering, vol.46, issue.1, 2003.
DOI : 10.1016/S0169-023X(02)00209-4

URL : https://hal.archives-ouvertes.fr/lirmm-00269547

F. Masseglia, P. Poncelet, and M. Teisseire, Pre-processing time constraints for efficiently mining generalized sequential patterns, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004., pp.87-95, 2004.
DOI : 10.1109/TIME.2004.1314424

URL : https://hal.archives-ouvertes.fr/lirmm-00108888

D. Meretakis and B. Wuthrich, Extending na??ve Bayes classifiers using long itemsets, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, pp.165-174, 1999.
DOI : 10.1145/312129.312222

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen et al., PrefixSpan mining sequential patterns efficiently by prefix projected pattern growth, International Conference on Data Engineering (ICDE'01), pp.215-226, 2001.

J. Quinlan, C4.5 ? Programs for Machine Learning, 1993.

G. Salton and M. J. Mcgill, Introduction to modern information retrieval, 1983.

G. Salton, C. Yang, and C. Yu, A theory of term importance in automatic text analysis, Journal of the American Society for Information Science, vol.15, issue.1, pp.33-44, 1975.
DOI : 10.1002/asi.4630260106

F. Sebastiani, Machine learning in automated text categorisation, Proc. of ACM Computing Surveys, pp.1-47, 2002.
DOI : 10.1145/505282.505283

URL : http://arxiv.org/abs/cs/0110053

M. Shimbo, T. Yamasaki, and Y. Matsumoto, Automatic classification of sentences in the medline abstracts: A case study of the power of word sequence features, Proc. of the 6th Sanken (ISIR) International Symposium, pp.135-138, 2003.

R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, Proc. of the 5th Int.Conf. on Extending Database Technology (EDBT'96), pp.3-17, 1996.
DOI : 10.1007/BFb0014140

URL : http://arbor.ee.ntu.edu.tw/~chyun/dmpaper/srikms96.pdf

M. Takechi, T. Tokunaga, Y. Matsumoto, and H. Tanaka, Feature selection in categorizing procedural expressions, Proceedings of the sixth international workshop on Information retrieval with Asian languages -, 2003.
DOI : 10.3115/1118935.1118942

K. Wang, S. Zhou, and Y. He, Growing decision trees on support-less association rules, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.265-269, 2000.
DOI : 10.1145/347090.347147

P. Wong, W. Cowley, H. Foote, E. Jurrus, and J. Thomas, Visualizing Sequential Patterns for Text Mining, Proc of the 2000 IEEE Symposium on Information Visualization, pp.105-114, 2000.

Y. Yang, An Evaluation of statistical approaches to text categorization, Information Retrieval, vol.1, issue.1/2, pp.69-90, 1999.
DOI : 10.1023/A:1009982220290